51
|
Huber KT, Moulton V, Steel M, Wu T. Folding and unfolding phylogenetic trees and networks. J Math Biol 2016; 73:1761-1780. [PMID: 27107869 PMCID: PMC5061860 DOI: 10.1007/s00285-016-0993-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/16/2015] [Indexed: 12/29/2022]
Abstract
Phylogenetic networks are rooted, labelled directed acyclic graphswhich are commonly used to represent reticulate evolution. There is a close relationship between phylogenetic networks and multi-labelled trees (MUL-trees). Indeed, any phylogenetic network N can be “unfolded” to obtain a MUL-tree U(N) and, conversely, a MUL-tree T can in certain circumstances be “folded” to obtain aphylogenetic network F(T) that exhibits T. In this paper, we study properties of the operations U and F in more detail. In particular, we introduce the class of stable networks, phylogenetic networks N for which F(U(N)) is isomorphic to N, characterise such networks, and show that they are related to the well-known class of tree-sibling networks. We also explore how the concept of displaying a tree in a network N can be related to displaying the tree in the MUL-tree U(N). To do this, we develop aphylogenetic analogue of graph fibrations. This allows us to view U(N) as the analogue of the universal cover of a digraph, and to establish a close connection between displaying trees in U(N) and reconciling phylogenetic trees with networks.
Collapse
Affiliation(s)
- Katharina T Huber
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Mike Steel
- School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand
| | - Taoyang Wu
- School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
52
|
Kellogg EA. Has the connection between polyploidy and diversification actually been tested? CURRENT OPINION IN PLANT BIOLOGY 2016; 30:25-32. [PMID: 26855304 DOI: 10.1016/j.pbi.2016.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/09/2016] [Accepted: 01/17/2016] [Indexed: 05/07/2023]
Abstract
Many major clades of angiosperms have several whole genome duplications (polyploidization events) in their distant past, suggesting that polyploidy drives or at least permits diversification. However, data on recently diverged groups are more equivocal, finding little evidence of elevated diversification following polyploidy. The discrepancy may be attributable at least in part to methodology. Many studies use indirect methods, such as chromosome numbers, genome size, and Ks plots, to test polyploidy, although these approaches can be misleading, and often lack sufficient resolution. A direct test of diversification following polyploidy requires a sequence-based approach that traces the history of nuclear genomes rather than species. These methods identify the point of coalescence of ancestral genomes, but may be misleading about the time and thus the extent of diversification. Limitations of existing methods mean that the connection between polyploidy and diversification has not been rigorously tested and remains unknown.
Collapse
Affiliation(s)
- Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Rd., St. Louis, MO 63132, USA.
| |
Collapse
|
53
|
Morrison DA. Genealogies: Pedigrees and Phylogenies are Reticulating Networks Not Just Divergent Trees. Evol Biol 2016. [DOI: 10.1007/s11692-016-9376-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
54
|
Brassac J, Blattner FR. Species-Level Phylogeny and Polyploid Relationships in Hordeum (Poaceae) Inferred by Next-Generation Sequencing and In Silico Cloning of Multiple Nuclear Loci. Syst Biol 2015; 64:792-808. [PMID: 26048340 PMCID: PMC4538882 DOI: 10.1093/sysbio/syv035] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 06/02/2015] [Indexed: 11/20/2022] Open
Abstract
Polyploidization is an important speciation mechanism in the barley genus Hordeum. To analyze evolutionary changes after allopolyploidization, knowledge of parental relationships is essential. One chloroplast and 12 nuclear single-copy loci were amplified by polymerase chain reaction (PCR) in all Hordeum plus six out-group species. Amplicons from each of 96 individuals were pooled, sheared, labeled with individual-specific barcodes and sequenced in a single run on a 454 platform. Reference sequences were obtained by cloning and Sanger sequencing of all loci for nine supplementary individuals. The 454 reads were assembled into contigs representing the 13 loci and, for polyploids, also homoeologues. Phylogenetic analyses were conducted for all loci separately and for a concatenated data matrix of all loci. For diploid taxa, a Bayesian concordance analysis and a coalescent-based dated species tree was inferred from all gene trees. Chloroplast matK was used to determine the maternal parent in allopolyploid taxa. The relative performance of different multilocus analyses in the presence of incomplete lineage sorting and hybridization was also assessed. The resulting multilocus phylogeny reveals for the first time species phylogeny and progenitor-derivative relationships of all di- and polyploid Hordeum taxa within a single analysis. Our study proves that it is possible to obtain a multilocus species-level phylogeny for di- and polyploid taxa by combining PCR with next-generation sequencing, without cloning and without creating a heavy load of sequence data.
Collapse
Affiliation(s)
- Jonathan Brassac
- Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany;
| | - Frank R Blattner
- Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
55
|
Olarte RA, Worthington CJ, Horn BW, Moore GG, Singh R, Monacell JT, Dorner JW, Stone EA, Xie DY, Carbone I. Enhanced diversity and aflatoxigenicity in interspecific hybrids ofAspergillus flavusandAspergillus parasiticus. Mol Ecol 2015; 24:1889-909. [DOI: 10.1111/mec.13153] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/07/2015] [Accepted: 03/11/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Rodrigo A. Olarte
- Center for Integrated Fungal Research; Department of Plant Pathology; North Carolina State University; Raleigh NC 27695 USA
| | - Carolyn J. Worthington
- Center for Integrated Fungal Research; Department of Plant Pathology; North Carolina State University; Raleigh NC 27695 USA
| | - Bruce W. Horn
- National Peanut Research Laboratory; Agricultural Research Service; U.S. Department of Agriculture; Dawson GA 39842 USA
| | - Geromy G. Moore
- Southern Regional Research Center; Agricultural Research Service; U.S. Department of Agriculture; New Orleans LA 70179 USA
| | - Rakhi Singh
- Center for Integrated Fungal Research; Department of Plant Pathology; North Carolina State University; Raleigh NC 27695 USA
| | - James T. Monacell
- Center for Integrated Fungal Research; Department of Plant Pathology; North Carolina State University; Raleigh NC 27695 USA
- Bioinformatics Research Center; North Carolina State University; Raleigh NC 27695 USA
| | - Joe W. Dorner
- National Peanut Research Laboratory; Agricultural Research Service; U.S. Department of Agriculture; Dawson GA 39842 USA
| | - Eric A. Stone
- Bioinformatics Research Center; North Carolina State University; Raleigh NC 27695 USA
- Department of Biological Sciences; North Carolina State University; Raleigh NC 27695 USA
| | - De-Yu Xie
- Department of Plant and Microbial Biology; North Carolina State University; Raleigh NC 27695 USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research; Department of Plant Pathology; North Carolina State University; Raleigh NC 27695 USA
- Bioinformatics Research Center; North Carolina State University; Raleigh NC 27695 USA
| |
Collapse
|
56
|
Bertrand YJK, Scheen AC, Marcussen T, Pfeil BE, de Sousa F, Oxelman B. Assignment of Homoeologs to Parental Genomes in Allopolyploids for Species Tree Inference, with an Example from Fumaria (Papaveraceae). Syst Biol 2015; 64:448-71. [DOI: 10.1093/sysbio/syv004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 01/14/2015] [Indexed: 01/13/2023] Open
Affiliation(s)
- Yann J. K. Bertrand
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden; and 2Museum of Archaeology, University of Stavanger, NO-4036 Stavanger, Norway
| | - Anne-Cathrine Scheen
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden; and 2Museum of Archaeology, University of Stavanger, NO-4036 Stavanger, Norway
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden; and 2Museum of Archaeology, University of Stavanger, NO-4036 Stavanger, Norway
| | - Thomas Marcussen
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden; and 2Museum of Archaeology, University of Stavanger, NO-4036 Stavanger, Norway
| | - Bernard E. Pfeil
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden; and 2Museum of Archaeology, University of Stavanger, NO-4036 Stavanger, Norway
| | - Filipe de Sousa
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden; and 2Museum of Archaeology, University of Stavanger, NO-4036 Stavanger, Norway
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE-405 30 Gothenburg, Sweden; and 2Museum of Archaeology, University of Stavanger, NO-4036 Stavanger, Norway
| |
Collapse
|