51
|
Völler JS, Biava H, Hildebrandt P, Budisa N. An expanded genetic code for probing the role of electrostatics in enzyme catalysis by vibrational Stark spectroscopy. Biochim Biophys Acta Gen Subj 2017; 1861:3053-3059. [PMID: 28229928 DOI: 10.1016/j.bbagen.2017.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/03/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND To find experimental validation for electrostatic interactions essential for catalytic reactions represents a challenge due to practical limitations in assessing electric fields within protein structures. SCOPE OF REVIEW This review examines the applications of non-canonical amino acids (ncAAs) as genetically encoded probes for studying the role of electrostatic interactions in enzyme catalysis. MAJOR CONCLUSIONS ncAAs constitute sensitive spectroscopic probes to detect local electric fields by exploiting the vibrational Stark effect (VSE) and thus have the potential to map the protein electrostatics. GENERAL SIGNIFICANCE Mapping the electrostatics in proteins will improve our understanding of natural catalytic processes and, in beyond, will be helpful for biocatalyst engineering. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Jan-Stefan Völler
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, D-10623 Berlin, Germany.
| | - Hernan Biava
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, D-10623 Berlin, Germany; Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany.
| | - Nediljko Budisa
- Department of Chemistry, Technische Universität Berlin, Müller-Breslau-Strasse 10, D-10623 Berlin, Germany.
| |
Collapse
|
52
|
Torres L, Krüger A, Csibra E, Gianni E, Pinheiro VB. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays Biochem 2016; 60:393-410. [PMID: 27903826 PMCID: PMC5264511 DOI: 10.1042/ebc20160013] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022]
Abstract
Biocontainment comprises any strategy applied to ensure that harmful organisms are confined to controlled laboratory conditions and not allowed to escape into the environment. Genetically engineered microorganisms (GEMs), regardless of the nature of the modification and how it was established, have potential human or ecological impact if accidentally leaked or voluntarily released into a natural setting. Although all evidence to date is that GEMs are unable to compete in the environment, the power of synthetic biology to rewrite life requires a pre-emptive strategy to tackle possible unknown risks. Physical containment barriers have proven effective but a number of strategies have been developed to further strengthen biocontainment. Research on complex genetic circuits, lethal genes, alternative nucleic acids, genome recoding and synthetic auxotrophies aim to design more effective routes towards biocontainment. Here, we describe recent advances in synthetic biology that contribute to the ongoing efforts to develop new and improved genetic, semantic, metabolic and mechanistic plans for the containment of GEMs.
Collapse
Affiliation(s)
- Leticia Torres
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
| | - Antje Krüger
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Eszter Csibra
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Edoardo Gianni
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Vitor B Pinheiro
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
- Birkbeck, Department of Biological Sciences, University of London, Malet Street, WC1E 7HX, U.K
| |
Collapse
|
53
|
Defining synonymous codon compression schemes by genome recoding. Nature 2016; 539:59-64. [PMID: 27776354 DOI: 10.1038/nature20124] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/26/2016] [Indexed: 12/24/2022]
Abstract
Synthetic recoding of genomes, to remove targeted sense codons, may facilitate the encoded cellular synthesis of unnatural polymers by orthogonal translation systems. However, our limited understanding of allowed synonymous codon substitutions, and the absence of methods that enable the stepwise replacement of the Escherichia coli genome with long synthetic DNA and provide feedback on allowed and disallowed design features in synthetic genomes, have restricted progress towards this goal. Here we endow E. coli with a system for efficient, programmable replacement of genomic DNA with long (>100-kb) synthetic DNA, through the in vivo excision of double-stranded DNA from an episomal replicon by CRISPR/Cas9, coupled to lambda-red-mediated recombination and simultaneous positive and negative selection. We iterate the approach, providing a basis for stepwise whole-genome replacement. We attempt systematic recoding in an essential operon using eight synonymous recoding schemes. Each scheme systematically replaces target codons with defined synonyms and is compatible with codon reassignment. Our results define allowed and disallowed synonymous recoding schemes, and enable the identification and repair of recoding at idiosyncratic positions in the genome.
Collapse
|
54
|
Wang Y, Tsao ML. Reassigning Sense Codon AGA to Encode Noncanonical Amino Acids in Escherichia coli. Chembiochem 2016; 17:2234-2239. [PMID: 27647777 DOI: 10.1002/cbic.201600448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Indexed: 11/06/2022]
Abstract
A new method has been developed to reassign the rare codon AGA in Escherichia coli by engineering an orthogonal tRNA/aminoacyl-tRNA synthetase pair derived from Methanocaldococcus jannaschii. The tRNA mutant was introduced with a UCU anticodon, and the synthetase was evolved to correctly recognize the modified tRNA anticodon loop and to selectively charge a target noncanonical amino acid (NAA) onto the tRNA. In order to maximize the efficiency of AGA codon reassignment, while avoiding the lethal effects caused by global codon reassignment in cellular proteins, an inducible promoter (araBAD) was utilized to provide temporal controls for overexpression of the aminoacyl-tRNA synthetase and switch on codon reassignment. Using this system, we were able to efficiently incorporate p-acetylphenylalanine, O-methyl-tyrosine, and p-iodophenylalanine into proteins in response to AGA codons. Also, we found that E. coli strain GM10 was optimal in achieving the highest AGA reassignment rates. The successful reassignment of AGA codons reported here provides a new avenue to further expand the genetic code.
Collapse
Affiliation(s)
- Yiyan Wang
- School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA
| | - Meng-Lin Tsao
- School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA, 95343, USA
| |
Collapse
|
55
|
Towards Biocontained Cell Factories: An Evolutionarily Adapted Escherichia coli Strain Produces a New-to-nature Bioactive Lantibiotic Containing Thienopyrrole-Alanine. Sci Rep 2016; 6:33447. [PMID: 27634138 PMCID: PMC5025777 DOI: 10.1038/srep33447] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/25/2016] [Indexed: 11/08/2022] Open
Abstract
Genetic code engineering that enables reassignment of genetic codons to non-canonical amino acids (ncAAs) is a powerful strategy for enhancing ribosomally synthesized peptides and proteins with functions not commonly found in Nature. Here we report the expression of a ribosomally synthesized and post-translationally modified peptide (RiPP), the 32-mer lantibiotic lichenicidin with a canonical tryptophan (Trp) residue replaced by the ncAA L-β-(thieno[3,2-b]pyrrolyl)alanine ([3,2]Tpa) which does not sustain cell growth in the culture. We have demonstrated that cellular toxicity of [3,2]Tpa for the production of the new-to-nature bioactive congener of lichenicidin in the host Escherichia coli can be alleviated by using an evolutionarily adapted host strain MT21 which not only tolerates [3,2]Tpa but also uses it as a proteome-wide synthetic building block. This work underscores the feasibility of the biocontainment concept and establishes a general framework for design and large scale production of RiPPs with evolutionarily adapted host strains.
Collapse
|
56
|
Emergent rules for codon choice elucidated by editing rare arginine codons in Escherichia coli. Proc Natl Acad Sci U S A 2016; 113:E5588-97. [PMID: 27601680 DOI: 10.1073/pnas.1605856113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The degeneracy of the genetic code allows nucleic acids to encode amino acid identity as well as noncoding information for gene regulation and genome maintenance. The rare arginine codons AGA and AGG (AGR) present a case study in codon choice, with AGRs encoding important transcriptional and translational properties distinct from the other synonymous alternatives (CGN). We created a strain of Escherichia coli with all 123 instances of AGR codons removed from all essential genes. We readily replaced 110 AGR codons with the synonymous CGU codons, but the remaining 13 "recalcitrant" AGRs required diversification to identify viable alternatives. Successful replacement codons tended to conserve local ribosomal binding site-like motifs and local mRNA secondary structure, sometimes at the expense of amino acid identity. Based on these observations, we empirically defined metrics for a multidimensional "safe replacement zone" (SRZ) within which alternative codons are more likely to be viable. To evaluate synonymous and nonsynonymous alternatives to essential AGRs further, we implemented a CRISPR/Cas9-based method to deplete a diversified population of a wild-type allele, allowing us to evaluate exhaustively the fitness impact of all 64 codon alternatives. Using this method, we confirmed the relevance of the SRZ by tracking codon fitness over time in 14 different genes, finding that codons that fall outside the SRZ are rapidly depleted from a growing population. Our unbiased and systematic strategy for identifying unpredicted design flaws in synthetic genomes and for elucidating rules governing codon choice will be crucial for designing genomes exhibiting radically altered genetic codes.
Collapse
|
57
|
Ostrov N, Landon M, Guell M, Kuznetsov G, Teramoto J, Cervantes N, Zhou M, Singh K, Napolitano MG, Moosburner M, Shrock E, Pruitt BW, Conway N, Goodman DB, Gardner CL, Tyree G, Gonzales A, Wanner BL, Norville JE, Lajoie MJ, Church GM. Design, synthesis, and testing toward a 57-codon genome. Science 2016; 353:819-22. [PMID: 27540174 DOI: 10.1126/science.aaf3639] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/21/2016] [Indexed: 01/07/2023]
Abstract
Recoding--the repurposing of genetic codons--is a powerful strategy for enhancing genomes with functions not commonly found in nature. Here, we report computational design, synthesis, and progress toward assembly of a 3.97-megabase, 57-codon Escherichia coli genome in which all 62,214 instances of seven codons were replaced with synonymous alternatives across all protein-coding genes. We have validated 63% of recoded genes by individually testing 55 segments of 50 kilobases each. We observed that 91% of tested essential genes retained functionality with limited fitness effect. We demonstrate identification and correction of lethal design exceptions, only 13 of which were found in 2229 genes. This work underscores the feasibility of rewriting genomes and establishes a framework for large-scale design, assembly, troubleshooting, and phenotypic analysis of synthetic organisms.
Collapse
Affiliation(s)
- Nili Ostrov
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Matthieu Landon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Program in Systems Biology, Harvard University, Cambridge, MA 02138, USA. Ecole des Mines de Paris, Mines Paristech, Paris 75272, France
| | - Marc Guell
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Gleb Kuznetsov
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Program in Biophysics, Harvard University, Boston, MA 02115, USA
| | - Jun Teramoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Natalie Cervantes
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Minerva Zhou
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kerry Singh
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael G Napolitano
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mark Moosburner
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ellen Shrock
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin W Pruitt
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Nicholas Conway
- Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Daniel B Goodman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Cameron L Gardner
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Gary Tyree
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Barry L Wanner
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Julie E Norville
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marc J Lajoie
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
58
|
Crnković A, Suzuki T, Söll D, Reynolds NM. Pyrrolysyl-tRNA synthetase, an aminoacyl-tRNA synthetase for genetic code expansion. CROAT CHEM ACTA 2016; 89:163-174. [PMID: 28239189 PMCID: PMC5321558 DOI: 10.5562/cca2825] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genetic code expansion (GCE) has become a central topic of synthetic biology. GCE relies on engineered aminoacyl-tRNA synthetases (aaRSs) and a cognate tRNA species to allow codon reassignment by co-translational insertion of non-canonical amino acids (ncAAs) into proteins. Introduction of such amino acids increases the chemical diversity of recombinant proteins endowing them with novel properties. Such proteins serve in sophisticated biochemical and biophysical studies both in vitro and in vivo, they may become unique biomaterials or therapeutic agents, and they afford metabolic dependence of genetically modified organisms for biocontainment purposes. In the Methanosarcinaceae the incorporation of the 22nd genetically encoded amino acid, pyrrolysine (Pyl), is facilitated by pyrrolysyl-tRNA synthetase (PylRS) and the cognate UAG-recognizing tRNAPyl. This unique aaRS•tRNA pair functions as an orthogonal translation system (OTS) in most model organisms. The facile directed evolution of the large PylRS active site to accommodate many ncAAs, and the enzyme's anticodon-blind specific recognition of the cognate tRNAPyl make this system highly amenable for GCE purposes. The remarkable polyspecificity of PylRS has been exploited to incorporate >100 different ncAAs into proteins. Here we review the Pyl-OT system and selected GCE applications to examine the properties of an effective OTS.
Collapse
Affiliation(s)
- Ana Crnković
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Tateki Suzuki
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
- Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Noah M. Reynolds
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
59
|
Lee KB, Hou CY, Kim CE, Kim DM, Suga H, Kang TJ. Genetic Code Expansion by Degeneracy Reprogramming of Arginyl Codons. Chembiochem 2016; 17:1198-201. [PMID: 27151886 DOI: 10.1002/cbic.201600111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Indexed: 11/11/2022]
Abstract
The genetic code in most organisms codes for 20 proteinogenic amino acids or translation stop. In order to encode more than 20 amino acids in the coding system, one of stop codons is usually reprogrammed to encode a non-proteinogenic amino acid. Although this approach works, usually only one amino acid is added to the amino acid repertoire. In this study, we incorporated non-proteinogenic amino acids into a protein by using a sense codon. As all the codons are allocated in the universal genetic code, we destroyed all the tRNA(Arg) in a cell-free protein synthesis system by using a tRNA(Arg) -specific tRNase, colicin D. Then by supplementing the system with tRNACCU , the translation system was partially restored. Through this creative destruction, reprogrammable codons were successfully created in the system to encode modified lysines along with the 20 proteinogenic amino acids.
Collapse
Affiliation(s)
- Ki Baek Lee
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul, 100-715, South Korea
| | - Chen Yuan Hou
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul, 100-715, South Korea
| | - Chae-Eun Kim
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul, 100-715, South Korea
| | - Dong-Myung Kim
- Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejun, 305-764, South Korea
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taek Jin Kang
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, Seoul, 100-715, South Korea.
| |
Collapse
|
60
|
Mukai T, Englert M, Tripp HJ, Miller C, Ivanova NN, Rubin EM, Kyrpides NC, Söll D. Facile Recoding of Selenocysteine in Nature. Angew Chem Int Ed Engl 2016; 55:5337-41. [PMID: 26991476 PMCID: PMC4833512 DOI: 10.1002/anie.201511657] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 12/22/2022]
Abstract
Selenocysteine (Sec or U) is encoded by UGA, a stop codon reassigned by a Sec-specific elongation factor and a distinctive RNA structure. To discover possible code variations in extant organisms we analyzed 6.4 trillion base pairs of metagenomic sequences and 24 903 microbial genomes for tRNA(Sec) species. As expected, UGA is the predominant Sec codon in use. We also found tRNA(Sec) species that recognize the stop codons UAG and UAA, and ten sense codons. Selenoprotein synthesis programmed by UAG in Geodermatophilus and Blastococcus, and by the Cys codon UGU in Aeromonas salmonicida was confirmed by metabolic labeling with (75) Se or mass spectrometry. Other tRNA(Sec) species with different anticodons enabled E. coli to synthesize active formate dehydrogenase H, a selenoenzyme. This illustrates the ease by which the genetic code may evolve new coding schemes, possibly aiding organisms to adapt to changing environments, and show the genetic code is much more flexible than previously thought.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - H James Tripp
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, 94598, USA
| | - Corwin Miller
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Natalia N Ivanova
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, 94598, USA
| | - Edward M Rubin
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, 94598, USA
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, 94598, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
61
|
Mukai T, Englert M, Tripp HJ, Miller C, Ivanova NN, Rubin EM, Kyrpides NC, Söll D. [Facile Recoding of Selenocysteine in Nature]. ACTA ACUST UNITED AC 2016; 128:5423-5427. [PMID: 27440945 DOI: 10.1002/ange.201511657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry Yale University, New Haven, CT 06520 (USA)
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry Yale University, New Haven, CT 06520 (USA)
| | - H James Tripp
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598 (USA)
| | - Corwin Miller
- Department of Molecular Biophysics and Biochemistry Yale University, New Haven, CT 06520 (USA)
| | - Natalia N Ivanova
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598 (USA)
| | - Edward M Rubin
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598 (USA)
| | - Nikos C Kyrpides
- Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA 94598 (USA)
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry Yale University, New Haven, CT 06520 (USA); Department of Chemistry, Yale University, New Haven, CT 06520 (USA)
| |
Collapse
|
62
|
McKenney KM, Alfonzo JD. From Prebiotics to Probiotics: The Evolution and Functions of tRNA Modifications. Life (Basel) 2016; 6:E13. [PMID: 26985907 PMCID: PMC4810244 DOI: 10.3390/life6010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 12/13/2022] Open
Abstract
All nucleic acids in cells are subject to post-transcriptional chemical modifications. These are catalyzed by a myriad of enzymes with exquisite specificity and that utilize an often-exotic array of chemical substrates. In no molecule are modifications more prevalent than in transfer RNAs. In the present document, we will attempt to take a chemical rollercoaster ride from prebiotic times to the present, with nucleoside modifications as key players and tRNA as the centerpiece that drove the evolution of biological systems to where we are today. These ideas will be put forth while touching on several examples of tRNA modification enzymes and their modus operandi in cells. In passing, we submit that the choice of tRNA is not a whimsical one but rather highlights its critical function as an essential invention for the evolution of protein enzymes.
Collapse
Affiliation(s)
- Katherine M McKenney
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Juan D Alfonzo
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
63
|
Ho JM, Reynolds NM, Rivera K, Connolly M, Guo LT, Ling J, Pappin DJ, Church GM, Söll D. Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli. ACS Synth Biol 2016; 5:163-71. [PMID: 26544153 DOI: 10.1021/acssynbio.5b00197] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Expansion of the genetic code through engineering the translation machinery has greatly increased the chemical repertoire of the proteome. This has been accomplished mainly by read-through of UAG or UGA stop codons by the noncanonical aminoacyl-tRNA of choice. While stop codon read-through involves competition with the translation release factors, sense codon reassignment entails competition with a large pool of endogenous tRNAs. We used an engineered pyrrolysyl-tRNA synthetase to incorporate 3-iodo-l-phenylalanine (3-I-Phe) at a number of different serine and leucine codons in wild-type Escherichia coli. Quantitative LC-MS/MS measurements of amino acid incorporation yields carried out in a selected reaction monitoring experiment revealed that the 3-I-Phe abundance at the Ser208AGU codon in superfolder GFP was 65 ± 17%. This method also allowed quantification of other amino acids (serine, 33 ± 17%; phenylalanine, 1 ± 1%; threonine, 1 ± 1%) that compete with 3-I-Phe at both the aminoacylation and decoding steps of translation for incorporation at the same codon position. Reassignments of different serine (AGU, AGC, UCG) and leucine (CUG) codons with the matching tRNA(Pyl) anticodon variants were met with varying success, and our findings provide a guideline for the choice of sense codons to be reassigned. Our results indicate that the 3-iodo-l-phenylalanyl-tRNA synthetase (IFRS)/tRNA(Pyl) pair can efficiently outcompete the cellular machinery to reassign select sense codons in wild-type E. coli.
Collapse
Affiliation(s)
- Joanne M. Ho
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Keith Rivera
- Cold Spring Harbor Laboratory, Cold
Spring Harbor, New York 11724, United States
| | - Morgan Connolly
- Cold Spring Harbor Laboratory, Cold
Spring Harbor, New York 11724, United States
| | | | | | - Darryl J. Pappin
- Cold Spring Harbor Laboratory, Cold
Spring Harbor, New York 11724, United States
| | - George M. Church
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
64
|
Bezerra AR, Guimarães AR, Santos MAS. Non-Standard Genetic Codes Define New Concepts for Protein Engineering. Life (Basel) 2015; 5:1610-28. [PMID: 26569314 PMCID: PMC4695839 DOI: 10.3390/life5041610] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/12/2015] [Accepted: 10/21/2015] [Indexed: 11/16/2022] Open
Abstract
The essential feature of the genetic code is the strict one-to-one correspondence between codons and amino acids. The canonical code consists of three stop codons and 61 sense codons that encode 20% of the amino acid repertoire observed in nature. It was originally designated as immutable and universal due to its conservation in most organisms, but sequencing of genes from the human mitochondrial genomes revealed deviations in codon assignments. Since then, alternative codes have been reported in both nuclear and mitochondrial genomes and genetic code engineering has become an important research field. Here, we review the most recent concepts arising from the study of natural non-standard genetic codes with special emphasis on codon re-assignment strategies that are relevant to engineering genetic code in the laboratory. Recent tools for synthetic biology and current attempts to engineer new codes for incorporation of non-standard amino acids are also reviewed in this article.
Collapse
Affiliation(s)
- Ana R Bezerra
- Health Sciences Department, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal.
| | - Ana R Guimarães
- Health Sciences Department, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal.
| | - Manuel A S Santos
- Health Sciences Department, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal.
| |
Collapse
|
65
|
Ling J, O'Donoghue P, Söll D. Genetic code flexibility in microorganisms: novel mechanisms and impact on physiology. Nat Rev Microbiol 2015; 13:707-721. [PMID: 26411296 DOI: 10.1038/nrmicro3568] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The genetic code, initially thought to be universal and immutable, is now known to contain many variations, including biased codon usage, codon reassignment, ambiguous decoding and recoding. As a result of recent advances in the areas of genome sequencing, biochemistry, bioinformatics and structural biology, our understanding of genetic code flexibility has advanced substantially in the past decade. In this Review, we highlight the prevalence, evolution and mechanistic basis of genetic code variations in microorganisms, and we discuss how this flexibility of the genetic code affects microbial physiology.
Collapse
Affiliation(s)
- Jiqiang Ling
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Patrick O'Donoghue
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.,Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.,Department of Chemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| |
Collapse
|