51
|
Centurione L, Aiello FB. DNA Repair and Cytokines: TGF-β, IL-6, and Thrombopoietin as Different Biomarkers of Radioresistance. Front Oncol 2016; 6:175. [PMID: 27500125 PMCID: PMC4956642 DOI: 10.3389/fonc.2016.00175] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022] Open
Abstract
Double strand breaks (DSBs) induced by radiotherapy are highly cytotoxic lesions, leading to chromosomal aberrations and cell death. Ataxia-telangiectasia-mutated (ATM)-dependent DNA-damage response, non-homologous end joining, and homologous recombination pathways coordinately contribute to repairing DSBs in higher eukaryotes. It is known that the expression of DSB repair genes is increased in tumors, which is one of the main reasons for radioresistance. The inhibition of DSB repair pathways may be useful to increase tumor cell radiosensitivity and may target stem cell-like cancer cells, known to be the most radioresistant tumor components. Commonly overexpressed in neoplastic cells, cytokines confer radioresistance by promoting proliferation, survival, invasion, and angiogenesis. Unfortunately, tumor irradiation increases the expression of various cytokines displaying these effects, including transforming growth factor-beta and interleukin-6. Recently, the capabilities of these cytokines to support DNA repair pathways and the ATM-dependent DNA response have been demonstrated. Thrombopoietin, essential for megakaryopoiesis and very important for hematopoietic stem cell (HSC) homeostasis, has also been found to promote DNA repair in a highly selective manner. These findings reveal a novel mechanism underlying cytokine-related radioresistance, which may be clinically relevant. Therapies targeting specific cytokines may be used to improve radiosensitivity. Specific inhibitors may be chosen in consideration of different tumor microenvironments. Thrombopoietin may be useful in fending off irradiation-induced loss of HSCs.
Collapse
Affiliation(s)
- Lucia Centurione
- Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara , Chieti , Italy
| | - Francesca B Aiello
- Department of Medicine and Aging Sciences, G. d'Annunzio University of Chieti-Pescara , Chieti , Italy
| |
Collapse
|
52
|
Choudhary S, Boldogh I, Brasier AR. Inside-Out Signaling Pathways from Nuclear Reactive Oxygen Species Control Pulmonary Innate Immunity. J Innate Immun 2016; 8:143-55. [PMID: 26756522 PMCID: PMC4801701 DOI: 10.1159/000442254] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 02/05/2023] Open
Abstract
The airway mucosa is responsible for mounting a robust innate immune response (IIR) upon encountering pathogen-associated molecular patterns. The IIR produces protective gene networks that stimulate neighboring epithelia and components of the immune system to trigger adaptive immunity. Little is currently known about how cellular reactive oxygen species (ROS) signaling is produced and cooperates in the IIR. We discuss recent discoveries about 2 nuclear ROS signaling pathways controlling innate immunity. Nuclear ROS oxidize guanine bases to produce mutagenic 8-oxoguanine, a lesion excised by 8-oxoguanine DNA glycosylase1/AP-lyase (OGG1). OGG1 forms a complex with the excised base, inducing its nuclear export. The cytoplasmic OGG1:8-oxoG complex functions as a guanine nucleotide exchange factor, triggering small GTPase signaling and activating phosphorylation of the nuclear factor (NF)x03BA;B/RelA transcription factor to induce immediate early gene expression. In parallel, nuclear ROS are detected by ataxia telangiectasia mutated (ATM), a PI3 kinase activated by ROS, triggering its nuclear export. ATM forms a scaffold with ribosomal S6 kinases, inducing RelA phosphorylation and resulting in transcription-coupled synthesis of type I and type III interferons and CC and CXC chemokines. We propose that ATM and OGG1 are endogenous nuclear ROS sensors that transmit nuclear signals that coordinate with outside-in pattern recognition receptor signaling, regulating the IIR.
Collapse
Affiliation(s)
- Sanjeev Choudhary
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex., USA
- Department of Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex., USA
- Department of Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Tex., USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Tex., USA
- Department of Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex., USA
- Department of Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Tex., USA
| | - Allan R. Brasier
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Tex., USA
- Department of Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Tex., USA
- Department of Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Tex., USA
| |
Collapse
|
53
|
Schmitz ML, Kracht M. Cyclin-Dependent Kinases as Coregulators of Inflammatory Gene Expression. Trends Pharmacol Sci 2015; 37:101-113. [PMID: 26719217 DOI: 10.1016/j.tips.2015.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
Cyclin-dependent kinases (CDKs) exert a variety of functions through regulation of the cell cycle and gene expression, thus implicating them in diverse biological processes. Recent studies have deciphered the molecular mechanisms employed by nuclear CDKs to support the expression of inflammatory mediators. Induced transcription of many proinflammatory genes is increased during the G1 phase of the cell cycle in a CDK-dependent manner. This process involves the cytokine-induced recruitment of CDK6 to the nuclear chromatin fraction where it associates with transcription factors of the NF-κB, STAT, and AP-1 families. The ability of CDK6 to trigger the expression of VEGF-A and p16(INK4A) and to recruit the NF-κB subunit p65 to its target sites is largely independent of its kinase function. The involvement of CDKs in proinflammatory gene expression also allows therapeutic targeting of their functions to interfere with tumor-promoting inflammation or chronic inflammatory diseases.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Michael Kracht
- Rudolf-Buchheim-Institute for Pharmacology, Medical Faculty, Schubertstrasse 81, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
54
|
Liu JR, Liu Q, Khoury J, Li YJ, Han XH, Li J, Ibla JC. Hypoxic preconditioning decreases nuclear factor κB activity via Disrupted in Schizophrenia-1. Int J Biochem Cell Biol 2015; 70:140-8. [PMID: 26615762 DOI: 10.1016/j.biocel.2015.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 01/15/2023]
Abstract
Nuclear factor κB is a key mediator of inflammation during conditions of hypoxia. Here, we used models of hypoxic pre-conditioning as mechanism to decrease nuclear factor κB activity induced by hypoxia. Our initial studies suggested that Disrupted in Schizophrenia-1 may be induced by hypoxic pre-conditioning and possibly involved in the regulation of nuclear factor κB. In this study we used Disrupted in Schizophrenia-1 exogenous over-expression and knock-down to determine its effect on ataxia telangiectasia mutated--nuclear factor κB activation cascade. Our results demonstrated that hypoxic pre-conditioning significantly increased the expression of Disrupted in Schizophrenia-1 at mRNA and protein levels both in vitro and in vivo. Over-expression of Disrupted in Schizophrenia-1 significantly attenuated the hypoxia-mediated ataxia telangiectasia mutated phosphorylation and prevented its cytoplasm translocation where it functions to activate nuclear factor κB. We further determined that Disrupted in Schizophrenia-1 activated the protein phosphatase 2A, preventing the phosphorylation of ataxia telangiectasia mutated serine-1981, the main regulatory site of ataxia telangiectasia mutated activity. Cellular levels of Disrupted in Schizophrenia-1 protein significantly decreased nuclear factor κB activation profiles and pro-inflammatory gene expression. Taken together, these results demonstrate that hypoxic pre-conditioning decreases the activation of nuclear factor κB through the transcriptional induction of Disrupted in Schizophrenia-1.
Collapse
Affiliation(s)
- Jia-Ren Liu
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| | - Qian Liu
- Department of Pediatric Surgery, The First Affiliated Hospital of GanNan Medical University, JiangXi 341000, PR China
| | - Joseph Khoury
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Yue-Jin Li
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Xiao-Hui Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Jing Li
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Juan C Ibla
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
55
|
Gudipaty SA, McNamara RP, Morton EL, D'Orso I. PPM1G Binds 7SK RNA and Hexim1 To Block P-TEFb Assembly into the 7SK snRNP and Sustain Transcription Elongation. Mol Cell Biol 2015; 35:3810-28. [PMID: 26324325 PMCID: PMC4609742 DOI: 10.1128/mcb.00226-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/11/2015] [Accepted: 08/19/2015] [Indexed: 12/31/2022] Open
Abstract
Transcription elongation programs are vital for the precise regulation of several biological processes. One key regulator of such programs is the P-TEFb kinase, which phosphorylates RNA polymerase II (Pol II) once released from the inhibitory 7SK small nuclear ribonucleoprotein (snRNP) complex. Although mechanisms of P-TEFb release from the snRNP are becoming clearer, how P-TEFb remains in the 7SK-unbound state to sustain transcription elongation programs remains unknown. Here we report that the PPM1G phosphatase (inducibly recruited by nuclear factor κB [NF-κB] to target promoters) directly binds 7SK RNA and the kinase inhibitor Hexim1 once P-TEFb has been released from the 7SK snRNP. This dual binding activity of PPM1G blocks P-TEFb reassembly onto the snRNP to sustain NF-κB-mediated Pol II transcription in response to DNA damage. Notably, the PPM1G-7SK RNA interaction is direct, kinetically follows the recruitment of PPM1G to promoters to activate NF-κB transcription, and is reversible, since the complex disassembles before resolution of the program. Strikingly, we found that the ataxia telangiectasia mutated (ATM) kinase regulates the interaction between PPM1G and the 7SK snRNP through site-specific PPM1G phosphorylation. The precise and temporally regulated interaction of a cellular enzyme and a noncoding RNA provides a new paradigm for simultaneously controlling the activation and maintenance of inducible transcription elongation programs.
Collapse
Affiliation(s)
- Swapna Aravind Gudipaty
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ryan P McNamara
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Emily L Morton
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Iván D'Orso
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
56
|
The DNA damage response and immune signaling alliance: Is it good or bad? Nature decides when and where. Pharmacol Ther 2015; 154:36-56. [PMID: 26145166 DOI: 10.1016/j.pharmthera.2015.06.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/15/2022]
Abstract
The characteristic feature of healthy living organisms is the preservation of homeostasis. Compelling evidence highlight that the DNA damage response and repair (DDR/R) and immune response (ImmR) signaling networks work together favoring the harmonized function of (multi)cellular organisms. DNA and RNA viruses activate the DDR/R machinery in the host cells both directly and indirectly. Activation of DDR/R in turn favors the immunogenicity of the incipient cell. Hence, stimulation of DDR/R by exogenous or endogenous insults triggers innate and adaptive ImmR. The immunogenic properties of ionizing radiation, a prototypic DDR/R inducer, serve as suitable examples of how DDR/R stimulation alerts host immunity. Thus, critical cellular danger signals stimulate defense at the systemic level and vice versa. Disruption of DDR/R-ImmR cross talk compromises (multi)cellular integrity, leading to cell-cycle-related and immune defects. The emerging DDR/R-ImmR concept opens up a new avenue of therapeutic options, recalling the Hippocrates quote "everything in excess is opposed by nature."
Collapse
|
57
|
Jonkers I, Lis JT. Getting up to speed with transcription elongation by RNA polymerase II. Nat Rev Mol Cell Biol 2015; 16:167-77. [PMID: 25693130 PMCID: PMC4782187 DOI: 10.1038/nrm3953] [Citation(s) in RCA: 603] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in sequencing techniques that measure nascent transcripts and that reveal the positioning of RNA polymerase II (Pol II) have shown that the pausing of Pol II in promoter-proximal regions and its release to initiate a phase of productive elongation are key steps in transcription regulation. Moreover, after the release of Pol II from the promoter-proximal region, elongation rates are highly dynamic throughout the transcription of a gene, and vary on a gene-by-gene basis. Interestingly, Pol II elongation rates affect co-transcriptional processes such as splicing, termination and genome stability. Increasing numbers of factors and regulatory mechanisms have been associated with the steps of transcription elongation by Pol II, revealing that elongation is a highly complex process. Elongation is thus now recognized as a key phase in the regulation of transcription by Pol II.
Collapse
Affiliation(s)
- Iris Jonkers
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, 416 Biotechnology Building, 14853, Ithaca, New York, USA
| |
Collapse
|
58
|
Fang L, Choudhary S, Tian B, Boldogh I, Yang C, Ivanciuc T, Ma Y, Garofalo RP, Brasier AR. Ataxia telangiectasia mutated kinase mediates NF-κB serine 276 phosphorylation and interferon expression via the IRF7-RIG-I amplification loop in paramyxovirus infection. J Virol 2015; 89:2628-42. [PMID: 25520509 PMCID: PMC4325710 DOI: 10.1128/jvi.02458-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV) is a primary etiological agent of childhood lower respiratory tract disease. Molecular patterns induced by active infection trigger a coordinated retinoic acid-inducible gene I (RIG-I)-Toll-like receptor (TLR) signaling response to induce inflammatory cytokines and antiviral mucosal interferons. Recently, we discovered a nuclear oxidative stress-sensitive pathway mediated by the DNA damage response protein, ataxia telangiectasia mutated (ATM), in cytokine-induced NF-κB/RelA Ser 276 phosphorylation. Here we observe that ATM silencing results in enhanced single-strand RNA (ssRNA) replication of RSVand Sendai virus, due to decreased expression and secretion of type I and III interferons (IFNs), despite maintenance of IFN regulatory factor 3 (IRF3)-dependent IFN-stimulated genes (ISGs). In addition to enhanced oxidative stress, RSV replication enhances foci of phosphorylated histone 2AX variant (γH2AX), Ser 1981 phosphorylation of ATM, and IKKγ/NEMO-dependent ATM nuclear export, indicating activation of the DNA damage response. ATM-deficient cells show defective RSV-induced mitogen and stress-activated kinase 1 (MSK-1) Ser 376 phosphorylation and reduced RelA Ser 276 phosphorylation, whose formation is required for IRF7 expression. We observe that RelA inducibly binds the native IFN regulatory factor 7 (IRF7) promoter in an ATM-dependent manner, and IRF7 inducibly binds to the endogenous retinoic acid-inducible gene I (RIG-I) promoter. Ectopic IRF7 expression restores RIG-I expression and type I/III IFN expression in ATM-silenced cells. We conclude that paramyxoviruses trigger the DNA damage response, a pathway required for MSK1 activation of phospho Ser 276 RelA formation to trigger the IRF7-RIG-I amplification loop necessary for mucosal IFN production. These data provide the molecular pathogenesis for defects in the cellular innate immunity of patients with homozygous ATM mutations. IMPORTANCE RNA virus infections trigger cellular response pathways to limit spread to adjacent tissues. This "innate immune response" is mediated by germ line-encoded pattern recognition receptors that trigger activation of two, largely independent, intracellular NF-κB and IRF3 transcription factors. Downstream, expression of protective antiviral interferons is amplified by positive-feedback loops mediated by inducible interferon regulatory factors (IRFs) and retinoic acid inducible gene (RIG-I). Our results indicate that a nuclear oxidative stress- and DNA damage-sensing factor, ATM, is required to mediate a cross talk pathway between NF-κB and IRF7 through mediating phosphorylation of NF-κB. Our studies provide further information about the defects in cellular and innate immunity in patients with inherited ATM mutations.
Collapse
Affiliation(s)
- Ling Fang
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sanjeev Choudhary
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Istvan Boldogh
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Chunying Yang
- Department of Radiation Oncology, Houston Methodist Research Institute, Weill Cornell University, Houston, Texas, USA
| | - Teodora Ivanciuc
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yinghong Ma
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Roberto P Garofalo
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Allan R Brasier
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, Texas, USA Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|