51
|
Depledge DP, Mohr I, Wilson AC. Going the Distance: Optimizing RNA-Seq Strategies for Transcriptomic Analysis of Complex Viral Genomes. J Virol 2019; 93:e01342-18. [PMID: 30305358 PMCID: PMC6288342 DOI: 10.1128/jvi.01342-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/04/2018] [Indexed: 12/22/2022] Open
Abstract
Transcriptome profiling has become routine in studies of many biological processes. However, the favored approaches such as short-read Illumina RNA sequencing are giving way to long-read sequencing platforms better suited to interrogating the complex transcriptomes typical of many RNA and DNA viruses. Here, we provide a guide-tailored to molecular virologists-to the ins and outs of viral transcriptome sequencing and discuss the strengths and weaknesses of the major RNA sequencing technologies as tools to analyze the abundance and diversity of the viral transcripts made during infection.
Collapse
Affiliation(s)
- Daniel P Depledge
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
52
|
Long-read sequencing uncovers a complex transcriptome topology in varicella zoster virus. BMC Genomics 2018; 19:873. [PMID: 30514211 DOI: 10.1186/s12864-018-5267-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Varicella zoster virus (VZV) is a human pathogenic alphaherpesvirus harboring a relatively large DNA molecule. The VZV transcriptome has already been analyzed by microarray and short-read sequencing analyses. However, both approaches have substantial limitations when used for structural characterization of transcript isoforms, even if supplemented with primer extension or other techniques. Among others, they are inefficient in distinguishing between embedded RNA molecules, transcript isoforms, including splice and length variants, as well as between alternative polycistronic transcripts. It has been demonstrated in several studies that long-read sequencing is able to circumvent these problems. RESULTS In this work, we report the analysis of the VZV lytic transcriptome using the Oxford Nanopore Technologies sequencing platform. These investigations have led to the identification of 114 novel transcripts, including mRNAs, non-coding RNAs, polycistronic RNAs and complex transcripts, as well as 10 novel spliced transcripts and 25 novel transcription start site isoforms and transcription end site isoforms. A novel class of transcripts, the nroRNAs are described in this study. These transcripts are encoded by the genomic region located in close vicinity to the viral replication origin. We also show that the ORF63 exhibits a complex structural variation encompassing the splice sites of VZV latency transcripts. Additionally, we have detected RNA editing in a novel non-coding RNA molecule. CONCLUSIONS Our investigations disclosed a composite transcriptomic architecture of VZV, including the discovery of novel RNA molecules and transcript isoforms, as well as a complex meshwork of transcriptional read-throughs and overlaps. The results represent a substantial advance in the annotation of the VZV transcriptome and in understanding the molecular biology of the herpesviruses in general.
Collapse
|
53
|
Tombácz D, Prazsák I, Moldován N, Szűcs A, Boldogkői Z. Lytic Transcriptome Dataset of Varicella Zoster Virus Generated by Long-Read Sequencing. Front Genet 2018; 9:460. [PMID: 30386374 PMCID: PMC6198048 DOI: 10.3389/fgene.2018.00460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/20/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - István Prazsák
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Szűcs
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
54
|
Ungerleider N, Concha M, Lin Z, Roberts C, Wang X, Cao S, Baddoo M, Moss WN, Yu Y, Seddon M, Lehman T, Tibbetts S, Renne R, Dong Y, Flemington EK. The Epstein Barr virus circRNAome. PLoS Pathog 2018; 14:e1007206. [PMID: 30080890 PMCID: PMC6095625 DOI: 10.1371/journal.ppat.1007206] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/16/2018] [Accepted: 07/11/2018] [Indexed: 11/18/2022] Open
Abstract
Our appreciation for the extent of Epstein Barr virus (EBV) transcriptome complexity continues to grow through findings of EBV encoded microRNAs, new long non-coding RNAs as well as the more recent discovery of over a hundred new polyadenylated lytic transcripts. Here we report an additional layer to the EBV transcriptome through the identification of a repertoire of latent and lytic viral circular RNAs. Utilizing RNase R-sequencing with cell models representing latency types I, II, and III, we identified EBV encoded circular RNAs expressed from the latency Cp promoter involving backsplicing from the W1 and W2 exons to the C1 exon, from the EBNA BamHI U fragment exon, and from the latency long non-coding RPMS1 locus. In addition, we identified circular RNAs expressed during reactivation including backsplicing from exon 8 to exon 2 of the LMP2 gene and a highly expressed circular RNA derived from intra-exonic backsplicing within the BHLF1 gene. While expression of most of these circular RNAs was found to depend on the EBV transcriptional program utilized and the transcription levels of the associated loci, expression of LMP2 exon 8 to exon 2 circular RNA was found to be cell model specific. Altogether we identified over 30 unique EBV circRNAs candidates and we validated and determined the structural features, expression profiles and nuclear/cytoplasmic distributions of several predominant and notable viral circRNAs. Further, we show that two of the EBV circular RNAs derived from the RPMS1 locus are detected in EBV positive clinical stomach cancer specimens. This study increases the known EBV latency and lytic transcriptome repertoires to include viral circular RNAs and it provides an essential foundation and resource for investigations into the functions and roles of this new class of EBV transcripts in EBV biology and diseases.
Collapse
Affiliation(s)
- Nathan Ungerleider
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Monica Concha
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Zhen Lin
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Claire Roberts
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Xia Wang
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Subing Cao
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Melody Baddoo
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Walter N. Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| | - Yi Yu
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | | | - Terri Lehman
- Reprocell USA, Beltsville, MD, United States of America
| | - Scott Tibbetts
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, United States of America
| | - Yan Dong
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| | - Erik K. Flemington
- Department of Pathology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA, United States of America
| |
Collapse
|
55
|
High resolution annotation of zebrafish transcriptome using long-read sequencing. Genome Res 2018; 28:1415-1425. [PMID: 30061115 PMCID: PMC6120630 DOI: 10.1101/gr.223586.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
With the emergence of zebrafish as an important model organism, a concerted effort has been made to study its transcriptome. This effort is limited, however, by gaps in zebrafish annotation, which are especially pronounced concerning transcripts dynamically expressed during zygotic genome activation (ZGA). To date, short-read sequencing has been the principal technology for zebrafish transcriptome annotation. In part because these sequence reads are too short for assembly methods to resolve the full complexity of the transcriptome, the current annotation is rudimentary. By providing direct observation of full-length transcripts, recently refined long-read sequencing platforms can dramatically improve annotation coverage and accuracy. Here, we leveraged the SMRT platform to study the transcriptome of zebrafish embryos before and after ZGA. Our analysis revealed additional novelty and complexity in the zebrafish transcriptome, identifying 2539 high-confidence novel transcripts that originated from previously unannotated loci and 1835 high-confidence new isoforms in previously annotated genes. We validated these findings using a suite of computational approaches including structural prediction, sequence homology, and functional conservation analyses, as well as by confirmatory transcript quantification with short-read sequencing data. Our analyses provided insight into new homologs and paralogs of functionally important proteins and noncoding RNAs, isoform switching occurrences, and different classes of novel splicing events. Several novel isoforms representing distinct splicing events were validated through PCR experiments, including the discovery and validation of a novel 8-kb transcript spanning multiple mir-430 elements, an important driver of early development. Our study provides a significantly improved zebrafish transcriptome annotation resource.
Collapse
|
56
|
Tombácz D, Balázs Z, Csabai Z, Snyder M, Boldogkői Z. Long-Read Sequencing Revealed an Extensive Transcript Complexity in Herpesviruses. Front Genet 2018; 9:259. [PMID: 30065753 PMCID: PMC6056645 DOI: 10.3389/fgene.2018.00259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/27/2018] [Indexed: 12/28/2022] Open
Abstract
Long-read sequencing (LRS) techniques are very recent advancements, but they have already been used for transcriptome research in all of the three subfamilies of herpesviruses. These techniques have multiplied the number of known transcripts in each of the examined viruses. Meanwhile, they have revealed a so far hidden complexity of the herpesvirus transcriptome with the discovery of a large number of novel RNA molecules, including coding and non-coding RNAs, as well as transcript isoforms, and polycistronic RNAs. Additionally, LRS techniques have uncovered an intricate meshwork of transcriptional overlaps between adjacent and distally located genes. Here, we review the contribution of LRS to herpesvirus transcriptomics and present the complexity revealed by this technology, while also discussing the functional significance of this phenomenon.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balázs
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
57
|
Djavadian R, Hayes M, Johannsen E. CAGE-seq analysis of Epstein-Barr virus lytic gene transcription: 3 kinetic classes from 2 mechanisms. PLoS Pathog 2018; 14:e1007114. [PMID: 29864140 PMCID: PMC6005644 DOI: 10.1371/journal.ppat.1007114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 06/14/2018] [Accepted: 05/21/2018] [Indexed: 01/18/2023] Open
Abstract
Epstein-Barr virus (EBV) lytic replication proceeds through an ordered cascade of gene expression that integrates lytic DNA amplification and late gene transcription. We and others previously demonstrated that 6 EBV proteins that have orthologs in β- and γ-, but not in α-herpesviruses, mediate late gene transcription in a lytic DNA replication-dependent manner. We proposed a model in which the βγ gene-encoded viral pre-initiation complex (vPIC) mediates transcription from newly replicated viral DNA. While this model explains the dependence of late gene transcription on lytic DNA replication, it does not account for this dependence in α-herpesviruses nor for recent reports that some EBV late genes are transcribed independently of vPIC. To rigorously define which transcription start sites (TSS) are dependent on viral lytic DNA replication or the βγ complex, we performed Cap Analysis of Gene Expression (CAGE)-seq on cells infected with wildtype EBV or EBV mutants defective for DNA replication, βγ function, or lacking an origin of lytic replication (OriLyt). This approach identified 16 true-late, 32 early, and 16 TSS that are active at low levels early and are further upregulated in a DNA replication-dependent manner (leaky late). Almost all late gene transcription is vPIC-dependent, with BCRF1 (vIL10), BDLF2, and BDLF3 transcripts being notable exceptions. We present evidence that leaky late transcription is not due to a distinct mechanism, but results from superimposition of the early and late transcription mechanisms at the same promoter. Our results represent the most comprehensive characterization of EBV lytic gene expression kinetics reported to date and suggest that most, but not all EBV late genes are vPIC-dependent.
Collapse
Affiliation(s)
- Reza Djavadian
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Mitchell Hayes
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Eric Johannsen
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- Department of Oncology (McArdle Laboratory for Cancer Research), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
58
|
Tsai MH, Lin X, Shumilov A, Bernhardt K, Feederle R, Poirey R, Kopp-Schneider A, Pereira B, Almeida R, Delecluse HJ. The biological properties of different Epstein-Barr virus strains explain their association with various types of cancers. Oncotarget 2018; 8:10238-10254. [PMID: 28052012 PMCID: PMC5354655 DOI: 10.18632/oncotarget.14380] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022] Open
Abstract
The Epstein-Barr virus (EBV) is etiologically associated with the development of multiple types of tumors, but it is unclear whether this diversity is due to infection with different EBV strains. We report a comparative characterization of SNU719, GP202, and YCCEL1, three EBV strains that were isolated from gastric carcinomas, M81, a virus isolated in a nasopharyngeal carcinoma and several well-characterized laboratory type A strains. We found that B95-8, Akata and GP202 induced cell growth more efficiently than YCCEL1, SNU719 and M81 and this correlated positively with the expression levels of the viral BHRF1 miRNAs. In infected B cells, all strains except Akata and B95-8 induced lytic replication, a risk factor for carcinoma development, although less efficiently than M81. The panel of viruses induced tumors in immunocompromised mice with variable speed and efficacy that did not strictly mirror their in vitro characteristics, suggesting that additional parameters play an important role. We found that YCCEL1 and M81 infected primary epithelial cells, gastric carcinoma cells and gastric spheroids more efficiently than Akata or B95-8. Reciprocally, Akata and B95-8 had a stronger tropism for B cells than YCCEL1 or M81. These data suggest that different EBV strains will induce the development of lymphoid tumors with variable efficacy in immunocompromised patients and that there is a parallel between the cell tropism of the viral strains and the lineage of the tumors they induce. Thus, EBV strains can be endowed with properties that will influence their transforming abilities and the type of tumor they induce.
Collapse
Affiliation(s)
- Ming-Han Tsai
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Xiaochen Lin
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Anatoliy Shumilov
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Katharina Bernhardt
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | - Regina Feederle
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany.,Institute for Diabetes and Obesitas, Monoclonal Antibody Core Facility, German Research Center for Environmental Health, Helmholtz Zentrum München, 81377 Munich, Germany
| | - Remy Poirey
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| | | | - Bruno Pereira
- Differentiation and Cancer Group, IPATIMUP, Rua Dr Roberto Frias s/n, 4200 - 465 Porto, Portugal
| | - Raquel Almeida
- Differentiation and Cancer Group, IPATIMUP, Rua Dr Roberto Frias s/n, 4200 - 465 Porto, Portugal
| | - Henri-Jacques Delecluse
- German Cancer Research Centre (DKFZ), Unit F100, 69120 Heidelberg, Germany.,Inserm unit U1074, DKFZ, 69120 Heidelberg, Germany
| |
Collapse
|
59
|
Yeh HS, Zhang W, Yong J. Analyses of alternative polyadenylation: from old school biochemistry to high-throughput technologies. BMB Rep 2018; 50:201-207. [PMID: 28148393 PMCID: PMC5437964 DOI: 10.5483/bmbrep.2017.50.4.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Indexed: 01/08/2023] Open
Abstract
Alternations in usage of polyadenylation sites during transcription termination yield transcript isoforms from a gene. Recent findings of transcriptome-wide alternative polyadenylation (APA) as a molecular response to changes in biology position APA not only as a molecular event of early transcriptional termination but also as a cellular regulatory step affecting various biological pathways. With the development of high-throughput profiling technologies at a single nucleotide level and their applications targeted to the 3'-end of mRNAs, dynamics in the landscape of mRNA 3'-end is measureable at a global scale. In this review, methods and technologies that have been adopted to study APA events are discussed. In addition, various bioinformatics algorithms for APA isoform analysis using publicly available RNA-seq datasets are introduced. [BMB Reports 2017; 50(4): 201-207].
Collapse
Affiliation(s)
- Hsin-Sung Yeh
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Wei Zhang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
60
|
Impacts of Genome-Wide Analyses on Our Understanding of Human Herpesvirus Diversity and Evolution. J Virol 2017; 92:JVI.00908-17. [PMID: 29046445 PMCID: PMC5730764 DOI: 10.1128/jvi.00908-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Until fairly recently, genome-wide evolutionary dynamics and within-host diversity were more commonly examined in the context of small viruses than in the context of large double-stranded DNA viruses such as herpesviruses. The high mutation rates and more compact genomes of RNA viruses have inspired the investigation of population dynamics for these species, and recent data now suggest that herpesviruses might also be considered candidates for population modeling. High-throughput sequencing (HTS) and bioinformatics have expanded our understanding of herpesviruses through genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures. Here we discuss recent data on the mechanisms that generate herpesvirus genomic diversity and underlie the evolution of these virus families. We focus on human herpesviruses, with key insights drawn from veterinary herpesviruses and other large DNA virus families. We consider the impacts of cell culture on herpesvirus genomes and how to accurately describe the viral populations under study. The need for a strong foundation of high-quality genomes is also discussed, since it underlies all secondary genomic analyses such as RNA sequencing (RNA-Seq), chromatin immunoprecipitation, and ribosome profiling. Areas where we foresee future progress, such as the linking of viral genetic differences to phenotypic or clinical outcomes, are highlighted as well.
Collapse
|
61
|
Ba Abdullah MM, Palermo RD, Palser AL, Grayson NE, Kellam P, Correia S, Szymula A, White RE. Heterogeneity of the Epstein-Barr Virus (EBV) Major Internal Repeat Reveals Evolutionary Mechanisms of EBV and a Functional Defect in the Prototype EBV Strain B95-8. J Virol 2017; 91:e00920-17. [PMID: 28904201 PMCID: PMC5686732 DOI: 10.1128/jvi.00920-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/02/2017] [Indexed: 12/28/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous pathogen of humans that can cause several types of lymphoma and carcinoma. Like other herpesviruses, EBV has diversified through both coevolution with its host and genetic exchange between virus strains. Sequence analysis of the EBV genome is unusually challenging because of the large number and lengths of repeat regions within the virus. Here we describe the sequence assembly and analysis of the large internal repeat 1 of EBV (IR1; also known as the BamW repeats) for more than 70 strains. The diversity of the latency protein EBV nuclear antigen leader protein (EBNA-LP) resides predominantly within the exons downstream of IR1. The integrity of the putative BWRF1 open reading frame (ORF) is retained in over 80% of strains, and deletions truncating IR1 always spare BWRF1. Conserved regions include the IR1 latency promoter (Wp) and one zone upstream of and two within BWRF1. IR1 is heterogeneous in 70% of strains, and this heterogeneity arises from sequence exchange between strains as well as from spontaneous mutation, with interstrain recombination being more common in tumor-derived viruses. This genetic exchange often incorporates regions of <1 kb, and allelic gene conversion changes the frequency of small regions within the repeat but not close to the flanks. These observations suggest that IR1-and, by extension, EBV-diversifies through both recombination and breakpoint repair, while concerted evolution of IR1 is driven by gene conversion of small regions. Finally, the prototype EBV strain B95-8 contains four nonconsensus variants within a single IR1 repeat unit, including a stop codon in the EBNA-LP gene. Repairing IR1 improves EBNA-LP levels and the quality of transformation by the B95-8 bacterial artificial chromosome (BAC).IMPORTANCE Epstein-Barr virus (EBV) infects the majority of the world population but causes illness in only a small minority of people. Nevertheless, over 1% of cancers worldwide are attributable to EBV. Recent sequencing projects investigating virus diversity to see if different strains have different disease impacts have excluded regions of repeating sequence, as they are more technically challenging. Here we analyze the sequence of the largest repeat in EBV (IR1). We first characterized the variations in protein sequences encoded across IR1. In studying variations within the repeat of each strain, we identified a mutation in the main laboratory strain of EBV that impairs virus function, and we suggest that tumor-associated viruses may be more likely to contain DNA mixed from two strains. The patterns of this mixing suggest that sequences can spread between strains (and also within the repeat) by copying sequence from another strain (or repeat unit) to repair DNA damage.
Collapse
Affiliation(s)
- Mohammed M Ba Abdullah
- Section of Virology, Imperial College Faculty of Medicine, St. Mary's Hospital, Norfolk Place, London, United Kingdom
| | - Richard D Palermo
- Section of Virology, Imperial College Faculty of Medicine, St. Mary's Hospital, Norfolk Place, London, United Kingdom
| | - Anne L Palser
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | | | - Paul Kellam
- Section of Virology, Imperial College Faculty of Medicine, St. Mary's Hospital, Norfolk Place, London, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- Kymab, Babraham Research Campus, Cambridge, United Kingdom
| | - Samantha Correia
- Section of Virology, Imperial College Faculty of Medicine, St. Mary's Hospital, Norfolk Place, London, United Kingdom
| | - Agnieszka Szymula
- Section of Virology, Imperial College Faculty of Medicine, St. Mary's Hospital, Norfolk Place, London, United Kingdom
| | - Robert E White
- Section of Virology, Imperial College Faculty of Medicine, St. Mary's Hospital, Norfolk Place, London, United Kingdom
| |
Collapse
|
62
|
Poling BC, Price AM, Luftig MA, Cullen BR. The Epstein-Barr virus miR-BHRF1 microRNAs regulate viral gene expression in cis. Virology 2017; 512:113-123. [PMID: 28950226 DOI: 10.1016/j.virol.2017.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
The Epstein-Barr virus (EBV) miR-BHRF1 microRNA (miRNA) cluster has been shown to facilitate B-cell transformation and promote the rapid growth of the resultant lymphoblastoid cell lines (LCLs). However, we find that expression of physiological levels of the miR-BHRF1 miRNAs in LCLs transformed with a miR-BHRF1 null mutant (∆123) fails to increase their growth rate. We demonstrate that the pri-miR-BHRF1-2 and 1-3 stem-loops are present in the 3'UTR of transcripts encoding EBNA-LP and that excision of pre-miR-BHRF1-2 and 1-3 by Drosha destabilizes these mRNAs and reduces expression of the encoded protein. Therefore, mutational inactivation of pri-miR-BHRF1-2 and 1-3 in the ∆123 mutant upregulates the expression of not only EBNA-LP but also EBNA-LP-regulated mRNAs and proteins, including LMP1. We hypothesize that this overexpression causes the reduced transformation capacity of the ∆123 EBV mutant. Thus, in addition to regulating cellular mRNAs in trans, miR-BHRF1-2 and 1-3 also regulate EBNA-LP mRNA expression in cis.
Collapse
Affiliation(s)
- Brigid Chiyoko Poling
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA.
| | - Alexander M Price
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA.
| | - Micah A Luftig
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA.
| | - Bryan R Cullen
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
63
|
Routh A, Ji P, Jaworski E, Xia Z, Li W, Wagner EJ. Poly(A)-ClickSeq: click-chemistry for next-generation 3΄-end sequencing without RNA enrichment or fragmentation. Nucleic Acids Res 2017; 45:e112. [PMID: 28449108 PMCID: PMC5499544 DOI: 10.1093/nar/gkx286] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
The recent emergence of alternative polyadenylation (APA) as an engine driving transcriptomic diversity has stimulated the development of sequencing methodologies designed to assess genome-wide polyadenylation events. The goal of these approaches is to enrich, partition, capture and ultimately sequence poly(A) site junctions. However, these methods often require poly(A) enrichment, 3΄ linker ligation steps, and RNA fragmentation, which can necessitate higher levels of starting RNA, increase experimental error and potentially introduce bias. We recently reported a click-chemistry based method for generating RNAseq libraries called ‘ClickSeq’. Here, we adapt this method to direct the cDNA synthesis specifically toward the 3΄UTR/poly(A) tail junction of cellular RNA. With this novel approach, we demonstrate sensitive and specific enrichment for poly(A) site junctions without the need for complex sample preparation, fragmentation or purification. Poly(A)-ClickSeq (PAC-seq) is therefore a simple procedure that generates high-quality RNA-seq poly(A) libraries. As a proof-of-principle, we utilized PAC-seq to explore the poly(A) landscape of both human and Drosophila cells in culture and observed outstanding overlap with existing poly(A) databases and also identified previously unannotated poly(A) sites. Moreover, we utilize PAC-seq to quantify and analyze APA events regulated by CFIm25 illustrating how this technology can be harnessed to identify alternatively polyadenylated RNA.
Collapse
Affiliation(s)
- Andrew Routh
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA
| | - Zheng Xia
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, TX 77030, USA
| | - Wei Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, TX 77030, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA.,Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
64
|
Tombácz D, Csabai Z, Szűcs A, Balázs Z, Moldován N, Sharon D, Snyder M, Boldogkői Z. Long-Read Isoform Sequencing Reveals a Hidden Complexity of the Transcriptional Landscape of Herpes Simplex Virus Type 1. Front Microbiol 2017; 8:1079. [PMID: 28676792 PMCID: PMC5476775 DOI: 10.3389/fmicb.2017.01079] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022] Open
Abstract
In this study, we used the amplified isoform sequencing technique from Pacific Biosciences to characterize the poly(A)+ fraction of the lytic transcriptome of the herpes simplex virus type 1 (HSV-1). Our analysis detected 34 formerly unidentified protein-coding genes, 10 non-coding RNAs, as well as 17 polycistronic and complex transcripts. This work also led us to identify many transcript isoforms, including 13 splice and 68 transcript end variants, as well as several transcript overlaps. Additionally, we determined previously unascertained transcriptional start and polyadenylation sites. We analyzed the transcriptional activity from the complementary DNA strand in five convergent HSV gene pairs with quantitative RT-PCR and detected antisense RNAs in each gene. This part of the study revealed an inverse correlation between the expressions of convergent partners. Our work adds new insights for understanding the complexity of the pervasive transcriptional overlaps by suggesting that there is a crosstalk between adjacent and distal genes through interaction between their transcription apparatuses. We also identified transcripts overlapping the HSV replication origins, which may indicate an interplay between the transcription and replication machineries. The relative abundance of HSV-1 transcripts has also been established by using a novel method based on the calculation of sequencing reads for the analysis.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Faculty of Medicine, University of SzegedSzeged, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Faculty of Medicine, University of SzegedSzeged, Hungary
| | - Attila Szűcs
- Department of Medical Biology, Faculty of Medicine, University of SzegedSzeged, Hungary
| | - Zsolt Balázs
- Department of Medical Biology, Faculty of Medicine, University of SzegedSzeged, Hungary
| | - Norbert Moldován
- Department of Medical Biology, Faculty of Medicine, University of SzegedSzeged, Hungary
| | - Donald Sharon
- Department of Genetics, School of Medicine, Stanford UniversityStanford, CA, United States
| | - Michael Snyder
- Department of Genetics, School of Medicine, Stanford UniversityStanford, CA, United States
| | - Zsolt Boldogkői
- Department of Medical Biology, Faculty of Medicine, University of SzegedSzeged, Hungary
| |
Collapse
|
65
|
Quantitative Analysis of the KSHV Transcriptome Following Primary Infection of Blood and Lymphatic Endothelial Cells. Pathogens 2017; 6:pathogens6010011. [PMID: 28335496 PMCID: PMC5371899 DOI: 10.3390/pathogens6010011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
The transcriptome of the Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV8) after primary latent infection of human blood (BEC), lymphatic (LEC) and immortalized (TIME) endothelial cells was analyzed using RNAseq, and compared to long-term latency in BCBL-1 lymphoma cells. Naturally expressed transcripts were obtained without artificial induction, and a comprehensive annotation of the KSHV genome was determined. A set of unique coding sequence (UCDS) features and a process to resolve overlapping transcripts were developed to accurately quantitate transcript levels from specific promoters. Similar patterns of KSHV expression were detected in BCBL-1 cells undergoing long-term latent infections and in primary latent infections of both BEC and LEC cultures. High expression levels of poly-adenylated nuclear (PAN) RNA and spliced and unspliced transcripts encoding the K12 Kaposin B/C complex and associated microRNA region were detected, with an elevated expression of a large set of lytic genes in all latently infected cultures. Quantitation of non-overlapping regions of transcripts across the complete KSHV genome enabled for the first time accurate evaluation of the KSHV transcriptome associated with viral latency in different cell types. Hierarchical clustering applied to a gene correlation matrix identified modules of co-regulated genes with similar correlation profiles, which corresponded with biological and functional similarities of the encoded gene products. Gene modules were differentially upregulated during latency in specific cell types indicating a role for cellular factors associated with differentiated and/or proliferative states of the host cell to influence viral gene expression.
Collapse
|
66
|
Pei Y, Lewis AE, Robertson ES. Current Progress in EBV-Associated B-Cell Lymphomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:57-74. [PMID: 29052132 DOI: 10.1007/978-981-10-5765-6_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epstein-Barr virus (EBV) was the first human tumor virus discovered more than 50 years ago. EBV-associated lymphomagenesis is still a significant viral-associated disease as it involves a diverse range of pathologies, especially B-cell lymphomas. Recent development of high-throughput next-generation sequencing technologies and in vivo mouse models have significantly promoted our understanding of the fundamental molecular mechanisms which drive these cancers and allowed for the development of therapeutic intervention strategies. This review will highlight the current advances in EBV-associated B-cell lymphomas, focusing on transcriptional regulation, chromosome aberrations, in vivo studies of EBV-mediated lymphomagenesis, as well as the treatment strategies to target viral-associated lymphomas.
Collapse
Affiliation(s)
- Yonggang Pei
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 3610 Hamilton Walk, 201E Johnson Pavilion, Philadelphia, PA, 19104, USA
| | - Alexandria E Lewis
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 3610 Hamilton Walk, 201E Johnson Pavilion, Philadelphia, PA, 19104, USA
| | - Erle S Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 3610 Hamilton Walk, 201E Johnson Pavilion, Philadelphia, PA, 19104, USA.
| |
Collapse
|