51
|
Lagemaat MW, Maas MC, Vos EK, Bitz AK, Orzada S, Weiland E, van Uden MJ, Kobus T, Heerschap A, Scheenen TWJ. (31) P MR spectroscopic imaging of the human prostate at 7 T: T1 relaxation times, Nuclear Overhauser Effect, and spectral characterization. Magn Reson Med 2014; 73:909-20. [PMID: 24677408 DOI: 10.1002/mrm.25209] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 11/06/2022]
Abstract
PURPOSE Optimization of phosphorus ((31) P) MR spectroscopic imaging (MRSI) of the human prostate at 7 T by the evaluation of T1 relaxation times and the Nuclear Overhauser Effect (NOE) of phosphorus-containing metabolites. METHODS Twelve patients with prostate cancer and one healthy volunteer were scanned on a 7 T whole-body system using a (31) P endorectal coil combined with an eight-channel (1) H body array coil. T1 relaxation times were measured using progressive saturation in a two-dimensional localization sequence. (31) P MRSI was performed twice: once without NOE and once with NOE using low-power continuous wave (1) H irradiation to determine NOE enhancements. RESULTS T1 relaxation times of (31) P metabolites in the human prostate at 7 T varied between 3.0 and 8.3 s. Positive but variable NOE enhancements were measured for most metabolites. Remarkably, the (31) P MR spectra showed two peaks in chemical shift range of inorganic phosphate. CONCLUSION Knowledge of T1 relaxation times and NOE enhancements enables protocol optimization for (31) P MRSI of the prostate at 7 T. With a strongly reduced (31) P flip angle (≤ 45°), a (31) P MRSI dataset with optimal signal-to-noise ratio per unit time can be obtained within 15 minutes. The NOE enhancement can improve fitting accuracy, but its variability requires further investigation.
Collapse
Affiliation(s)
- Miriam W Lagemaat
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Thirant C, Gavard J, Junier MP, Chneiweiss H. Critical multiple angiogenic factors secreted by glioblastoma stem-like cells underline the need for combinatorial anti-angiogenic therapeutic strategies. Proteomics Clin Appl 2014; 7:79-90. [PMID: 23229792 DOI: 10.1002/prca.201200102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/31/2012] [Accepted: 11/14/2012] [Indexed: 01/06/2023]
Abstract
Glioblastomas are the most frequent adult primary brain tumors that still remain fatal despite major clinical efforts. As in other solid tumors, populations of glioblastoma stem-like cells (GSCs) endowed with tumor initiating and therapeutic resistance properties have been identified. Glioblastomas are highly vascularized tumors resulting in a rich dialog between GSCs and endothelial cells. In one direction, endothelial cells and their secreted proteins are able to sustain GSC properties while, in turn, GSCs can promote neoangiogenesis, modulate endothelial cell functions and may even transdifferentiate into endothelial cells. Accordingly, targeting tumor vasculature seems a promising issue despite incomplete and transient results obtained from anti-vascular endothelial growth factor therapeutic trials. Recent findings of novel GSC-secreted molecules with pro-angiogenic properties (Semaphorin 3A, hepatoma-derived growth factor) open the path to the design of a concerted attack of glioblastoma vasculature that could overcome the development of resistance to single-targeted therapies while keeping away the toxicity of the treatments.
Collapse
Affiliation(s)
- Cécile Thirant
- Leukemia and Stem Cell Biology Laboratory, Department of Hematological Medicine, Rayne Institute, King's College London, London, UK
| | | | | | | |
Collapse
|
53
|
|
54
|
Hypoxia and oxygenation induce a metabolic switch between pentose phosphate pathway and glycolysis in glioma stem-like cells. Acta Neuropathol 2013; 126:763-80. [PMID: 24005892 DOI: 10.1007/s00401-013-1173-y] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/14/2013] [Accepted: 08/25/2013] [Indexed: 12/12/2022]
Abstract
Fluctuations in oxygen tension during tissue remodeling impose a major metabolic challenge in human tumors. Stem-like tumor cells in glioblastoma, the most common malignant brain tumor, possess extraordinary metabolic flexibility, enabling them to initiate growth even under non-permissive conditions. We identified a reciprocal metabolic switch between the pentose phosphate pathway (PPP) and glycolysis in glioblastoma stem-like (GS) cells. Expression of PPP enzymes is upregulated by acute oxygenation but downregulated by hypoxia, whereas glycolysis enzymes, particularly those of the preparatory phase, are regulated inversely. Glucose flux through the PPP is reduced under hypoxia in favor of flux through glycolysis. PPP enzyme expression is elevated in human glioblastomas compared to normal brain, especially in highly proliferative tumor regions, whereas expression of parallel preparatory phase glycolysis enzymes is reduced in glioblastomas, except for strong upregulation in severely hypoxic regions. Hypoxia stimulates GS cell migration but reduces proliferation, whereas oxygenation has opposite effects, linking the metabolic switch to the "go or grow" potential of the cells. Our findings extend Warburg's observation that tumor cells predominantly utilize glycolysis for energy production, by suggesting that PPP activity is elevated in rapidly proliferating tumor cells but suppressed by acute severe hypoxic stress, favoring glycolysis and migration to protect cells against hypoxic cell damage.
Collapse
|
55
|
Vettukattil R, Gulati M, Sjøbakk TE, Jakola AS, Kvernmo NAM, Torp SH, Bathen TF, Gulati S, Gribbestad IS. Differentiating diffuse World Health Organization grade II and IV astrocytomas with ex vivo magnetic resonance spectroscopy. Neurosurgery 2013; 72:186-95; discussion 195. [PMID: 23147779 DOI: 10.1227/neu.0b013e31827b9c57] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The prognosis and treatment of astrocytomas, which are primary brain tumors, vary depending on the grade of the tumor, necessitating a precise preoperative classification. Magnetic resonance spectroscopy (MRS) provides information about metabolites in tissues and is an emerging noninvasive tool to improve diagnostic accuracy in patients with intracranial neoplasia. OBJECTIVE To investigate whether ex vivo MRS could differentiate World Health Organization grade II (A-II) and IV astrocytomas (glioblastomas; GBM) and to correlate MR spectral profiles with clinical parameters. METHODS Patients with A-II and GBM (n = 58) scheduled for surgical resection were enrolled. Tumor specimens were collected during surgery and stored in liquid nitrogen before being analyzed with high-resolution magic angle spinning MRS. The tumors were histopathologically classified according to World Health Organization criteria as GBM (n = 48) and A-II (n = 10). RESULTS Multivariate analysis of ex vivo proton high-resolution magic angle spinning spectra MRS showed differences in the metabolic profiles of different grades of astrocytomas. A-II had higher levels of glycerophosphocholine and myo-inositol than GBM. The latter had more phosphocholine, glycine, and lipids. We observed a significant metabolic difference between recurrent and nonrecurrent GBM (P < .001). Primary GBM had more phosphocholine than recurrent GBM. A significant correlation (P < .001) between lipid and lactate signals and histologically estimated percentage of necrosis was observed in GBM. Spectral profiles were not correlated with age, survival, or magnetic resonance imaging-defined tumor volume. CONCLUSION Ex vivo MRS can differentiate astrocytomas based on their metabolic profiles.
Collapse
Affiliation(s)
- Riyas Vettukattil
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Hattingen E, Jurcoane A, Daneshvar K, Pilatus U, Mittelbronn M, Steinbach JP, Bähr O. Quantitative T2 mapping of recurrent glioblastoma under bevacizumab improves monitoring for non-enhancing tumor progression and predicts overall survival. Neuro Oncol 2013; 15:1395-404. [PMID: 23925453 DOI: 10.1093/neuonc/not105] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Anti-angiogenic treatment in recurrent glioblastoma patients suppresses contrast enhancement and reduces vasogenic edema while non-enhancing tumor progression is common. Thus, the importance of T2-weighted imaging is increasing. We therefore quantified T2 relaxation times, which are the basis for the image contrast on T2-weighted images. METHODS Conventional and quantitative MRI procedures were performed on 18 patients with recurrent glioblastoma before treatment with bevacizumab and every 8 weeks thereafter until further tumor progression. We segmented the tumor on conventional MRI into 3 subvolumes: enhancing tumor, non-enhancing tumor, and edema. Using coregistered quantitative maps, we followed changes in T2 relaxation time in each subvolume. Moreover, we generated differential T2 maps by a voxelwise subtraction using the first T2 map under bevacizumab as reference. RESULTS Visually segmented areas of tumor and edema did not differ in T2 relaxation times. Non-enhancing tumor volume did not decrease after commencement of bevacizumab treatment but strikingly increased at progression. Differential T2 maps clearly showed non-enhancing tumor progression in previously normal brain. T2 relaxation times decreased under bevacizumab without re-increasing at tumor progression. A decrease of <26 ms in the enhancing tumor following exposure to bevacizumab was associated with longer overall survival. CONCLUSIONS Combining quantitative MRI and tumor segmentation improves monitoring of glioblastoma patients under bevacizumab. The degree of change in T2 relaxation time under bevacizumab may be an early response parameter predictive of overall survival. The sustained decrease in T2 relaxation times toward values of healthy tissue masks progressive tumor on conventional T2-weighted images. Therefore, quantitative T2 relaxation times may detect non-enhancing progression better than conventional T2-weighted imaging.
Collapse
Affiliation(s)
- Elke Hattingen
- Corresponding Author: Elke Hattingen, MD, Goethe-University Hospital Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany.
| | | | | | | | | | | | | |
Collapse
|
57
|
MR-based hypoxia measures in human glioma. J Neurooncol 2013; 115:197-207. [PMID: 23918147 DOI: 10.1007/s11060-013-1210-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 07/28/2013] [Indexed: 10/26/2022]
Abstract
Hypoxia plays a central role in tumor stem cell genesis and is related to a more malignant tumor phenotype, therapy resistance (e.g. in anti-angiogenic therapies) and radio-insensitivity. Reliable hypoxia imaging would provide crucial metabolic information in the diagnostic work-up of brain tumors. In this study, we applied a novel BOLD-based MRI method for the measurement of relative oxygen extraction fraction (rOEF) in glioma patients and investigated potential benefits and drawbacks. Forty-five glioma patients were examined preoperatively in a pilot study on a 3T MR scanner. rOEF was calculated from quantitative transverse relaxation rates (T2, T2*) and cerebral blood volume (CBV) using a quantitative BOLD approach. rOEF maps were assessed visually and by means of a volume of interest (VOI) analysis. In six cases, MRI-targeted biopsy samples were analyzed using HIF-1α-immunohistochemistry. rOEF maps could be obtained with a diagnostic quality. Focal spots with high rOEF values were observed in the majority of high-grade tumors but in none of the low-grade tumors. VOI analysis revealed potentially hypoxic tumor regions with high rOEF in contrast-enhancing tumor regions as well as in the non-enhancing infiltration zone. Systematic bias was found as a result of non-BOLD susceptibility effects (T2*) and contrast agent leakage affecting CBV. Histological samples demonstrated reasonable correspondence between MRI characteristics and HIF-1α-staining. The presented method of rOEF imaging is a promising tool for the metabolic characterization of human glioma. For the interpretation of rOEF maps, confounding factors must be considered, with a special focus on CBV measurements in the presence of contrast agent leakage. Further validation involving a bigger cohort and extended immuno-histochemical correlation is required.
Collapse
|
58
|
Abstract
INTRODUCTION Magnetic resonance spectroscopy (MRS) will continue to play an ever increasing role in drug discovery because MRS does readily define biomarkers for several hundreds of clinically distinct diseases. Published evidence based medicine (EBM) surveys, which generally conclude the opposite, are seriously flawed and do a disservice to the field of drug discovery. AREAS COVERED This article presents MRS and how it has guided several hundreds of practical human 'drug discovery' endeavors since its development. Specifically, the author looks at the process of 'reverse-translation' and its influence in the expansion of the number of preclinical drug discoveries from in vivo MRS. The author also provides a structured approach of eight criteria, including EBM acceptance, which could potentially re-open the field of MRS for productive exploration of existing and repurposed drugs and cost-effective drug-discovery. EXPERT OPINION MRS-guided drug discovery is poised for future expansion. The cost of clinical trials has escalated and the use of biomarkers has become increasingly useful in improving patient selection for drug trials. Clinical MRS has uncovered a treasure-trove of novel biomarkers and clinical MRS itself has become better standardized and more widely available on 'routine' clinical MRI scanners. When combined with available new MRI sequences, MRS can provide a 'one stop shop' with multiple potential outcome measures for the disease and the drug in question.
Collapse
Affiliation(s)
- Brian D Ross
- Huntington Medical Research Institutes, Magnetic Resonance Spectroscopy Unit, 10 Pico Street, Pasadena 91105, USA.
| |
Collapse
|
59
|
Ratai EM, Zhang Z, Snyder BS, Boxerman JL, Safriel Y, McKinstry RC, Bokstein F, Gilbert MR, Sorensen AG, Barboriak DP. Magnetic resonance spectroscopy as an early indicator of response to anti-angiogenic therapy in patients with recurrent glioblastoma: RTOG 0625/ACRIN 6677. Neuro Oncol 2013; 15:936-44. [PMID: 23645534 DOI: 10.1093/neuonc/not044] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The prognosis for patients with recurrent glioblastoma remains poor. The purpose of this study was to assess the potential role of MR spectroscopy as an early indicator of response to anti-angiogenic therapy. METHODS Thirteen patients with recurrent glioblastoma were enrolled in RTOG 0625/ACRIN 6677, a prospective multicenter trial in which bevacizumab was used in combination with either temozolomide or irinotecan. Patients were scanned prior to treatment and at specific timepoints during the treatment regimen. Postcontrast T1-weighted MRI was used to assess 6-month progression-free survival. Spectra from the enhancing tumor and peritumoral regions were defined on the postcontrast T1-weighted images. Changes in the concentration ratios of n-acetylaspartate/creatine (NAA/Cr), choline-containing compounds (Cho)/Cr, and NAA/Cho were quantified in comparison with pretreatment values. RESULTS NAA/Cho levels increased and Cho/Cr levels decreased within enhancing tumor at 2 weeks relative to pretreatment levels (P = .048 and P = .016, respectively), suggesting a possible antitumor effect of bevacizumab with cytotoxic chemotherapy. Nine of the 13 patients were alive and progression free at 6 months. Analysis of receiver operating characteristic curves for NAA/Cho changes in tumor at 8 weeks revealed higher levels in patients progression free at 6 months (area under the curve = 0.85), suggesting that NAA/Cho is associated with treatment response. Similar results were observed for receiver operating characteristic curve analyses against 1-year survival. In addition, decreased Cho/Cr and increased NAA/Cr and NAA/Cho in tumor periphery at 16 weeks posttreatment were associated with both 6-month progression-free survival and 1-year survival. CONCLUSION Changes in NAA and Cho by MR spectroscopy may potentially be useful as imaging biomarkers in assessing response to anti-angiogenic treatment.
Collapse
Affiliation(s)
- Eva-Maria Ratai
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Neuroradiology Division, Harvard Medical School, Building 149, 13th Street, Room 2301, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Hattingen E, Bähr O, Rieger J, Blasel S, Steinbach J, Pilatus U. Phospholipid metabolites in recurrent glioblastoma: in vivo markers detect different tumor phenotypes before and under antiangiogenic therapy. PLoS One 2013; 8:e56439. [PMID: 23520454 PMCID: PMC3592858 DOI: 10.1371/journal.pone.0056439] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/09/2013] [Indexed: 11/18/2022] Open
Abstract
Purpose Metabolic changes upon antiangiogenic therapy of recurrent glioblastomas (rGBMs) may provide new biomarkers for treatment efficacy. Since in vitro models showed that phospholipid membrane metabolism provides specific information on tumor growth we employed in-vivo MR-spectroscopic imaging (MRSI) of human rGBMs before and under bevacizumab (BVZ) to measure concentrations of phosphocholine (PCho), phosphoethanolamine (PEth), glycerophosphocholine (GPC), and glyceroethanolamine (GPE). Methods 1H and 31P MRSI was prospectively performed in 32 patients with rGBMs before and under BVZ therapy at 8 weeks intervals until tumor progression. Patients were dichotomized into subjects with long overall survival (OS) (>median OS) and short OS (<median OS) survival time from BVZ-onset. Metabolite concentrations from tumor tissue and their ratios were compared to contralateral normal-appearing tissue (control). Results Before BVZ, 1H-detectable choline signals (total GPC and PCho) in rGBMs were elevated but significance failed after dichotomizing. For metabolite ratios obtained by 31P MRSI, the short-OS group showed higher PCho/GPC (p = 0.004) in rGBMs compared to control tissue before BVZ while PEth/GPE was elevated in rGBMs of both groups (long-OS p = 0.04; short-OS p = 0.003). Under BVZ, PCho/GPC and PEth/GPE in the tumor initially decreased (p = 0.04) but only PCho/GPC re-increased upon tumor progression (p = 0.02). Intriguingly, in normal-appearing tissue an initial PEth/GPE decrease (p = 0.047) was followed by an increase at the time of tumor progression (p = 0.031). Conclusion An elevated PCho/GPC ratio in the short-OS group suggests that it is a negative predictive marker for BVZ efficacy. These gliomas may represent a malignant phenotype even growing under anti-VEGF treatment. Elevated PEth/GPE may represent an in-vivo biomarker more sensitive to GBM infiltration than MRI.
Collapse
Affiliation(s)
- Elke Hattingen
- Institute of Neuroradiology, Goethe-University Hospital Frankfurt, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
61
|
McNamara MG, Mason WP. Antiangiogenic therapies in glioblastoma multiforme. Expert Rev Anticancer Ther 2012; 12:643-54. [PMID: 22594899 DOI: 10.1586/era.12.35] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and lethal of adult gliomas. The prognosis for the great majority of patients with GBM is poor as almost all tumors recur following optimal surgical resection, radiation and standard chemotherapy, resulting in rapid disease-related death. The standard of care for recurrent GBM has not been clearly established. GBMs are highly vascularized brain tumors and growth has been shown to be angiogenesis dependent, thus stimulating interest in developing antiangiogenic therapeutic strategies. Antiangiogenic agents are the most promising novel agents in development for GBM but to date have not substantially changed overall survival. Future antiangiogenic strategies designed to overcome limitations of current antiangiogenic agents will likely involve the use of agent combinations that target pathways mediating resistance to antiangiogenic agents and tumor invasion.
Collapse
Affiliation(s)
- Mairéad G McNamara
- Pencer Brain Tumor Centre, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario, Canada
| | | |
Collapse
|
62
|
Titz B, Kozak KR, Jeraj R. Computational modelling of anti-angiogenic therapies based on multiparametric molecular imaging data. Phys Med Biol 2012; 57:6079-101. [PMID: 22972469 DOI: 10.1088/0031-9155/57/19/6079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Computational tumour models have emerged as powerful tools for the optimization of cancer therapies; ideally, these models should incorporate patient-specific imaging data indicative of therapeutic response. The purpose of this study was to develop a tumour modelling framework in order to simulate the therapeutic effects of anti-angiogenic agents based upon clinical molecular imaging data. The model was applied to positron emission tomography (PET) data of cellular proliferation and hypoxia from a phase I clinical trial of bevacizumab, an antibody that neutralizes the vascular endothelial growth factor (VEGF). When using pre-therapy PET data in combination with literature-based dose response parameters, simulated follow-up hypoxia data yielded good qualitative agreement with imaged hypoxia levels. Improving the quantitative agreement with follow-up hypoxia and proliferation PET data required tuning of the maximum vascular growth fraction (VGF(max)) and the tumour cell cycle time to patient-specific values. VGF(max) was found to be the most sensitive model parameter (CV = 22%). Assuming availability of patient-specific, intratumoural VEGF levels, we show how bevacizumab dose levels can potentially be 'tailored' to improve levels of tumour hypoxia while maintaining proliferative response, both of which are critically important in the context of combination therapy. Our results suggest that, upon further validation, the application of image-driven computational models may afford opportunities to optimize dosing regimens and combination therapies in a patient-specific manner.
Collapse
Affiliation(s)
- Benjamin Titz
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | | | | |
Collapse
|
63
|
Keogh BP, Henson JW. Clinical Manifestations and Diagnostic Imaging of Brain Tumors. Hematol Oncol Clin North Am 2012; 26:733-55. [DOI: 10.1016/j.hoc.2012.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
64
|
Vidiri A, Pace A, Fabi A, Maschio M, Latagliata GM, Anelli V, Piludu F, Carapella CM, Giovinazzo G, Marzi S. Early perfusion changes in patients with recurrent high-grade brain tumor treated with Bevacizumab: preliminary results by a quantitative evaluation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:33. [PMID: 22494770 PMCID: PMC3583244 DOI: 10.1186/1756-9966-31-33] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/11/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND To determine whether early monitoring of the effects of bevacizumab in patients with recurrent high-grade gliomas, by a Perfusion Computed Tomography (PCT), may be a predictor of the response to treatment assessed through conventional MRI follow-up. METHODS Sixteen patients were enrolled in the present study. For each patient, two PCT examinations, before and after the first dose of bevacizumab, were acquired. Areas of abnormal Cerebral Blood Volume (CBV) were manually defined on the CBV maps, using co-registered T1- weighted images, acquired before treatment, as a guide to the tumor location. Different perfusion metrics were derived from the histogram analysis of the normalized CBV (nCBV) maps; both hyper and hypo-perfused sub-volumes were quantified in the lesion, including tumor necrosis. A two-tailed Wilcoxon test was used to establish the significance of changes in the different perfusion metrics, observed at baseline and during treatment. The relationships between changes in perfusion and morphological MRI modifications at first follow-up were investigated. RESULTS Significant reductions in mean and median nCBV were detected throughout the entire patient population, after only a single dose of bevacizumab. The nCBV histogram modifications indicated the normalization effect of bevacizumab on the tumor abnormal vasculature. An improvement in hypoxia after a single dose of bevacizumab was predictive of a greater reduction in T1-weighted contrast-enhanced volumes at first follow-up. CONCLUSIONS These preliminary results show that a quantification of changes in necrotic intra-tumoral regions could be proposed as a potential imaging biomarker of tumor response to anti-VEGF therapies.
Collapse
Affiliation(s)
- Antonello Vidiri
- Radiology and Diagnostic Imaging Department, Regina Elena Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
DeLay M, Jahangiri A, Carbonell WS, Hu YL, Tsao S, Tom MW, Paquette J, Tokuyasu TA, Aghi MK. Microarray analysis verifies two distinct phenotypes of glioblastomas resistant to antiangiogenic therapy. Clin Cancer Res 2012; 18:2930-42. [PMID: 22472177 DOI: 10.1158/1078-0432.ccr-11-2390] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To identify mechanisms and mediators of resistance to antiangiogenic therapy in human glioblastoma. EXPERIMENTAL DESIGN We carried out microarray gene expression analysis and immunohistochemistry comparing 21 recurrent glioblastomas progressing during antiangiogenic treatment with VEGF neutralizing antibody bevacizumab to paired pretreatment tumors from the same patients. RESULTS Microarray analysis revealed that bevacizumab-resistant glioblastomas (BRG) had two clustering patterns defining subtypes that reflect radiographic growth patterns. Enhancing BRGs (EBRG) exhibited MRI enhancement, a long-established criterion for glioblastoma progression, and expressed mitogen-activated protein kinases, neural cell adhesion molecule-1 (NCAM-1), and aquaporin 4. Compared with their paired pretreatment tumors, EBRGs had unchanged vascularity and hypoxia, with increased proliferation. Nonenhancing BRGs (NBRG) exhibited minimal MRI enhancement but had FLAIR-bright expansion, a newer criterion for glioblastoma recurrence since the advent of antiangiogenic therapy, and expressed integrin α5, laminin, fibronectin1, and PDGFRβ. NBRGs had less vascularity, more hypoxia, and unchanged proliferation than their paired pretreatment tumors. Primary NBRG cells exhibited more stellate morphology with a 3-fold increased shape factor and were nearly 4-fold more invasive in Matrigel chambers than primary cells from EBRGs or bevacizumab-naive glioblastomas (P < 0.05). CONCLUSION Using microarray analysis, we found two resistance patterns during antiangiogenic therapy with distinct molecular profiles and radiographic growth patterns. These studies provide valuable biologic insight into the resistance that has limited antiangiogenic therapy to date.
Collapse
Affiliation(s)
- Michael DeLay
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|