52
|
Manchester LC, Coto-Montes A, Boga JA, Andersen LPH, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ. Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 2015; 59:403-19. [PMID: 26272235 DOI: 10.1111/jpi.12267] [Citation(s) in RCA: 641] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022]
Abstract
Melatonin is remarkably functionally diverse with actions as a free radical scavenger and antioxidant, circadian rhythm regulator, anti-inflammatory and immunoregulating molecule, and as an oncostatic agent. We hypothesize that the initial and primary function of melatonin in photosynthetic cyanobacteria, which appeared on Earth 3.5-3.2 billion years ago, was as an antioxidant. The evolution of melatonin as an antioxidant by this organism was necessary as photosynthesis is associated with the generation of toxic-free radicals. The other secondary functions of melatonin came about much later in evolution. We also surmise that mitochondria and chloroplasts may be primary sites of melatonin synthesis in all eukaryotic cells that possess these organelles. This prediction is made on the basis that mitochondria and chloroplasts of eukaryotes developed from purple nonsulfur bacteria (which also produce melatonin) and cyanobacteria when they were engulfed by early eukaryotes. Thus, we speculate that the melatonin-synthesizing actions of the engulfed bacteria were retained when these organelles became mitochondria and chloroplasts, respectively. That mitochondria are likely sites of melatonin formation is supported by the observation that this organelle contains high levels of melatonin that are not impacted by blood melatonin concentrations. Melatonin has a remarkable array of means by which it thwarts oxidative damage. It, as well as its metabolites, is differentially effective in scavenging a variety of reactive oxygen and reactive nitrogen species. Moreover, melatonin and its metabolites modulate a large number of antioxidative and pro-oxidative enzymes, leading to a reduction in oxidative damage. The actions of melatonin on radical metabolizing/producing enzymes may be mediated by the Keap1-Nrf2-ARE pathway. Beyond its direct free radical scavenging and indirect antioxidant effects, melatonin has a variety of physiological and metabolic advantages that may enhance its ability to limit oxidative stress.
Collapse
Affiliation(s)
- Lucien C Manchester
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Ana Coto-Montes
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Jose Antonio Boga
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Lars Peter H Andersen
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Zhou Zhou
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Annia Galano
- Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapalapa, Mexico DF, Mexico
| | - Jerry Vriend
- Department of Human Anatomy and Cell Biology, University of Manitoba, Winnipeg, MA, Canada
| | - Dun-Xian Tan
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
55
|
Shimakawa G, Shaku K, Nishi A, Hayashi R, Yamamoto H, Sakamoto K, Makino A, Miyake C. FLAVODIIRON2 and FLAVODIIRON4 proteins mediate an oxygen-dependent alternative electron flow in Synechocystis sp. PCC 6803 under CO2-limited conditions. PLANT PHYSIOLOGY 2015; 167:472-80. [PMID: 25540330 PMCID: PMC4326736 DOI: 10.1104/pp.114.249987] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/23/2014] [Indexed: 05/22/2023]
Abstract
This study aims to elucidate the molecular mechanism of an alternative electron flow (AEF) functioning under suppressed (CO2-limited) photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Photosynthetic linear electron flow, evaluated as the quantum yield of photosystem II [Y(II)], reaches a maximum shortly after the onset of actinic illumination. Thereafter, Y(II) transiently decreases concomitantly with a decrease in the photosynthetic oxygen evolution rate and then recovers to a rate that is close to the initial maximum. These results show that CO2 limitation suppresses photosynthesis and induces AEF. In contrast to the wild type, Synechocystis sp. PCC 6803 mutants deficient in the genes encoding FLAVODIIRON2 (FLV2) and FLV4 proteins show no recovery of Y(II) after prolonged illumination. However, Synechocystis sp. PCC 6803 mutants deficient in genes encoding proteins functioning in photorespiration show AEF activity similar to the wild type. In contrast to Synechocystis sp. PCC 6803, the cyanobacterium Synechococcus elongatus PCC 7942 has no FLV proteins with high homology to FLV2 and FLV4 in Synechocystis sp. PCC 6803. This lack of FLV2/4 may explain why AEF is not induced under CO2-limited photosynthesis in S. elongatus PCC 7942. As the glutathione S-transferase fusion protein overexpressed in Escherichia coli exhibits NADH-dependent oxygen reduction to water, we suggest that FLV2 and FLV4 mediate oxygen-dependent AEF in Synechocystis sp. PCC 6803 when electron acceptors such as CO2 are not available.
Collapse
Affiliation(s)
- Ginga Shimakawa
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Keiichiro Shaku
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Akiko Nishi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Ryosuke Hayashi
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Hiroshi Yamamoto
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Katsuhiko Sakamoto
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Amane Makino
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| | - Chikahiro Miyake
- Department of Biological and Environmental Science, Faculty of Agriculture, Graduate School of Agricultural Science, Kobe University, Nada, Kobe 657-8501, Japan (G.S., K.Sh., A.N., R.H., K.Sa., C.M.);Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan (H.Y.);Department of Agriculture, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan (A.M.); andCore Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0076, Japan (A.M., C.M.)
| |
Collapse
|
56
|
Dani KGS, Jamie IM, Prentice IC, Atwell BJ. Evolution of isoprene emission capacity in plants. TRENDS IN PLANT SCIENCE 2014; 19:439-46. [PMID: 24582468 DOI: 10.1016/j.tplants.2014.01.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 01/06/2014] [Accepted: 01/15/2014] [Indexed: 05/21/2023]
Abstract
Light-dependent de novo volatile isoprene emission by terrestrial plants (approximately 2% of carbon fixed during photosynthesis) contributes as much as 0.5 PgC/year to the global carbon cycle. Although most plant taxa exhibit either constitutive or inducible monoterpene emissions, the evolution of isoprene emission capacity in multiple lineages has remained unexplained. Based on the predominant occurrence of isoprene emission capacity in long-lived, fast-growing woody plants; the relationship between 'metabolic scope' of tree genera and their species richness; and the proposed role of high growth rates and long generation times in accelerating molecular evolution, we hypothesise that long-lived plant genera with inherently high speciation rates have repeatedly acquired and lost the capacity to emit isoprene in their evolutionary history.
Collapse
Affiliation(s)
- K G Srikanta Dani
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Ian M Jamie
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - I Colin Prentice
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; Grantham Institute for Climate Change, and Division of Biology, Imperial College London, Silwood Park, Ascot SL5 7PY, UK
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| |
Collapse
|
57
|
Yi XP, Zhang YL, Yao HS, Zhang XJ, Luo HH, Gou L, Zhang WF. Alternative electron sinks are crucial for conferring photoprotection in field-grown cotton under water deficit during flowering and boll setting stages. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:737-747. [PMID: 32481028 DOI: 10.1071/fp13269] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 01/22/2014] [Indexed: 06/11/2023]
Abstract
To clarify the photoprotective mechanisms of cotton leaves under water deficit in the field, leaf gas exchange, chlorophyll a fluorescence as well as the corresponding physiological responses were examined in cotton (Gossypium hirsutum L.) to evaluate electron flux distribution. With increasing water deficit, net photosynthetic rate (Pn) significantly decreased, the total electron flux through PSII [Je(PSII)] gradually decreased and the fraction of electron flux required to sustain CO2 assimilation [Je(PCR)] markedly declined. Simultaneously, the ratio of quantum efficiency of PSII [Φ(PSII)] to the quantum efficiency of CO2 fixation [Φ(CO2)] increased, accompanied by an increase in the alternative electron flux (Ja). The enhanced alternative electron flux of O2-dependent Ja(O2-dependent) indicated that electrons had been transported to O2 in the Mehler-peroxide reaction (MPR) and that the remaining alternative electron flux Ja(O2-independent) had been used for nitrate reduction, as indicated by an increase in nitrate reductase (NR) and glutathinone reductase (GR) activities. In addition, mild water deficit increased the proportion of electron flux for the photorespiratory carbon oxidation [Je(PCO)]. Water deficit significantly increased surperoxide radical production rate (O2-•) and hydrogen peroxide content (H2O2), and the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD) and catalase (CAT) in cotton leaves also increased under water deficit. Therefore, the Mehler-peroxidation reaction, photorespiration and nitrate reduction helped to dissipated excess light energy, being important photoprotective mechanisms for adapting the photosynthetic apparatus to mild and moderate water deficit in cotton.
Collapse
Affiliation(s)
- Xiao-Ping Yi
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - Ya-Li Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - He-Sheng Yao
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - Xiang-Juan Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - Hong-Hai Luo
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - Ling Gou
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| | - Wang-Feng Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, PR China
| |
Collapse
|