51
|
Ma TKW, McAdoo SP, Tam FWK. Targeting the tyrosine kinase signalling pathways for treatment of immune-mediated glomerulonephritis: from bench to bedside and beyond. Nephrol Dial Transplant 2017; 32:i129-i138. [PMID: 28391340 PMCID: PMC5410974 DOI: 10.1093/ndt/gfw336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/18/2016] [Indexed: 12/25/2022] Open
Abstract
Glomerulonephritis (GN) affects patients of all ages and is an important cause of morbidity and mortality. Non-selective immunosuppressive drugs have been used in immune-mediated GN but often result in systemic side effects and occasionally fatal infective complications. There is increasing evidence from both preclinical and clinical studies that abnormal activation of receptor and non-receptor tyrosine kinase signalling pathways are implicated in the pathogenesis of immune-mediated GN. Activation of spleen tyrosine kinase (SYK), Bruton's tyrosine kinase (BTK), platelet-derived growth factor receptor (PDGFR), epidermal growth factor receptor (EGFR) and discoidin domain receptor 1 (DDR1) have been demonstrated in anti-GBM disease. SYK is implicated in the pathogenesis of ANCA-associated GN. SYK, BTK, PDGFR, EFGR, DDR1 and Janus kinase are implicated in the pathogenesis of lupus nephritis. A representative animal model of IgA nephropathy (IgAN) is lacking. Based on the results from in vitro and human renal biopsy study results, a phase II clinical trial is ongoing to evaluate the efficacy and safety of fostamatinib (an oral SYK inhibitor) in high-risk IgAN patient. Various tyrosine kinase inhibitors (TKIs) have been approved for cancer treatment. Clinical trials of TKIs in GN may be justified given their long-term safety data. In this review we will discuss the current unmet medical needs in GN treatment and research as well as the current stage of development of TKIs in GN treatment and propose an accelerated translational research approach to investigate whether selective inhibition of tyrosine kinase provides a safer and more efficacious option for GN treatment.
Collapse
Affiliation(s)
- Terry King-Wing Ma
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK.,Carol and Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Stephen P McAdoo
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Frederick Wai Keung Tam
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| |
Collapse
|
52
|
Das F, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. Tyrosines-740/751 of PDGFRβ contribute to the activation of Akt/Hif1α/TGFβ nexus to drive high glucose-induced glomerular mesangial cell hypertrophy. Cell Signal 2017; 42:44-53. [PMID: 28951244 DOI: 10.1016/j.cellsig.2017.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/22/2017] [Indexed: 01/24/2023]
Abstract
Glomerular mesangial cell hypertrophy contributes to the complications of diabetic nephropathy. The mechanism by which high glucose induces mesangial cell hypertrophy is poorly understood. Here we explored the role of the platelet-derived growth factor receptor-β (PDGFRβ) tyrosine kinase in driving the high glucose-induced mesangial cell hypertrophy. We show that high glucose stimulates the association of the PDGFRβ with PI 3 kinase leading to tyrosine phosphorylation of the latter. High glucose-induced Akt kinase activation was also dependent upon PDGFRβ and its tyrosine phosphorylation at 740/751 residues. Inhibition of PDGFRβ activity, its downregulation and expression of its phospho-deficient (Y740/751F) mutant inhibited mesangial cell hypertrophy by high glucose. Interestingly, expression of constitutively active Akt reversed this inhibition, indicating a role of Akt kinase downstream of PDGFRβ phosphorylation in this process. The transcription factor Hif1α is a target of Akt kinase. siRNAs against Hif1α inhibited the high glucose-induced mesangial cell hypertrophy. In contrast, increased expression of Hif1α induced hypertrophy similar to high glucose. We found that inhibition of PDGFRβ and expression of PDGFRβ Y740/751F mutant significantly inhibited the high glucose-induced expression of Hif1α. Importantly, expression of Hif1α countered the inhibition of mesangial cell hypertrophy induced by siPDGFRβ or PDGFRβ Y740/751F mutant. Finally, we show that high glucose-stimulated PDGFRβ tyrosine phosphorylation at 740/751 residues and the tyrosine kinase activity of the receptor regulate the transforming growth factor-β (TGFβ) expression by Hif1α. Thus we define the cell surface PDGFRβ as a major link between high glucose and its effectors Hif1α and TGFβ for induction of diabetic mesangial cell hypertrophy.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, UT Health at San Antonio, TX, United States
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Department of Pathology, UT Health at San Antonio, TX, United States
| | - Balakuntalam S Kasinath
- Department of Medicine, UT Health at San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Goutam Ghosh Choudhury
- Department of Medicine, UT Health at San Antonio, TX, United States; VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, TX, United States; Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, TX, United States.
| |
Collapse
|
53
|
Martin IV, Bohner A, Boor P, Shagdarsuren E, Raffetseder U, Lammert F, Floege J, Ostendorf T, Weber SN. Complement C5a receptors C5L2 and C5aR in renal fibrosis. Am J Physiol Renal Physiol 2017; 314:F35-F46. [PMID: 28903945 DOI: 10.1152/ajprenal.00060.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Complement factor C5a has two known receptors, C5aR, which mediates proinflammatory effects, and C5L2, a potential C5a decoy receptor. We previously identified C5a/C5aR signaling as a potent profibrotic pathway in the kidney. Here we tested for the first time the role of C5L2 in renal fibrosis. In unilateral ureteral obstruction (UUO)-induced kidney fibrosis, the expression of C5aR and C5L2 increased similarly and gradually as fibrosis progressed and was particularly prominent in injured dilated tubules. Genetic deficiency of either C5aR or C5L2 significantly reduced UUO-induced tubular injury. Expression of key proinflammatory mediators, however, significantly increased in C5L2- compared with C5aR-deficient mice, but this had no effect on the number of renal infiltrating macrophages or T cells. Moreover, in C5L2-/- mice, the cytokine and matrix metalloproteinase-inhibitor tissue inhibitor of matrix metalloproteinase-1 was specifically enhanced. Consequently, in C5L2-/- mice the degree of renal fibrosis was similar to wild type (WT), albeit with reduced mRNA expression of some fibrosis-related genes. In contrast, C5aR-/- mice had significantly reduced renal fibrosis compared with WT and C5L2-/- mice in UUO. In vitro experiments with primary tubular cells demonstrated that deficiency for either C5aR or C5L2 led to a significantly reduced expression of tubular injury and fibrosis markers. Vice versa, stimulation of WT tubular cells with C5a significantly induced the expression of these markers, whereas the absence of either receptor abolished this induction. In conclusion, in experimental renal fibrosis C5L2 and C5aR both contribute to tubular injury, and, while C5aR acts profibrotic, C5L2 does not play a role in extracellular matrix accumulation, arguing against C5L2 functioning simply as a decoy receptor.
Collapse
Affiliation(s)
- Ina V Martin
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Annika Bohner
- Division of Gastroenterology, Saarland University Medical Center , Homburg , Germany
| | - Peter Boor
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany.,Institute of Pathology, RWTH University of Aachen , Aachen , Germany
| | | | - Ute Raffetseder
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Frank Lammert
- Division of Gastroenterology, Saarland University Medical Center , Homburg , Germany
| | - Jürgen Floege
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Tammo Ostendorf
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Susanne N Weber
- Division of Gastroenterology, Saarland University Medical Center , Homburg , Germany
| |
Collapse
|
54
|
Renal findings in patients with Mulibrey nanism. Pediatr Nephrol 2017; 32:1531-1536. [PMID: 28432469 DOI: 10.1007/s00467-017-3669-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Mulibrey nanism (MUL) is a rare inherited disease caused by genetic defects affecting peroxisomal TRIM37 protein. MUL affects multiple organs, leading to growth retardation and early onset type 2 diabetes. We aimed to characterize the structure and function of kidneys and the urinary tract in a large cohort of Finnish MUL patients. METHODS Ultrasound, magnetic resonance imaging (MRI), and autopsy findings of the kidneys and urinary tract from 101 MUL patients were retrospectively analyzed. Renal function was examined using blood and urine biochemistry. Kidney pathology was assessed by histology and immunohistochemistry from biopsy and autopsy samples. RESULTS Structural anomalies of the kidneys and urinary tract were found in 13 % of MUL patients and renal tumors and macroscopic cystic lesions in 14 % and 43 % respectively. Overall, kidney histology was well preserved, but glomerular cysts with a wide Bowman's space were observed in most samples (87 %). Also, prominent and abundant blood vessels with thick walls were typically seen. Expression of endothelial cell markers and angiogenic growth factors PDGF-B and FGF1 (but not VEGF-A) was significantly increased in MUL kidneys. Markers of fibrosis and epithelial-mesenchymal transformation, α-SMA, and vimentin were moderately up-regulated. Despite radiological and histological changes, most MUL patients (age 0.2-51 years) had normal kidney function. However, 9 out of 36 patients (25 %) had hypertension and 6 out of 26 (23 %) had mildly decreased glomerular filtration. CONCLUSIONS Genetic defects in the TRIM37 gene lead to an increased risk for kidney anomalies, renal tumors, and solitary cysts in addition to glomerular cystic lesions, but not to progressive deterioration of renal function.
Collapse
|
55
|
Salva E, Turan SÖ, Akbuğa J. Inhibition of Glomerular Mesangial Cell Proliferation by siPDGF-B- and siPDGFR-β-Containing Chitosan Nanoplexes. AAPS PharmSciTech 2017; 18:1031-1042. [PMID: 27975193 DOI: 10.1208/s12249-016-0687-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/05/2016] [Indexed: 01/23/2023] Open
Abstract
Mesangioproliferative glomerulonephritis is a disease that has a high incidence in humans. In this disease, the proliferation of glomerular mesangial cells and the production of extracellular matrix are important. In recent years, the RNAi technology has been widely used in the treatment of various diseases due to its capability to inhibit the gene expression with high specificity and targeting. The objective of this study was to decrease mesangial cell proliferation by knocking down PDGF-B and its receptor, PDGFR-β. To be able to use small interfering RNAs (siRNAs) in the treatment of this disease successfully, it is necessary to develop appropriate delivery systems. Chitosan, which is a biopolymer, is used as a siRNA delivery system in kidney drug targeting. In order to deliver siRNA molecules targeted at PDGF-B and PDGFR-β, chitosan/siRNA nanoplexes were prepared. The in vitro characterization, transfection studies, and knockdown efficiencies were studied in immortalized and primary rat mesangial cells. In addition, the effects of chitosan nanoplexes on mesangial cell proliferation and migration were investigated. After in vitro transfection, the PDGF-B and PDGFR-β gene silencing efficiencies of PDGF-B and PDGFR-β targeting siRNA-containing chitosan nanoplexes were 74 and 71% in immortalized rat mesangial cells and 66 and 62% in primary rat mesangial cells, respectively. siPDGF-B- and siPDGFR-β-containing nanoplexes indicated a significant decrease in mesangial cell migration and proliferation. These results suggested that mesangial cell proliferation may be inhibited by silencing of the PDGF-B signaling pathway. Gene silencing approaches with chitosan-based gene delivery systems have promise for the efficient treatment of renal disease.
Collapse
|
56
|
Das F, Ghosh-Choudhury N, Venkatesan B, Kasinath BS, Ghosh Choudhury G. PDGF receptor-β uses Akt/mTORC1 signaling node to promote high glucose-induced renal proximal tubular cell collagen I (α2) expression. Am J Physiol Renal Physiol 2017; 313:F291-F307. [PMID: 28424212 DOI: 10.1152/ajprenal.00666.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/28/2023] Open
Abstract
Increased expression of PDGF receptor-β (PDGFRβ) has been shown in renal proximal tubules in mice with diabetes. The core molecular network used by high glucose to induce proximal tubular epithelial cell collagen I (α2) expression is poorly understood. We hypothesized that activation of PDGFRβ by high glucose increases collagen I (α2) production via the Akt/mTORC1 signaling pathway in proximal tubular epithelial cells. Using biochemical and molecular biological techniques, we investigated this hypothesis. We show that high glucose increases activating phosphorylation of the PDGFRβ, resulting in phosphorylation of phosphatidylinositol 3-kinase. A specific inhibitor, JNJ-10198409, and small interfering RNAs targeting PDGFRβ blocked this phosphorylation without having any effect on MEK/Erk1/2 activation. We also found that PDGFRβ regulates high glucose-induced Akt activation, its targets tuberin and PRAS40 phosphorylation, and finally, mTORC1 activation. Furthermore, inhibition of PDGFRβ suppressed high glucose-induced expression of collagen I (α2) in proximal tubular cells. Importantly, expression of constitutively active Akt or mTORC1 reversed these processes. As a mechanism, we found that JNJ and PDGFRβ knockdown inhibited high glucose-stimulated Hif1α expression. Furthermore, overexpression of Hif1α restored expression of collagen I (α2) that was inhibited by PDGFRβ knockdown in high glucose-stimulated cells. Finally, we show increased phosphorylation of PDGFRβ and its association with Akt/mTORC1 activation, Hif1α expression, and elevated collagen I (α2) levels in the renal cortex of mice with diabetes. Our results identify PDGFRβ as a driver in activating Akt/mTORC1 nexus for high glucose-mediated expression of collagen I (α2) in proximal tubular epithelial cells, which contributes to tubulointerstitial fibrosis in diabetic nephropathy.
Collapse
Affiliation(s)
- Falguni Das
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Nandini Ghosh-Choudhury
- VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas.,Department of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Balachandar Venkatesan
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Balakuntalam S Kasinath
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas.,VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas
| | - Goutam Ghosh Choudhury
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas; .,VA Biomedical Laboratory Research, South Texas Veterans Health Care System, San Antonio, Texas.,Geriatric Research, Education and Clinical Research, South Texas Veterans Health Care System, San Antonio, Texas; and
| |
Collapse
|
57
|
Ishii Y, Hamashima T, Yamamoto S, Sasahara M. Pathogenetic significance and possibility as a therapeutic target of platelet derived growth factor. Pathol Int 2017; 67:235-246. [DOI: 10.1111/pin.12530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/27/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Yoko Ishii
- Department of Pathology; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama 930-0194 Japan
| | - Takeru Hamashima
- Department of Pathology; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama 930-0194 Japan
| | - Seiji Yamamoto
- Department of Pathology; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama 930-0194 Japan
| | - Masakiyo Sasahara
- Department of Pathology; Graduate School of Medicine and Pharmaceutical Sciences; University of Toyama; Toyama 930-0194 Japan
| |
Collapse
|
58
|
Fakhruddin S, Alanazi W, Jackson KE. Diabetes-Induced Reactive Oxygen Species: Mechanism of Their Generation and Role in Renal Injury. J Diabetes Res 2017; 2017:8379327. [PMID: 28164134 PMCID: PMC5253173 DOI: 10.1155/2017/8379327] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Diabetes induces the onset and progression of renal injury through causing hemodynamic dysregulation along with abnormal morphological and functional nephron changes. The most important event that precedes renal injury is an increase in permeability of plasma proteins such as albumin through a damaged glomerular filtration barrier resulting in excessive urinary albumin excretion (UAE). Moreover, once enhanced UAE begins, it may advance renal injury from progression of abnormal renal hemodynamics, increased glomerular basement membrane (GBM) thickness, mesangial expansion, extracellular matrix accumulation, and glomerulosclerosis to eventual end-stage renal damage. Interestingly, all these pathological changes are predominantly driven by diabetes-induced reactive oxygen species (ROS) and abnormal downstream signaling molecules. In diabetic kidney, NADPH oxidase (enzymatic) and mitochondrial electron transport chain (nonenzymatic) are the prominent sources of ROS, which are believed to cause the onset of albuminuria followed by progression to renal damage through podocyte depletion. Chronic hyperglycemia and consequent ROS production can trigger abnormal signaling pathways involving diverse signaling mediators such as transcription factors, inflammatory cytokines, chemokines, and vasoactive substances. Persistently, increased expression and activation of these signaling molecules contribute to the irreversible functional and structural changes in the kidney resulting in critically decreased glomerular filtration rate leading to eventual renal failure.
Collapse
Affiliation(s)
- Selim Fakhruddin
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Pharmacy Building, 1800 Bienville Dr., Monroe, LA 71201, USA
| | - Wael Alanazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Pharmacy Building, 1800 Bienville Dr., Monroe, LA 71201, USA
| | - Keith E. Jackson
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Pharmacy Building, 1800 Bienville Dr., Monroe, LA 71201, USA
| |
Collapse
|
59
|
Iwamoto T, Niewold TB. Genetics of human lupus nephritis. Clin Immunol 2016; 185:32-39. [PMID: 27693588 DOI: 10.1016/j.clim.2016.09.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease characterized by immune complex formation with multi-organ manifestations. Lupus nephritis (LN) is one of the most severe types of organ damage in SLE, and it clearly contributes to increased morbidity and mortality due to SLE. LN occurs more frequently and is more severe in non-European ancestral backgrounds, although the cause of this disparity remains largely unknown. Genetic factors play an important role in the pathogenesis of SLE. Although many SLE susceptibility genes have been identified, the genetic basis of LN is not as well understood. While some of the established general SLE susceptibility genes are associated with LN, recent discoveries highlight a number of genes with renal functions that are specifically associated with LN. Some of these genes associated with LN help to explain the disparity in the prevalence of nephritis between individuals with SLE, and also partially explain differences in LN between ancestral backgrounds. Moreover, not only the gene mutations, but also post-translational modifications seem to play important roles in the pathogenesis of LN. Overall it seems likely that a combination of general SLE susceptibility genes cooperate with LN specific risk genes to result in the genetic propensity for LN. In this review, we will outline the genetic contribution to LN and describe possible roles of LN susceptibility genes.
Collapse
Affiliation(s)
- Taro Iwamoto
- Division of Rheumatology & Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy B Niewold
- Division of Rheumatology & Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
60
|
Hino A, Yoshida H, Tada Y, Koike M, Minami R, Masaie H, Ishikawa J. Changes from imatinib mesylate to second generation tyrosine kinase inhibitors improve renal impairment with imatinib mesylate in chronic myelogenous leukemia. Int J Hematol 2016; 104:605-611. [PMID: 27460678 DOI: 10.1007/s12185-016-2071-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 01/20/2023]
Abstract
Understanding adverse events in long-term tyrosine kinase inhibitor (TKI) therapy for chronic myelogenous leukemia (CML) is important. We investigated changes in renal function during TKI therapy for CML. We retrospectively analyzed levels of serum creatinine (sCrn) and values of estimated glomerular filtration rate (eGFR) from June 2001 to March 2015. Sixty patients initially treated with imatinib were enrolled in this study. Continuous variables of sCrn and eGFR were compared by paired student's t test. Median age or duration of treatment with imatinib was 49 years (range 19-81) or 101 months (range 8-165), respectively. Mean levels of sCrn or mean values of eGFR had increased or decreased 1 year later from start of imatinib throughout observation with statistical significance (p < 0.05), respectively. In 38 patients, the TKI used was changed from imatinib to a second-generation TKI (nilotinib: 32; dasatinib: 6) for various reasons. We observed statistically significant (p < 0.05) amelioration in mean levels of sCrn and values of eGFR after only 1 month following the changes to second-generation TKIs. These results suggest that imatinib has adverse effects on renal function and that changes from imatinib to a second-generation TKI should be considered as a therapeutic option in cases of renal impairment due to imatinib.
Collapse
Affiliation(s)
- Akihisa Hino
- Department of Hematology and Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan.
| | - Hitoshi Yoshida
- Department of Hematology and Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan
| | - Yuma Tada
- Department of Hematology and Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan
| | - Midori Koike
- Department of Hematology and Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan
| | - Ryota Minami
- Department of Hematology and Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan
| | - Hiroaki Masaie
- Department of Hematology and Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan
| | - Jun Ishikawa
- Department of Hematology and Oncology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-8511, Japan
| |
Collapse
|
61
|
Liu F, Zhuang S. Role of Receptor Tyrosine Kinase Signaling in Renal Fibrosis. Int J Mol Sci 2016; 17:ijms17060972. [PMID: 27331812 PMCID: PMC4926504 DOI: 10.3390/ijms17060972] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
Renal fibrosis can be induced in different renal diseases, but ultimately progresses to end stage renal disease. Although the pathophysiologic process of renal fibrosis have not been fully elucidated, it is characterized by glomerulosclerosis and/or tubular interstitial fibrosis, and is believed to be caused by the proliferation of renal inherent cells, including glomerular epithelial cells, mesangial cells, and endothelial cells, along with defective kidney repair, renal interstitial fibroblasts activation, and extracellular matrix deposition. Receptor tyrosine kinases (RTKs) regulate a variety of cell physiological processes, including metabolism, growth, differentiation, and survival. Many studies from in vitro and animal models have provided evidence that RTKs play important roles in the pathogenic process of renal fibrosis. It is also showed that tyrosine kinases inhibitors (TKIs) have anti-fibrotic effects in basic research and clinical trials. In this review, we summarize the evidence for involvement of specific RTKs in renal fibrosis process and the employment of TKIs as a therapeutic approach for renal fibrosis.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA.
| |
Collapse
|
62
|
Muñoz-Félix JM, Cuesta C, Perretta-Tejedor N, Subileau M, López-Hernández FJ, López-Novoa JM, Martínez-Salgado C. Identification of bone morphogenetic protein 9 (BMP9) as a novel profibrotic factor in vitro. Cell Signal 2016; 28:1252-1261. [PMID: 27208502 DOI: 10.1016/j.cellsig.2016.05.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 11/30/2022]
Abstract
Upregulated synthesis of extracellular matrix (ECM) proteins by myofibroblasts is a common phenomenon in the development of fibrosis. Although the role of TGF-β in fibrosis development has been extensively studied, the involvement of other members of this superfamily of cytokines, the bone morphogenetic proteins (BMPs) in organ fibrosis has given contradictory results. BMP9 is the main ligand for activin receptor-like kinase-1 (ALK1) TGF-β1 type I receptor and its effect on fibrosis development is unknown. Our purpose was to study the effect of BMP9 in ECM protein synthesis in fibroblasts, as well as the involved receptors and signaling pathways. In cultured mice fibroblasts, BMP9 induces an increase in collagen, fibronectin and connective tissue growth factor expression, associated with Smad1/5/8, Smad2/3 and Erk1/2 activation. ALK5 inhibition with SB431542 or ALK1/2/3/6 with dorsomorphin-1, inhibition of Smad3 activation with SIS3, and inhibition of the MAPK/Erk1/2 with U0126, demonstrates the involvement of these pathways in BMP9-induced ECM synthesis in MEFs. Whereas BMP9 induced Smad1/5/8 phosphorylation through ALK1, it also induces Smad2/3 phosphorylation through ALK5 but only in the presence of ALK1. Summarizing, this is the first study that accurately identifies BMP9 as a profibrotic factor in fibroblasts that promotes ECM protein expression through ALK1 and ALK5 receptors.
Collapse
Affiliation(s)
- José M Muñoz-Félix
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | - Cristina Cuesta
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | - Nuria Perretta-Tejedor
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | - Mariela Subileau
- Inserm, U1036, CEA, DSV, Irtsv, Laboratoire Biologie du Cancer et de l'Infection, Université Joseph Fourier, Grenoble, F-38054, France
| | - Francisco J López-Hernández
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - José M López-Novoa
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | - Carlos Martínez-Salgado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
63
|
Buhl EM, Djudjaj S, Babickova J, Klinkhammer BM, Folestad E, Borkham-Kamphorst E, Weiskirchen R, Hudkins K, Alpers CE, Eriksson U, Floege J, Boor P. The role of PDGF-D in healthy and fibrotic kidneys. Kidney Int 2016; 89:848-61. [DOI: 10.1016/j.kint.2015.12.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/20/2015] [Accepted: 12/11/2015] [Indexed: 02/04/2023]
|
64
|
Ma FY, Blease K, Nikolic-Paterson DJ. A role for spleen tyrosine kinase in renal fibrosis in the mouse obstructed kidney. Life Sci 2016; 146:192-200. [PMID: 26779657 DOI: 10.1016/j.lfs.2016.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/28/2015] [Accepted: 01/13/2016] [Indexed: 02/08/2023]
Abstract
AIMS Spleen tyrosine kinase (Syk) is a non-receptor tyrosine kinase involved in the signalling pathways of the B cell receptor, Fcγ-receptor and some leukocyte integrins. However, Syk can also be expressed by some non-haematopoietic cell types, although whether Syk signalling in these cells contributes to the pathogenesis of kidney disease is unknown. To address this question, we examined the function of Syk in antibody-independent renal interstitial fibrosis in the unilateral ureteric obstruction (UUO) model. MAIN METHODS Groups of C57BL/6J mice were treated with a selective Syk inhibitor (CC0417, 30 mg/kg/bid), vehicle, or no treatment, from the time of surgery until being killed 7 days later. KEY FINDINGS A substantial accumulation of interstitial Syk(+) cells was seen in the UUO kidney. Double staining identified Syk expression by infiltrating macrophages and by a subset of α-SMA(+) myofibroblasts. CC0417 treatment substantially reduced the Syk(+) cell population in conjunction with a reduction in both myofibroblast and macrophage accumulation. This was associated with a substantial reduction in collagen IV deposition and mRNA levels of pro-fibrotic (collagen I, collagen IV, fibronectin, α-SMA, TGF-β1 and PAI-1) and pro-inflammatory molecules (MCP-1, TNF-α and NOS2). CC0417 treatment reduced both PDGF-B mRNA levels and Ki67(+) proliferating interstitial cells in the UUO kidney. Furthermore, CC0417 inhibited PDGF-AB induced ERK activation and cell proliferation of cultured primary kidney fibroblasts. SIGNIFICANCE This study has identified a pathologic role for Syk in renal interstitial fibrosis. Syk inhibitors may have therapeutic potential in chronic fibrotic kidney disease.
Collapse
Affiliation(s)
- Frank Y Ma
- Department of Nephrology, Monash Medical Centre, Monash Health, Clayton, Victoria 3168, Australia; Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | | | - David J Nikolic-Paterson
- Department of Nephrology, Monash Medical Centre, Monash Health, Clayton, Victoria 3168, Australia; Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia.
| |
Collapse
|
65
|
Chang-Panesso M, Humphreys BD. CD248/Endosialin: A Novel Pericyte Target in Renal Fibrosis. Nephron Clin Pract 2015; 131:262-4. [PMID: 26673786 DOI: 10.1159/000440890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 08/31/2015] [Indexed: 12/16/2022] Open
|
66
|
Djudjaj S, Lue H, Rong S, Papasotiriou M, Klinkhammer BM, Zok S, Klaener O, Braun GS, Lindenmeyer MT, Cohen CD, Bucala R, Tittel AP, Kurts C, Moeller MJ, Floege J, Ostendorf T, Bernhagen J, Boor P. Macrophage Migration Inhibitory Factor Mediates Proliferative GN via CD74. J Am Soc Nephrol 2015; 27:1650-64. [PMID: 26453615 DOI: 10.1681/asn.2015020149] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/24/2015] [Indexed: 01/09/2023] Open
Abstract
Pathologic proliferation of mesangial and parietal epithelial cells (PECs) is a hallmark of various glomerulonephritides. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that mediates inflammation by engagement of a receptor complex involving the components CD74, CD44, CXCR2, and CXCR4. The proliferative effects of MIF may involve CD74 together with the coreceptor and PEC activation marker CD44. Herein, we analyzed the effects of local glomerular MIF/CD74/CD44 signaling in proliferative glomerulonephritides. MIF, CD74, and CD44 were upregulated in the glomeruli of patients and mice with proliferative glomerulonephritides. During disease, CD74 and CD44 were expressed de novo in PECs and colocalized in both PECs and mesangial cells. Stress stimuli induced MIF secretion from glomerular cells in vitro and in vivo, in particular from podocytes, and MIF stimulation induced proliferation of PECs and mesangial cells via CD74. In murine crescentic GN, Mif-deficient mice were almost completely protected from glomerular injury, the development of cellular crescents, and the activation and proliferation of PECs and mesangial cells, whereas wild-type mice were not. Bone marrow reconstitution studies showed that deficiency of both nonmyeloid and bone marrow-derived Mif reduced glomerular cell proliferation and injury. In contrast to wild-type mice, Cd74-deficient mice also were protected from glomerular injury and ensuing activation and proliferation of PECs and mesangial cells. Our data suggest a novel molecular mechanism and glomerular cell crosstalk by which local upregulation of MIF and its receptor complex CD74/CD44 mediate glomerular injury and pathologic proliferation in GN.
Collapse
Affiliation(s)
- Sonja Djudjaj
- Department of Pathology, Department of Nephrology and Immunology, and
| | - Hongqi Lue
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Song Rong
- Department of Nephrology and Immunology, and
| | | | | | | | - Ole Klaener
- Department of Pathology, Department of Nephrology and Immunology, and
| | | | - Maja T Lindenmeyer
- Division of Nephrology and Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Clemens D Cohen
- Division of Nephrology and Institute of Physiology, University of Zürich, Zürich, Switzerland
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Andre P Tittel
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; and
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, University of Bonn, Bonn, Germany; and
| | | | | | | | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany;
| | - Peter Boor
- Department of Pathology, Department of Nephrology and Immunology, and Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
67
|
Alhasson F, Dattaroy D, Das S, Chandrashekaran V, Seth RK, Schnellmann RG, Chatterjee S. NKT cell modulates NAFLD potentiation of metabolic oxidative stress-induced mesangial cell activation and proximal tubular toxicity. Am J Physiol Renal Physiol 2015; 310:F85-F101. [PMID: 26447219 DOI: 10.1152/ajprenal.00243.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022] Open
Abstract
Obesity and nonalcoholic fatty liver disease (NAFLD) are associated with the development and progression of chronic kidney disease. We recently showed that NAFLD induces liver-specific cytochrome P-450 (CYP)2E1-mediated metabolic oxidative stress after administration of the CYP2E1 substrate bromodichloromethane (BDCM) (Seth RK, Das S, Kumar A, Chanda A, Kadiiska MB, Michelotti G, Manautou J, Diehl AM, Chatterjee S. Toxicol Appl Pharmacol 274: 42-54, 2014; Seth RK, Kumar A, Das S, Kadiiska MB, Michelotti G, Diehl AM, Chatterjee S. Toxicol Sci 134:291-303, 2013). The present study examined the effects of CYP2E1-mediated oxidative stress in NAFLD leading to kidney toxicity. Mice were fed a high-fat diet for 12 wk to induce NAFLD. NAFLD mice were exposed to BDCM, a CYP2E1 substrate, for 4 wk. NAFLD + BDCM increased CYP2E1-mediated lipid peroxidation in proximal tubular cells compared with mice with NAFLD alone or BDCM-treated lean mice, thus ruling out the exclusive role of BDCM. Lipid peroxidation increased IL-1β, TNF-α, and interferon-γ. In parallel, mesangial cell activation was observed by increased α-smooth muscle actin and transforming growth factor-β, which was blocked by the CYP2E1 inhibitor diallyl sulphide both in vivo and in vitro. Mice lacking natural killer T cells (CD1d knockout mice) showed elevated (>4-fold) proinflammatory mediator release, increased Toll-like receptor (TLR)4 and PDGF2 mRNA, and mesangial cell activation in the kidney. Finally, NAFLD CD1D knockout mice treated with BDCM exhibited increased high mobility group box 1 and Fas ligand levels and TUNEL-positive nuclei, indicating that higher cell death was attenuated in TLR4 knockout mice. Tubular cells showed increased cell death and cytokine release when incubated with activated mesangial cells. In summary, an underlying condition of progressive NAFLD causes renal immunotoxicity and aberrant glomerular function possibly through high mobility group box 1-dependent TLR4 signaling and mesangial cell activation, which, in turn, is modulated by intrinsic CD1D-dependent natural killer T cells.
Collapse
Affiliation(s)
- Firas Alhasson
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina; and
| | - Diptadip Dattaroy
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina; and
| | - Suvarthi Das
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina; and
| | - Varun Chandrashekaran
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina; and
| | - Ratanesh Kumar Seth
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina; and
| | - Rick G Schnellmann
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina; and
| |
Collapse
|
68
|
Salvadori M, Rosso G. Update on immunoglobulin A nephropathy, Part I: Pathophysiology. World J Nephrol 2015; 4:455-467. [PMID: 26380197 PMCID: PMC4561843 DOI: 10.5527/wjn.v4.i4.455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/08/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulin A (IgA) nephropathy is one of the most common glomerulonephritis and its frequency is probably underestimated because in most patients the disease has an indolent course and the kidney biopsy is essential for the diagnosis. In the last years its pathogenesis has been better identified even if still now several questions remain to be answered. The genetic wide association studies have allowed to identifying the relevance of genetics and several putative genes have been identified. The genetics has also allowed explaining why some ancestral groups are affected with higher frequency. To date is clear that IgA nephropathy is related to auto antibodies against immunoglobulin A1 (IgA1) with poor O-glycosylation. The role of mucosal infections is confirmed, but which are the pathogens involved and which is the role of Toll-like receptor polymorphism is less clear. Similarly to date whether the disease is due to the circulating immunocomplexes deposition on the mesangium or whether the antigen is already present on the mesangial cell as a “lanthanic” deposition remains to be clarified. Finally also the link between the mesangial and the podocyte injury and the tubulointerstitial scarring, as well as the mechanisms involved need to be better clarified.
Collapse
|
69
|
Boor P, Bábíčková J, Steegh F, Hautvast P, Martin IV, Djudjaj S, Nakagawa T, Ehling J, Gremse F, Bücher E, Eriksson U, van Roeyen CR, Eitner F, Lammers T, Floege J, Peutz-Kootstra CJ, Ostendorf T. Role of Platelet-Derived Growth Factor-CC in Capillary Rarefaction in Renal Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015. [DOI: 10.1016/j.ajpath.2015.04.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
70
|
Novak J, Rizk D, Takahashi K, Zhang X, Bian Q, Ueda H, Ueda Y, Reily C, Lai LY, Hao C, Novak L, Huang ZQ, Renfrow MB, Suzuki H, Julian BA. New Insights into the Pathogenesis of IgA Nephropathy. KIDNEY DISEASES 2015; 1:8-18. [PMID: 26568951 DOI: 10.1159/000382134] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND IgA nephropathy, a frequent cause of end-stage renal disease, is an autoimmune disease wherein immune complexes consisting of IgA1 with galactose-deficient O-glycans (autoantigen) and anti-glycan autoantibodies deposit in glomeruli and induce renal injury. Multiple genetic loci associated with disease risk have been identified. The prevalence of risk alleles varies geographically, highest in eastern Asia and northern Europe, fewer in other parts of Europe and North America, and the least in Africa. IgA nephropathy is diagnosed from pathological assessment of a renal biopsy specimen. Currently, therapy is not disease-targeted but rather is focused on maintaining control of blood pressure and proteinuria, ideally with suppression of angiotensin II. Possible additional approaches differ between countries. Disease-specific therapy as well as new tools for diagnosis, prognosis, and assessment of responses to therapy are needed. SUMMARY Glycosylation pathways associated with aberrant O-glycosylation of IgA1 and, thus, production of autoantigen, have been identified. Furthermore, unique characteristics of the autoantibodies in IgA nephropathy have been uncovered. Many of these biochemical features are shared by patients with IgA nephropathy and Henoch-Schönlein purpura nephritis, suggesting that the two diseases may represent opposite ends of a spectrum of a disease process. Understanding the molecular mechanisms involved in formation of pathogenic IgA1-containing immune complexes will enable development of disease-specific therapies as well as diagnostic and prognostic biomarkers. KEY MESSAGES IgA nephropathy is an autoimmune disease caused by glomerular deposition of nephritogenic circulating immune complexes consisting of galactose-deficient IgA1 (autoantigen) bound by anti-glycan autoantibodies. A better understanding of the multi-step process of pathogenesis of IgA nephropathy and the genetic and environmental contributing factors will lead to development of biomarkers to identify patients with progressive disease who would benefit from a future disease-specific therapy.
Collapse
Affiliation(s)
- Jan Novak
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dana Rizk
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kazuo Takahashi
- University of Alabama at Birmingham, Birmingham, AL, USA ; School of Medicine, Fujita Health University, Toyoake, Japan
| | - XianWen Zhang
- University of Alabama at Birmingham, Birmingham, AL, USA ; Longhua Hospital, Shanghai University of TCM, Shanghai, China
| | - Qi Bian
- University of Alabama at Birmingham, Birmingham, AL, USA ; Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hirouki Ueda
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yoshimi Ueda
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Colin Reily
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ling-Yun Lai
- University of Alabama at Birmingham, Birmingham, AL, USA ; Fudan University Huashan Hospital, Shanghai, China
| | | | - Lea Novak
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Hitoshi Suzuki
- University of Alabama at Birmingham, Birmingham, AL, USA ; Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Bruce A Julian
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
71
|
Boor P, Floege J. Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant 2015; 15:863-86. [PMID: 25691290 DOI: 10.1111/ajt.13180] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/30/2014] [Accepted: 12/19/2014] [Indexed: 01/25/2023]
Abstract
Renal tubulointerstitial fibrosis is the final common pathway of progressive renal diseases. In allografts, it is assessed with tubular atrophy as interstitial fibrosis/tubular atrophy (IF/TA). IF/TA occurs in about 40% of kidney allografts at 3-6 months after transplantation, increasing to 65% at 2 years. The origin of renal fibrosis in the allograft is complex and includes donor-related factors, in particular in case of expanded criteria donors, ischemia-reperfusion injury, immune-mediated damage, recurrence of underlying diseases, hypertensive damage, nephrotoxicity of immunosuppressants, recurrent graft infections, postrenal obstruction, etc. Based largely on studies in the non-transplant setting, there is a large body of literature on the role of different cell types, be it intrinsic to the kidney or bone marrow derived, in mediating renal fibrosis, and the number of mediator systems contributing to fibrotic changes is growing steadily. Here we review the most important cellular processes and mediators involved in the progress of renal fibrosis, with a focus on the allograft situation, and discuss some of the challenges in translating experimental insights into clinical trials, in particular fibrosis biomarkers or imaging modalities.
Collapse
Affiliation(s)
- P Boor
- Division of Nephrology and Clinical Immunology, RWTH University of Aachen, Aachen, Germany; Department of Pathology, RWTH University of Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Bratislava, Slovakia
| | | |
Collapse
|
72
|
Schwarzenberger C, Sradnick J, Lerea KM, Goligorsky MS, Nieswandt B, Hugo CPM, Hohenstein B. Platelets are relevant mediators of renal injury induced by primary endothelial lesions. Am J Physiol Renal Physiol 2015; 308:F1238-46. [PMID: 25834071 DOI: 10.1152/ajprenal.00535.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/26/2015] [Indexed: 12/23/2022] Open
Abstract
Several studies have suggested a prominent (pro)inflammatory and harmful role of platelets in renal disease, and newer work has also demonstrated platelet release of proangiogenic factors. In the present study, we investigated the role of platelets in a mouse model of selective endothelial cell injury using either platelet depletion or the pharmacological P2Y12 receptor blocker clopidogrel as an interventional strategy. The concanavalin A/anti-concanavalin A model was induced in left kidneys of C57bl/6J wild-type mice after initial platelet depletion or platelet-inhibiting therapy using clopidogrel. FACS analysis of glycoprotein IIb/IIIa/P-selectin double-positive platelets and platelet-derived microparticles demonstrated relevant platelet activation after the induction of selective endothelial injury in mice. Enhanced platelet activation persisted for 5 days after disease induction and was accompanied by increased amounts of circulating platelet-derived microparticles as potential mediators of a prolonged procoagulant state. By immunohistochemistry, we detected significantly reduced glomerular injury in platelet-depleted mice compared with control mice. In parallel, we also saw reduced endothelial loss and a consequently reduced repair response as indicated by diminished proliferative activity. The P2Y12 receptor blocker clopidogrel demonstrated efficacy in limiting platelet activation and subsequent endothelial injury in this mouse model of renal microvascular injury. In conclusion, platelets are relevant mediators of renal injury induced by primary endothelial lesions early on, as demonstrated by platelet depletion as well as platelet inhibition via the P2Y12 receptor. While strategies to prevent platelet-endothelial interactions have shown protective effects, the contribution of platelets during renal regeneration remains unknown.
Collapse
Affiliation(s)
- Claudia Schwarzenberger
- Division of Nephrology, Department of Internal Medicine III, Technische Universitaet Dresden, Dresden, Germany
| | - Jan Sradnick
- Division of Nephrology, Department of Internal Medicine III, Technische Universitaet Dresden, Dresden, Germany
| | - Kenneth M Lerea
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | | | - Bernhard Nieswandt
- Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, University of Wuerzburg, Wuerzburg, Germany
| | - Christian P M Hugo
- Division of Nephrology, Department of Internal Medicine III, Technische Universitaet Dresden, Dresden, Germany
| | - Bernd Hohenstein
- Division of Nephrology, Department of Internal Medicine III, Technische Universitaet Dresden, Dresden, Germany;
| |
Collapse
|
73
|
Kok HM, Falke LL, Goldschmeding R, Nguyen TQ. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat Rev Nephrol 2014; 10:700-11. [PMID: 25311535 DOI: 10.1038/nrneph.2014.184] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a major health and economic burden with a rising incidence. During progression of CKD, the sustained release of proinflammatory and profibrotic cytokines and growth factors leads to an excessive accumulation of extracellular matrix. Transforming growth factor β (TGF-β) and angiotensin II are considered to be the two main driving forces in fibrotic development. Blockade of the renin-angiotensin-aldosterone system has become the mainstay therapy for preservation of kidney function, but this treatment is not sufficient to prevent progression of fibrosis and CKD. Several factors that induce fibrosis have been identified, not only by TGF-β-dependent mechanisms, but also by TGF-β-independent mechanisms. Among these factors are the (partially) TGF-β-independent profibrotic pathways involving connective tissue growth factor, epidermal growth factor and platelet-derived growth factor and their receptors. In this Review, we discuss the specific roles of these pathways, their interactions and preclinical evidence supporting their qualification as additional targets for novel antifibrotic therapies.
Collapse
Affiliation(s)
- Helena M Kok
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Lucas L Falke
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Tri Q Nguyen
- Department of Pathology, H04.312, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| |
Collapse
|