51
|
Chan SKK, Cerda-Moya G, Stojnic R, Millen K, Fischer B, Fexova S, Skalska L, Gomez-Lamarca M, Pillidge Z, Russell S, Bray SJ. Role of co-repressor genomic landscapes in shaping the Notch response. PLoS Genet 2017; 13:e1007096. [PMID: 29155828 PMCID: PMC5714389 DOI: 10.1371/journal.pgen.1007096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/04/2017] [Accepted: 11/01/2017] [Indexed: 11/18/2022] Open
Abstract
Repressors are frequently deployed to limit the transcriptional response to signalling pathways. For example, several co-repressors interact directly with the DNA-binding protein CSL and are proposed to keep target genes silenced in the absence of Notch activity. However, the scope of their contributions remains unclear. To investigate co-repressor activity in the context of this well defined signalling pathway, we have analysed the genome-wide binding profile of the best-characterized CSL co-repressor in Drosophila, Hairless, and of a second CSL interacting repressor, SMRTER. As predicted there was significant overlap between Hairless and its CSL DNA-binding partner, both in Kc cells and in wing discs, where they were predominantly found in chromatin with active enhancer marks. However, while the Hairless complex was widely present at some Notch regulated enhancers in the wing disc, no binding was detected at others, indicating that it is not essential for silencing per se. Further analysis of target enhancers confirmed differential requirements for Hairless. SMRTER binding significantly overlapped with Hairless, rather than complementing it, and many enhancers were apparently co-bound by both factors. Our analysis indicates that the actions of Hairless and SMRTER gate enhancers to Notch activity and to Ecdysone signalling respectively, to ensure that the appropriate levels and timing of target gene expression are achieved. The communication between cells that occurs during development, as well as in disease contexts, involves a small number of signalling pathways of which the Notch pathway is one. One outstanding question is how these pathways can bring about different gene responses in different contexts. As gene expression is co-ordinated by a mixture of activators and repressors, we set out to investigate whether the distribution of repressors across the genome is important in shaping whether genes are able to respond to Notch activity. Our results from analyzing the binding profile of two repressors, Hairless and SMRTER, show that, in many cases, they are not essential for preventing a gene from responding. Instead they are deployed at a limited number of genetic loci where they gate the response, helping to set a threshold for gene activation. Perturbations to their function lead to enhanced gene expression in limited territories rather than to new programmes of gene expression. Their main role therefore is to restrict the time or levels of signal that a gene needs to receive before it will respond.
Collapse
Affiliation(s)
- Stephen K. K. Chan
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Gustavo Cerda-Moya
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Robert Stojnic
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Kat Millen
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Bettina Fischer
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Silvie Fexova
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Lenka Skalska
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Maria Gomez-Lamarca
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Zoe Pillidge
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Steven Russell
- Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Sarah J. Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
52
|
Thiel VN, Giaimo BD, Schwarz P, Soller K, Vas V, Bartkuhn M, Blätte TJ, Döhner K, Bullinger L, Borggrefe T, Geiger H, Oswald F. Heterodimerization of AML1/ETO with CBFβ is required for leukemogenesis but not for myeloproliferation. Leukemia 2017; 31:2491-2502. [PMID: 28360416 PMCID: PMC5668496 DOI: 10.1038/leu.2017.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 02/18/2017] [Accepted: 03/13/2017] [Indexed: 02/07/2023]
Abstract
The AML1/Runx1 transcription factor and its heterodimerization partner CBFβ are essential regulators of myeloid differentiation. The chromosomal translocation t(8;21), fusing the DNA binding domain of AML1 to the corepressor eight-twenty-one (ETO), is frequently associated with acute myeloid leukemia and generates the AML1/ETO (AE) fusion protein. AE represses target genes usually activated by AML1 and also affects the endogenous repressive function of ETO at Notch target genes. In order to analyze the contribution of CBFβ in AE-mediated leukemogenesis and deregulation of Notch target genes, we introduced two point mutations in a leukemia-initiating version of AE in mice, called AE9a, that disrupt the AML1/CBFβ interaction (AE9aNT). We report that the AE9a/CBFβ interaction is not required for the AE9a-mediated aberrant expression of AML1 target genes, while upregulation/derepression of Notch target genes does require the interaction with CBFβ. Using retroviral transduction to express AE9a in murine adult bone marrow-derived hematopoietic progenitors, we observed that both AE9a and AE9aNT lead to increased myeloproliferation in vivo. However, both development of leukemia and long-term replating capacity are only observed with AE9a but not with AE9aNT. Thus, deregulation of both AML1 and Notch target genes is required for the development of AE9a-driven leukemia.
Collapse
Affiliation(s)
- V N Thiel
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - B D Giaimo
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - P Schwarz
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - K Soller
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - V Vas
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
| | - M Bartkuhn
- Institute for Genetics, University of Giessen, Giessen, Germany
| | - T J Blätte
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - K Döhner
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - L Bullinger
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - T Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - H Geiger
- Institute of Molecular Medicine, University of Ulm, Ulm, Germany
- Division of Experimental Hematology and Cancer Biology, CCHMC, Cincinnati, OH, USA
| | - F Oswald
- University Medical Center Ulm, Center for Internal Medicine, Department of Internal Medicine I, University of Ulm, Ulm, Germany
| |
Collapse
|
53
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 617] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
54
|
The Canonical Notch Signaling Pathway: Structural and Biochemical Insights into Shape, Sugar, and Force. Dev Cell 2017; 41:228-241. [PMID: 28486129 DOI: 10.1016/j.devcel.2017.04.001] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/04/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023]
Abstract
The Notch signaling pathway relies on a proteolytic cascade to release its transcriptionally active intracellular domain, on force to unfold a protective domain and permit proteolysis, on extracellular domain glycosylation to tune the forces exerted by endocytosed ligands, and on a motley crew of nuclear proteins, chromatin modifiers, ubiquitin ligases, and a few kinases to regulate activity and half-life. Herein we provide a review of recent molecular insights into how Notch signals are triggered and how cell shape affects these events, and we use the new insights to illuminate a few perplexing observations.
Collapse
|
55
|
Lopez CK, Malinge S, Gaudry M, Bernard OA, Mercher T. Pediatric Acute Megakaryoblastic Leukemia: Multitasking Fusion Proteins and Oncogenic Cooperations. Trends Cancer 2017; 3:631-642. [PMID: 28867167 DOI: 10.1016/j.trecan.2017.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
Pediatric leukemia presents specific clinical and genetic features from adult leukemia but the underpinning mechanisms of transformation are still unclear. Acute megakaryoblastic leukemia (AMKL) is the malignant accumulation of progenitors of the megakaryocyte lineage that normally produce blood platelets. AMKL is diagnosed de novo, in patients showing a poor prognosis, or in Down syndrome (DS) patients with a better prognosis. Recent data show that de novo AMKL is primarily associated with chromosomal alterations leading to the expression of fusions between transcriptional regulators. This review highlights the most recurrent genetic events found in de novo pediatric AMKL patients and, based on recent functional analyses, proposes a mechanism of leukemogenesis common to de novo and DS-AMKL.
Collapse
MESH Headings
- Age Factors
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Cell Differentiation/genetics
- Cell Lineage/genetics
- Child
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Megakaryoblastic, Acute/drug therapy
- Leukemia, Megakaryoblastic, Acute/etiology
- Leukemia, Megakaryoblastic, Acute/metabolism
- Leukemia, Megakaryoblastic, Acute/pathology
- Megakaryocytes/metabolism
- Megakaryocytes/pathology
- Molecular Targeted Therapy
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Cécile K Lopez
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Sébastien Malinge
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris Diderot, 75013 Paris, France
| | - Muriel Gaudry
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Olivier A Bernard
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France
| | - Thomas Mercher
- INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, 94800 Villejuif, France; Gustave Roussy, 94800 Villejuif, France; Université Paris-Sud, 91405 Orsay, France; Université Paris Diderot, 75013 Paris, France.
| |
Collapse
|
56
|
Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha SF, Langen UH, Stehling M, Nagasawa T, Ferrara N, Borggrefe T, Adams RH. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol 2017; 19:915-927. [DOI: 10.1038/ncb3555] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/15/2017] [Indexed: 02/07/2023]
|
57
|
Abstract
Signaling pathways regulate gene expression programs via the modulation of the chromatin structure at different levels, such as by post-translational modifications (PTMs) of histone tails, the exchange of canonical histones with histone variants, and nucleosome eviction. Such regulation requires the binding of signal-sensitive transcription factors (TFs) that recruit chromatin-modifying enzymes at regulatory elements defined as enhancers. Understanding how signaling cascades regulate enhancer activity requires a comprehensive analysis of the binding of TFs, chromatin modifying enzymes, and the occupancy of specific histone marks and histone variants. Chromatin immunoprecipitation (ChIP) assays utilize highly specific antibodies to immunoprecipitate specific protein/DNA complexes. The subsequent analysis of the purified DNA allows for the identification the region occupied by the protein recognized by the antibody. This work describes a protocol to efficiently perform ChIP of histone proteins in a mature mouse T-cell line. The presented protocol allows for the performance of ChIP assays in a reasonable timeframe and with high reproducibility.
Collapse
|
58
|
Abstract
RBPJ is the central transcription factor that controls the Notch-dependent transcriptional response by coordinating repressing histone H3K27 deacetylation and activating histone H3K4 methylation. Here, we discuss the molecular mechanisms how RBPJ interacts with opposing NCoR/HDAC-corepressing or KMT2D/UTX-coactivating complexes and how this is controlled by phosphorylation of chromatin modifiers.
Collapse
Affiliation(s)
| | - Franz Oswald
- b Department of Internal Medicine I , Center for Internal Medicine, University Medical Center Ulm , Ulm , Germany
| | - Tilman Borggrefe
- a Institute of Biochemistry, Justus Liebig University , Giessen , Germany
| |
Collapse
|
59
|
Abstract
Notch signaling is iteratively used throughout development to maintain stem cell potential or in other instances allow differentiation. The central transcription factor in Notch signaling is CBF-1/RBP-J, Su(H), Lag-1 (CSL)—Su(H) in Drosophila—which functions as a molecular switch between transcriptional activation and repression. Su(H) represses transcription by forming a complex with the corepressor Hairless (H). The Su(H)-repressor complex not only competes with the Notch intracellular domain (NICD) but also configures the local chromatin landscape. In this issue, Yuan and colleagues determined the structure of the Su(H)/H complex, showing that a major conformational change within Su(H) explains why the binding of NICD and H is mutually exclusive. This Primer examines recent research that reveals the structural rearrangements that determine whether the Notch pathway transcription factor CSL/Su(H) activates or represses transcription.
Collapse
Affiliation(s)
- Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Giessen, Germany
- * E-mail:
| | - Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|