51
|
Peng T, Kang JL, Xiong XT, Cheng FT, Zhou XJ, Dai WS, Wang M, Li ZY, Su HN, Zhong BL. Integrated Transcriptomics and Metabolomics Analyses Provide Insights Into the Response of Chongyi Wild Mandarin to Candidatus Liberibacter Asiaticus Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:748209. [PMID: 34721476 PMCID: PMC8551615 DOI: 10.3389/fpls.2021.748209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
Candidatus Liberibacter asiaticus (CLas) is the causative agent of Huanglongbing (HLB), which has caused great economic losses to the citrus industry. The molecular mechanism of the host response to CLas in wild citrus germplasm has been reported less. Eighteen weeks after inoculation via grafting, all the CLas-inoculated Chongyi wild mandarin (Citrus reticulata) were positive and showed severe anatomical aberrations, suggesting its susceptibility to HLB. Transcriptomics and metabolomics analyses of leaves, barks, and roots from mock-inoculated (control) and CLas-inoculated seedlings were performed. Comparative transcriptomics identified 3,628, 3,770, and 1,716 differentially expressed genes (DEGs) between CLas-infected and healthy tissues in the leaves, barks, and roots, respectively. The CLas-infected tissues had higher transcripts per kilobase per million values and more genes that reached their maximal expression, suggesting that HLB might cause an overall increase in transcript accumulation. However, HLB-triggered transcriptional alteration showed tissue specificity. In the CLas-infected leaves, many DEGs encoding immune receptors were downregulated. In the CLas-infected barks, nearly all the DEGs involved in signaling and plant-pathogen interaction were upregulated. In the CLas-infected roots, DEGs encoding enzymes or transporters involved in carotenoid biosynthesis and nitrogen metabolism were downregulated. Metabolomics identified 71, 62, and 50 differentially accumulated metabolites (DAMs) in the CLas-infected leaves, barks and roots, respectively. By associating DEGs with DAMs, nitrogen metabolism was the only pathway shared by the three infected tissues and was depressed in the CLas-infected roots. In addition, 26 genes were determined as putative markers of CLas infection, and a hypothesized model for the HLB susceptibility mechanism in Chongyi was proposed. Our study may shed light on investigating the molecular mechanism of the host response to CLas infection in wild citrus germplasm.
Collapse
Affiliation(s)
- Ting Peng
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- *Correspondence: Ting Peng orcid.org/0000-0002-3084-6328
| | - Jing-Liang Kang
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, Ganzhou, China
| | - Xin-Ting Xiong
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Fang-Ting Cheng
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xiao-Juan Zhou
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Wen-Shan Dai
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, Ganzhou, China
| | - Min Wang
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- China-USA Citrus Huanglongbing Joint Laboratory, Ganzhou, China
| | - Zhong-Yang Li
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Hua-Nan Su
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ba-Lian Zhong
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Ba-Lian Zhong
| |
Collapse
|
52
|
Franco JY, Thapa SP, Pang Z, Gurung FB, Liebrand TWH, Stevens DM, Ancona V, Wang N, Coaker G. Citrus Vascular Proteomics Highlights the Role of Peroxidases and Serine Proteases during Huanglongbing Disease Progression. Mol Cell Proteomics 2020; 19:1936-1952. [PMID: 32883801 PMCID: PMC7710146 DOI: 10.1074/mcp.ra120.002075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/04/2020] [Indexed: 01/17/2023] Open
Abstract
Huanglongbing (HLB) is the most devastating and widespread citrus disease. All commercial citrus varieties are susceptible to the HLB-associated bacterium, Candidatus Liberibacter asiaticus (CLas), which resides in the phloem. The phloem is part of the plant vascular system and is involved in sugar transport. To investigate the plant response to CLas, we enriched for proteins surrounding the phloem in an HLB susceptible sweet orange variety, Washington navel (Citrus sinensis (L) Osbeck). Quantitative proteomics revealed global changes in the citrus proteome after CLas inoculation. Plant metabolism and translation were suppressed, whereas defense-related proteins such as peroxidases, proteases and protease inhibitors were induced in the vasculature. Transcript accumulation and enzymatic activity of plant peroxidases in CLas infected sweet orange varieties under greenhouse and field conditions were assessed. Although peroxidase transcript accumulation was induced in CLas infected sweet orange varieties, peroxidase enzymatic activity varied. Specific serine proteases were up-regulated in Washington navel in the presence of CLas based on quantitative proteomics. Subsequent activity-based protein profiling revealed increased activity of two serine proteases, and reduced activity of one protease in two C. sinensis sweet orange varieties under greenhouse and field conditions. The observations in the current study highlight global reprogramming of the citrus vascular proteome and differential regulation of enzyme classes in response to CLas infection. These results open an avenue for further investigation of diverse responses to HLB across different environmental conditions and citrus genotypes.
Collapse
Affiliation(s)
- Jessica Y Franco
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Shree P Thapa
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Zhiqian Pang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Fatta B Gurung
- Citrus Center, Texas A&M University- Kingsville, Weslaco, Texas, USA
| | - Thomas W H Liebrand
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Danielle M Stevens
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Veronica Ancona
- Citrus Center, Texas A&M University- Kingsville, Weslaco, Texas, USA
| | - Nian Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California, USA.
| |
Collapse
|
53
|
Nehela Y, Killiny N. Revisiting the Complex Pathosystem of Huanglongbing: Deciphering the Role of Citrus Metabolites in Symptom Development. Metabolites 2020; 10:E409. [PMID: 33066072 PMCID: PMC7600524 DOI: 10.3390/metabo10100409] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
Huanglongbing (HLB), formerly known as citrus greening disease, is one of the most devastating bacterial diseases in citrus worldwide. HLB is caused by 'Candidatus Liberibacter asiaticus' bacterium and transmitted by Diaphorina citri. Both 'Ca. L. asiaticus' and its vector manipulate the host metabolism to fulfill their nutritional needs and/or to neutralize the host defense responses. Herein, we discuss the history of HLB and the complexity of its pathosystem as well as the geographical distribution of its pathogens and vectors. Recently, our recognition of physiological events associated with 'Ca. L. asiaticus' infection and/or D. citri-infestation has greatly improved. However, the roles of citrus metabolites in the development of HLB symptoms are still unclear. We believe that symptom development of HLB disease is a complicated process and relies on a multilayered metabolic network which is mainly regulated by phytohormones. Citrus metabolites play vital roles in the development of HLB symptoms through the modulation of carbohydrate metabolism, phytohormone homeostasis, antioxidant pathways, or via the interaction with other metabolic pathways, particularly involving amino acids, leaf pigments, and polyamines. Understanding how 'Ca. L. asiaticus' and its vector, D. citri, affect the metabolic pathways of their host is critical for developing novel, sustainable strategies for HLB management.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31511, Egypt
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
| |
Collapse
|
54
|
Zuñiga C, Peacock B, Liang B, McCollum G, Irigoyen SC, Tec-Campos D, Marotz C, Weng NC, Zepeda A, Vidalakis G, Mandadi KK, Borneman J, Zengler K. Linking metabolic phenotypes to pathogenic traits among "Candidatus Liberibacter asiaticus" and its hosts. NPJ Syst Biol Appl 2020; 6:24. [PMID: 32753656 PMCID: PMC7403731 DOI: 10.1038/s41540-020-00142-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Candidatus Liberibacter asiaticus (CLas) has been associated with Huanglongbing, a lethal vector-borne disease affecting citrus crops worldwide. While comparative genomics has provided preliminary insights into the metabolic capabilities of this uncultured microorganism, a comprehensive functional characterization is currently lacking. Here, we reconstructed and manually curated genome-scale metabolic models for the six CLas strains A4, FL17, gxpsy, Ishi-1, psy62, and YCPsy, in addition to a model of the closest related culturable microorganism, L. crescens BT-1. Predictions about nutrient requirements and changes in growth phenotypes of CLas were confirmed using in vitro hairy root-based assays, while the L. crescens BT-1 model was validated using cultivation assays. Host-dependent metabolic phenotypes were revealed using expression data obtained from CLas-infected citrus trees and from the CLas-harboring psyllid Diaphorina citri Kuwayama. These results identified conserved and unique metabolic traits, as well as strain-specific interactions between CLas and its hosts, laying the foundation for the development of model-driven Huanglongbing management strategies.
Collapse
Affiliation(s)
- Cristal Zuñiga
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Beth Peacock
- Department of Microbiology and Plant Pathology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Bo Liang
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
- State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Greg McCollum
- USDA, ARS, US Horticultural Research Laboratory, 2001 S. Rock Road, Fort Pierce, FL, 34945, USA
| | - Sonia C Irigoyen
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, Weslaco, TX, USA
| | - Diego Tec-Campos
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Campus de Ciencias Exactas e Ingenierías, Mérida, 97203, Yucatán, México
| | - Clarisse Marotz
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Nien-Chen Weng
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA
| | - Alejandro Zepeda
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Campus de Ciencias Exactas e Ingenierías, Mérida, 97203, Yucatán, México
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA
| | - Kranthi K Mandadi
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, Weslaco, TX, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - James Borneman
- Department of Microbiology and Plant Pathology, University of California, Riverside, 900 University Avenue, Riverside, CA, 92521, USA.
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0760, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093-0412, USA.
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0403, USA.
| |
Collapse
|
55
|
Direct identification and metabolomic analysis of Huanglongbing associated with Candidatus Liberibacter spp. in navel orange by MALDI-TOF-MS. Anal Bioanal Chem 2020; 412:3091-3101. [DOI: 10.1007/s00216-020-02555-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 01/09/2023]
|
56
|
Arce-Leal ÁP, Bautista R, Rodríguez-Negrete EA, Manzanilla-Ramírez MÁ, Velázquez-Monreal JJ, Santos-Cervantes ME, Méndez-Lozano J, Beuzón CR, Bejarano ER, Castillo AG, Claros MG, Leyva-López NE. Gene Expression Profile of Mexican Lime ( Citrus aurantifolia) Trees in Response to Huanglongbing Disease caused by Candidatus Liberibacter asiaticus. Microorganisms 2020; 8:microorganisms8040528. [PMID: 32272632 PMCID: PMC7232340 DOI: 10.3390/microorganisms8040528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022] Open
Abstract
Nowadays, Huanglongbing (HLB) disease, associated with Candidatus Liberibacter asiaticus (CLas), seriously affects citriculture worldwide, and no cure is currently available. Transcriptomic analysis of host-pathogen interaction is the first step to understand the molecular landscape of a disease. Previous works have reported the transcriptome profiling in response to HLB in different susceptible citrus species; however, similar studies in tolerant citrus species, including Mexican lime, are limited. In this work, we have obtained an RNA-seq-based differential expression profile of Mexican lime plants challenged against CLas infection, at both asymptomatic and symptomatic stages. Typical HLB-responsive differentially expressed genes (DEGs) are involved in photosynthesis, secondary metabolism, and phytohormone homeostasis. Enrichment of DEGs associated with biotic response showed that genes related to cell wall, secondary metabolism, transcription factors, signaling, and redox reactions could play a role in the tolerance of Mexican lime against CLas infection. Interestingly, despite some concordance observed between transcriptional responses of different tolerant citrus species, a subset of DEGs appeared to be species-specific. Our data highlights the importance of studying the host response during HLB disease using as model tolerant citrus species, in order to design new and opportune diagnostic and management methods.
Collapse
Affiliation(s)
- Ángela Paulina Arce-Leal
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, 81101 Guasave, Mexico; (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.)
| | - Rocío Bautista
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, 29590 Malaga, Spain; (R.B.); (M.G.C.)
| | - Edgar Antonio Rodríguez-Negrete
- CONACyT, Departamento de Biotecnología Agrícola, Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, 81101 Guasave, Mexico;
| | | | | | - María Elena Santos-Cervantes
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, 81101 Guasave, Mexico; (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.)
| | - Jesús Méndez-Lozano
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, 81101 Guasave, Mexico; (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.)
| | - Carmen R. Beuzón
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Universidad de Málaga, 29010 Málaga, Spain
| | - Eduardo R. Bejarano
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Universidad de Málaga, 29010 Málaga, Spain
| | - Araceli G. Castillo
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC), Universidad de Málaga, 29010 Málaga, Spain
| | - M. Gonzalo Claros
- Plataforma Andaluza de Bioinformática, Universidad de Málaga, 29590 Malaga, Spain; (R.B.); (M.G.C.)
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29010 Malaga, Spain
| | - Norma Elena Leyva-López
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, 81101 Guasave, Mexico; (Á.P.A.-L.); (M.E.S.-C.); (J.M.-L.)
- Correspondence: ; Tel.: +52-687-110-0278
| |
Collapse
|
57
|
Pitino M, Sturgeon K, Dorado C, Cano LM, Manthey JA, Shatters RG, Rossi L. Quercus leaf extracts display curative effects against Candidatus Liberibacter asiaticus that restore leaf physiological parameters in HLB-affected citrus trees. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:70-79. [PMID: 31945669 DOI: 10.1016/j.plaphy.2020.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 05/04/2023]
Abstract
Citrus greening, also called Huanglongbing (HLB), is one of the most destructive citrus diseases worldwide. It is caused by the fastidious gram-negative α-proteobacteria bacterium Candidatus Liberibacter asiaticus (CLas) and vectored by the Asian citrus psyllid (ACP), Diaphorina citri. Currently, there is no cure for HLB, no compounds have been successful in controlling HLB, and no sustainable management practices have been established for the disease. Thus, searching for alternative citrus greening disease mitigation strategies is considered an urgent priority for a sustainable citrus industry. The aim of this study was to use compounds extracted from oak, Quercus hemisphaerica, and to assess the antibacterial effects of these against CLas-infected citrus plants. The application of aqueous oak leaf extracts showed substantial inhibitory effects against CLas in citrus plants and the activity of genes related to starch. Significant differences were also observed in plant phenotypic and physiological traits after treatments. Citrus plants treated with oak extracts displayed an increase in stomatal conductance, chlorophyll content and nutrient uptake concurrently with a reduction of CLas titer, when compared to citrus plants treated with just water. The information provided from this study suggests a new management treatment program to effectively deal with the HLB disease.
Collapse
Affiliation(s)
- Marco Pitino
- Department of Plant Pathology, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Ft. Pierce, FL, 34945, USA
| | - Kasie Sturgeon
- Department of Plant Pathology, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Ft. Pierce, FL, 34945, USA
| | - Christina Dorado
- Horticultural Research Laboratory, U.S. Department of Agriculture, Agricultural Research Services, Ft. Pierce, FL, 34945, USA
| | - Liliana M Cano
- Department of Plant Pathology, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Ft. Pierce, FL, 34945, USA
| | - John A Manthey
- Horticultural Research Laboratory, U.S. Department of Agriculture, Agricultural Research Services, Ft. Pierce, FL, 34945, USA
| | - Robert G Shatters
- Horticultural Research Laboratory, U.S. Department of Agriculture, Agricultural Research Services, Ft. Pierce, FL, 34945, USA
| | - Lorenzo Rossi
- Department of Horticultural Sciences, University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Ft. Pierce, FL, 34945, USA.
| |
Collapse
|
58
|
Yao L, Yu Q, Huang M, Song Z, Grosser J, Chen S, Wang Y, Gmitter FG. Comparative iTRAQ proteomic profiling of sweet orange fruit on sensitive and tolerant rootstocks infected by 'Candidatus Liberibacter asiaticus'. PLoS One 2020; 15:e0228876. [PMID: 32059041 PMCID: PMC7021301 DOI: 10.1371/journal.pone.0228876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/23/2020] [Indexed: 01/12/2023] Open
Abstract
Citrus Huanglongbing (HLB), which is also known as citrus greening, is a destructive disease continuing to devastate citrus production worldwide. Although all citrus varieties can be infected with 'Candidatus Liberibacter asiaticus' (CaLas), a certain level of HLB tolerance of scion varieties can be conferred by some rootstocks. To understand the effects of rootstock varieties on orange fruit under CaLas stress, comparative iTRAQ proteomic profilings were conducted, using fruit from 'Valencia' sweet orange grafted on the sensitive ('Swingle') and tolerant rootstocks (a new selection called '46x20-04-48') infected by CaLas as experimental groups, and the same plant materials without CaLas infection as controls. The symptomatic fruit on 'Swingle' had 573 differentially-expressed (DE) proteins in comparison with their healthy fruit on the same rootstock, whereas the symptomatic fruit on '46x20-04-48' had 263 DE proteins. Many defense-associated proteins were down-regulated in the symptomatic fruit on 'Swingle' rootstock that were seldom detected in the symptomatic fruit on the '46x20-04-48' rootstock, especially the proteins involved in the jasmonate biosynthesis (AOC4), jasmonate signaling (ASK2, RUB1, SKP1, HSP70T-2, and HSP90.1), protein hydrolysis (RPN8A and RPT2a), and vesicle trafficking (SNAREs and Clathrin) pathways. Therefore, we predict that the down-regulated proteins involved in the jasmonate signaling pathway and vesicle trafficking are likely to be related to citrus sensitivity to the CaLas pathogen.
Collapse
Affiliation(s)
- Lixiao Yao
- Citrus Research Institute, Southwest University, Chongqing, China
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Ming Huang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Zhen Song
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Jude Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Shanchun Chen
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Yu Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Frederick G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
59
|
Andrade MO, Pang Z, Achor DS, Wang H, Yao T, Singer BH, Wang N. The flagella of 'Candidatus Liberibacter asiaticus' and its movement in planta. MOLECULAR PLANT PATHOLOGY 2020; 21:109-123. [PMID: 31721403 PMCID: PMC6913195 DOI: 10.1111/mpp.12884] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Citrus huanglongbing (HLB) is the most devastating citrus disease worldwide. 'Candidatus Liberibacter asiaticus' (Las) is the most prevalent HLB causal agent that is yet to be cultured. Here, we analysed the flagellar genes of Las and Rhizobiaceae and observed two characteristics unique to the flagellar proteins of Las: (i) a shorter primary structure of the rod capping protein FlgJ than other Rhizobiaceae bacteria and (ii) Las contains only one flagellin-encoding gene flaA (CLIBASIA_02090), whereas other Rhizobiaceae species carry at least three flagellin-encoding genes. Only flgJAtu but not flgJLas restored the swimming motility of Agrobacterium tumefaciens flgJ mutant. Pull-down assays demonstrated that FlgJLas interacts with FlgB but not with FliE. Ectopic expression of flaALas in A. tumefaciens mutants restored the swimming motility of ∆flaA mutant and ∆flaAD mutant, but not that of the null mutant ∆flaABCD. No flagellum was observed for Las in citrus and dodder. The expression of flagellar genes was higher in psyllids than in planta. In addition, western blotting using flagellin-specific antibody indicates that Las expresses flagellin protein in psyllids, but not in planta. The flagellar features of Las in planta suggest that Las movement in the phloem is not mediated by flagella. We also characterized the movement of Las after psyllid transmission into young flush. Our data support a model that Las remains inside young flush after psyllid transmission and before the flush matures. The delayed movement of Las out of young flush after psyllid transmission provides opportunities for targeted treatment of young flush for HLB control.
Collapse
Affiliation(s)
- Maxuel O. Andrade
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Zhiqian Pang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Diann S. Achor
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Han Wang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| | - Tingshan Yao
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest UniversityChongqing400712People’s Republic of China
| | - Burton H. Singer
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFLUSA
| | - Nian Wang
- Citrus Research and Education CenterDepartment of Microbiology and Cell ScienceUniversity of Florida/Institute of Food and Agricultural SciencesLake AlfredFLUSA
| |
Collapse
|
60
|
Padhi EMT, Maharaj N, Lin SY, Mishchuk DO, Chin E, Godfrey K, Foster E, Polek M, Leveau JHJ, Slupsky CM. Metabolome and Microbiome Signatures in the Roots of Citrus Affected by Huanglongbing. PHYTOPATHOLOGY 2019; 109:2022-2032. [PMID: 31433274 DOI: 10.1094/phyto-03-19-0103-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Huanglongbing (HLB) is a severe, incurable citrus disease caused by the bacterium 'Candidatus Liberibacter asiaticus' (CLas). Although citrus leaves serve as the site of initial infection, CLas is known to migrate to and colonize the root system; however, little is known about the impact of CLas infection on root metabolism and resident microbial communities. Scions of 'Lisbon' lemon and 'Washington Navel' orange grafted onto 'Carrizo' rootstock were grafted with either CLas-infected citrus budwood or uninfected budwood. Roots were obtained from trees 46 weeks after grafting and analyzed via 1H nuclear magnetic resonance spectroscopy to identify water-soluble root metabolites and high-throughput sequencing of 16S rRNA and ITS gene amplicons to determine the relative abundance of bacterial and fungal taxa in the root rhizosphere and endosphere. In both citrus varieties, 27 metabolites were identified, of which several were significantly different between CLas(+) and control plants. CLas infection also appeared to alter the microbial community structure near and inside the roots of citrus plants. Nonmetric multidimensional scaling (NMDS) and a principal coordinate analysis (PCoA) revealed distinct metabolite and microbial profiles, demonstrating that CLas impacts the root metabolome and microbiome in a manner that is variety-specific.
Collapse
Affiliation(s)
- Emily M T Padhi
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616
| | - Nilesh Maharaj
- Department of Plant Pathology, University of California at Davis, Davis, CA 95616
| | - Shin-Yi Lin
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616
| | - Darya O Mishchuk
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616
| | - Elizabeth Chin
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616
| | - Kris Godfrey
- Contained Research Facility, University of California at Davis, Davis, CA 95616
| | - Elizabeth Foster
- Contained Research Facility, University of California at Davis, Davis, CA 95616
| | - Marylou Polek
- U.S. Department of Agriculture-Agricultural Research Service National Germplasm Repository, Riverside, CA 92507
| | - Johan H J Leveau
- Department of Plant Pathology, University of California at Davis, Davis, CA 95616
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California at Davis, Davis, CA 95616
- Department of Nutrition, University of California at Davis, Davis, CA 95616
| |
Collapse
|
61
|
Jiang Y, Zhang CX, Chen R, He SY. Challenging battles of plants with phloem-feeding insects and prokaryotic pathogens. Proc Natl Acad Sci U S A 2019; 116:23390-23397. [PMID: 31712429 PMCID: PMC6876188 DOI: 10.1073/pnas.1915396116] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For the past 4 decades, intensive molecular studies of mostly leaf mesophyll cell-infecting pathogens and chewing insects have led to compelling models of plant-pathogen and plant-insect interactions. Yet, some of the most devastating pathogens and insect pests live in or feed on the phloem, a systemic tissue belonging to the plant vascular system. Phloem tissues are difficult to study, and phloem-inhabiting pathogens are often impossible to culture, thus limiting our understanding of phloem-insect/pathogen interactions at a molecular level. In this Perspective, we highlight recent literature that reports significant advances in the understanding of phloem interactions with insects and prokaryotic pathogens and attempt to identify critical questions that need attention for future research. It is clear that study of phloem-insect/pathogen interactions represents an exciting frontier of plant science, and influx of new scientific expertise and funding is crucial to achieve faster progress in this important area of research that is integral to global food security.
Collapse
Affiliation(s)
- Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China;
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Kunming 650223, China
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
| | - Chuan-Xi Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430070, China
| | - Sheng Yang He
- Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824;
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI 48824
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
62
|
Ying X, Wan M, Hu L, Zhang J, Li H, Lv D. Identification of the Virulence Factors of Candidatus Liberibacter asiaticus via Heterologous Expression in Nicotiana benthamiana using Tobacco Mosaic Virus. Int J Mol Sci 2019; 20:E5575. [PMID: 31717281 PMCID: PMC6888081 DOI: 10.3390/ijms20225575] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Huanglongbing (HLB), also known as citrus greening, is the most destructive disease of citrus worldwide. HLB is associated with the non-culturable bacterium, Candidatus Liberibacter asiaticus (CaLas) in the United States. The virulence mechanism of CaLas is largely unknown, partly because of the lack of a mutant library. In this study, Tobacco mosaic virus (TMV) and Nicotiana benthamiana (N. benthamiana) were used for large-scale screening of the virulence factors of CaLas. Agroinfiltration of 60 putative virulence factors in N. benthamiana led to the identification of four candidates that caused severe symptoms in N. benthamiana, such as growth inhibition and cell death. CLIBASIA_05150 and CLIBASIA_04065C (C-terminal of CLIBASIA_04065) could cause cell death in the infiltrated leaves at five days post infiltration. Two low-molecular-weight candidates, CLIBASIA_00470 and CLIBASIA_04025, could inhibit plant growth. By converting start codon to stop codon or frameshifting, the four genes lost their harmful effects to N. benthamiana. It indicated that the four virulence factors functioned at the protein level rather than at the RNA level. The subcellular localization of the four candidates was determined by confocal laser scanning microscope. CLIBASIA_05150 located in the Golgi apparatus; CLIBASIA_04065 located in the mitochondrion; CLIBASIA_00470 and CLIBASIA_04025 distributed in cells as free GFP. The host proteins interacting with the four virulence factors were identified by yeast two-hybrid. The host proteins interacting with CLIBASIA_00470 and CLIBASIA_04025 were overlapping. Based on the phenotypes, the subcellular localization and the host proteins identified by yeast two-hybrid, CLIBASIA_00470 and CLIBASIA_04025, functioned redundantly. The hypothesis of CaLas virulence was proposed. CaLas affects citrus development and suppresses citrus disease resistance, comprehensively, in a complicated manner. Ubiquitin-mediated protein degradation might play a vital role in CaLas virulence. Deep characterization of the interactions between the identified virulence factors and their prey will shed light on HLB. Eventually, it will help in developing HLB-resistant citrus and save the endangered citrus industry worldwide.
Collapse
Affiliation(s)
- Xiaobao Ying
- Gulf Coast Research and Education Center, University of Florida, Wimauma, FL 33598, USA;
| | - Mengyuan Wan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Linshuang Hu
- Heilongjiang Academy of Agricultural Sciences, Harbin 10086, China; (L.H.); (J.Z.)
| | - Jinghua Zhang
- Heilongjiang Academy of Agricultural Sciences, Harbin 10086, China; (L.H.); (J.Z.)
| | - Hui Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
| | - Dianqiu Lv
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China;
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
63
|
Lessons from One Fastidious Bacterium to Another: What Can We Learn about Liberibacter Species from Xylella fastidiosa. INSECTS 2019; 10:insects10090300. [PMID: 31527458 PMCID: PMC6780969 DOI: 10.3390/insects10090300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023]
Abstract
Huanglongbing is causing economic devastation to the citrus industry in Florida, and threatens the industry everywhere the bacterial pathogens in the Candidatus Liberibacter genus and their insect vectors are found. Bacteria in the genus cannot be cultured and no durable strategy is available for growers to control plant infection or pathogen transmission. However, scientists and grape growers were once in a comparable situation after the emergence of Pierce’s disease, which is caused by Xylella fastidiosa and spread by its hemipteran insect vector. Proactive quarantine and vector control measures coupled with interdisciplinary data-driven science established control of this devastating disease and pushed the frontiers of knowledge in the plant pathology and vector biology fields. Our review highlights the successful strategies used to understand and control X. fastidiosa and their potential applicability to the liberibacters associated with citrus greening, with a focus on the interactions between bacterial pathogen and insect vector. By placing the study of Candidatus Liberibacter spp. within the current and historical context of another fastidious emergent plant pathogen, future basic and applied research to develop control strategies can be prioritized.
Collapse
|
64
|
Hussain S, Rao MJ, Anjum MA, Ejaz S, Umar UUD, Ali MA, Khalid MF, Sohail M, Ercisli S, Zia-Ul-Haq M, Ahmad S, Naqvi SAH. Effect of different combinations of antibiotics on fruit quality and antioxidant defense system in Huanglongbing infected Kinnow orchards. AMB Express 2019; 9:147. [PMID: 31522337 PMCID: PMC6745038 DOI: 10.1186/s13568-019-0871-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/05/2019] [Indexed: 01/15/2023] Open
Abstract
Huanglongbing (HLB), also known as citrus greening disease, is the most devastating disease of citrus across the world, caused by the phloem limited fastidious bacterium ‘Candidatus Liberibacter spp.’. This research was conducted on HLB infected 10-year-old Kinnow orchard located at Multan, Pakistan. Different classes of antibiotics in various combinations were applied on HLB-infected trees. The antibiotic treatments were applied before flowering in February, during fruit setting in April and at fruit growth stage in June. The different antibiotics combinations used were Ampicillin sodium + Rifampicin, Cefalexin + Rifampicin, Ampicillin sodium + Cefalexin, Ampicillin sodium + Cefalexin + Rifampicin and Control (distilled water). Different fruit qualitative and quantitative attributes were examined. The application of antibiotics significantly decreased 2–11% in flower, June and pre-harvest drops as compared to control. Further, antibiotics increased fruit weight and yield by five times while the juice content, total soluble solids, ripening index, total sugars, phenolic and vitamin C content were also increased in fruits. In addition, total soluble proteins, peroxidase and catalase activities were increased in fruits harvested from antibiotic treated plants compared to control, however the superoxidase dismutase activity was decreased in fruits of antibiotic treated plants. Finally, it is concluded that application of different antibiotics combinations helps in improving the fruit yield and different quality attributes of HLB infected Kinnow trees.
Collapse
|
65
|
Liu HM, Yang D, Liu ZF, Hu SZ, Yan SH, He XW. Density distribution of gene expression profiles and evaluation of using maximal information coefficient to identify differentially expressed genes. PLoS One 2019; 14:e0219551. [PMID: 31314810 PMCID: PMC6636747 DOI: 10.1371/journal.pone.0219551] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
The hypothesis of data probability density distributions has many effects on the design of a new statistical method. Based on the analysis of a group of real gene expression profiles, this study reveal that the primary density distributions of the real profiles are normal/log-normal and t distributions, accounting for 80% and 19% respectively. According to these distributions, we generated a series of simulation data to make a more comprehensive assessment for a novel statistical method, maximal information coefficient (MIC). The results show that MIC is not only in the top tier in the overall performance of identifying differentially expressed genes, but also exhibits a better adaptability and an excellent noise immunity in comparison with the existing methods.
Collapse
Affiliation(s)
- Han-Ming Liu
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
- * E-mail:
| | - Dan Yang
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| | - Zhao-Fa Liu
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| | - Sheng-Zhou Hu
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| | - Shen-Hai Yan
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| | - Xian-Wen He
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China
| |
Collapse
|
66
|
Dong H, Fan H, Lei Z, Wu C, Zhou D, Li H. Histological and Gene Expression Analyses in Banana Reveals the Pathogenic Differences between Races 1 and 4 of Banana Fusarium Wilt Pathogen. PHYTOPATHOLOGY 2019; 109:1029-1042. [PMID: 30829554 DOI: 10.1094/phyto-10-18-0384-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fusarium oxysporum f. sp. cubense, the causative agent of Panama disease, is classified into three races: Foc1, Foc2, and Foc4. However, the histological characteristics, the accumulation of fusaric acid (FA), and resistant gene expression in banana infected with different races remain unclear. In this study, we compared the infection processes, FA contents, and gene expression levels in a Cavendish banana cultivar (Musa AAA Brazilian) inoculated with Foc1 and Foc4. Results showed that Foc4 can rapidly extend from the roots to the leaves, whereas Foc1 expands slowly from the roots to the rhizomes but cannot expand further upward. In addition, the colonization of plants by Foc4 was significantly higher compared with Foc1, as was the content of FA in those infected plant tissues. We observed that a large amount of starch granules was produced in the rhizomes and the number of starch granules was significantly higher after infection with Foc1 than after infection with Foc4. We further found that starch has an important inhibitory effect on the phytotoxicity induced by FA, thus leading to more resistance to the pathogens in the plants with high amounts of starch accumulation than in those with a low amount of starch accumulation. Moreover, the expression levels of 10 defense-related genes were analyzed and the results showed that the induction levels of those genes were higher after infection with Foc1 than after infection with Foc4. These results suggest that the observed differences in the invasion of host tissues and FA accumulation, and the number of starch granules and expression of defense-related genes, may contribute to a difference in virulence between the two races and the resulting difference in host resistance response, respectively.
Collapse
Affiliation(s)
- Honghong Dong
- 1 State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Huiyun Fan
- 1 State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxi Lei
- 1 State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chao Wu
- 1 State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- 2 Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, Guangdong 510405, China
| | - Dengbo Zhou
- 3 Institute of Tropical Bioscience and Biotechnology, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Huaping Li
- 1 State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
67
|
Yang D, Liu H. Maximal information coefficient applied to differentially expressed genes identification: A feasibility study. Technol Health Care 2019; 27:249-262. [PMID: 31045544 PMCID: PMC6597975 DOI: 10.3233/thc-199024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND: The main obstacle encountered in microarray technology is how to mine the valuable information under the profiles and study the genes function. OBJECTIVE: Maximal information coefficient (MIC) is a novel, non-parametric statistic that has been successfully applied to genome-wide association studies and differentially gene and miRNA expression analysis. However, the data used in these applications are not gold standard but real data. METHODS: Therefore, this study attempts to test the feasibility of MIC for differentially expressed gene identification with simulation data. RESULTS: Our experiments indicate that, MIC perfermance is better than Limma always, which is almost the same level of SAM, ROTS or DESeq2. However, the count of AUC < 0.5 of MIC is significantly smaller than the three methods, and MIC does not exhibit an abnormal phenomenon in which the AUC increases as the noise increases. CONCLUSIONS: Compared to the existing methods, our experiments show that MIC is not only in the first tier in identifying differentially expressed genes and noise immunity, but also shows better robustness and stronger data/environment adaptability.
Collapse
Affiliation(s)
| | - Hanming Liu
- Corresponding author: Hanming Liu, School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, Jiangxi 341000, China. E-mail:
| |
Collapse
|
68
|
The Ferredoxin-Like Protein FerR Regulates PrbP Activity in Liberibacter asiaticus. Appl Environ Microbiol 2019; 85:AEM.02605-18. [PMID: 30552192 DOI: 10.1128/aem.02605-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/08/2018] [Indexed: 12/26/2022] Open
Abstract
In Liberibacter asiaticus, PrbP is an important transcriptional accessory protein that regulates gene expression through interactions with the RNA polymerase β-subunit and a specific sequence on the promoter region. The constitutive expression of prbP observed upon chemical inactivation of PrbP-DNA interactions in vivo indicated that the expression of prbP was not autoregulated at the level of transcription. This observation suggested that a modulatory mechanism via protein-protein interactions may be involved. In silico genome association analysis identified FerR (CLIBASIA_01505), a putative ferredoxin-like protein, as a PrbP-interacting protein. Using a bacterial two-hybrid system and immunoprecipitation assays, interactions between PrbP and FerR were confirmed. In vitro transcription assays were used to show that FerR can increase the activity of PrbP by 16-fold when present in the PrbP-RNA polymerase reaction mixture. The FerR protein-protein interaction surface was predicted by structural modeling and followed by site-directed mutagenesis. Amino acids V20, V23, and C40 were identified as the most important residues in FerR involved in the modulation of PrbP activity in vitro The regulatory mechanism of FerR abundance was examined at the transcription level. In contrast to prbP of L. asiaticus (prbP Las), mRNA levels of ferR of L. asiaticus (ferR Las) are induced by an increase in osmotic pressure. The results of this study revealed that the activity of the transcriptional activator PrbPLas is modulated via interactions with FerRLas The induction of ferR Las expression by osmolarity provides insight into the mechanisms of adjusting gene expression in response to host environmental signals in L. asiaticus IMPORTANCE The rapid spread and aggressive progression of huanglongbing (HLB) in the major citrus-producing areas have raised global recognition of and vigilance to this disease. As a result, the causative agent, Liberibacter asiaticus, has been investigated from various perspectives. However, gene expression regulatory mechanisms that are important for the survival and persistence of this intracellular pathogen remain largely unexplored. PrbP is a transcriptional accessory protein important for L. asiaticus survival in the plant host. In this study, we investigated the interactions between PrbP in L. asiaticus (PrbPLas) and a ferredoxin-like protein (FerR) in L. asiaticus, FerRLas We show that the presence of FerR stabilizes and augments the activity of PrbPLas In addition, we demonstrate that the expression of ferR is induced by increases in osmolarity in Liberibacter crescens Altogether, these results suggest that FerRLas and PrbPLas may play important roles in the regulation of gene expression in response to changing environmental signals during L. asiaticus infection in the citrus host.
Collapse
|
69
|
Yao L, Yu Q, Huang M, Hung W, Grosser J, Chen S, Wang Y, Gmitter FG. Proteomic and metabolomic analyses provide insight into the off-flavour of fruits from citrus trees infected with ' Candidatus Liberibacter asiaticus'. HORTICULTURE RESEARCH 2019; 6:31. [PMID: 30792870 PMCID: PMC6375920 DOI: 10.1038/s41438-018-0109-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 05/18/2023]
Abstract
Orange fruit from trees infected by 'Candidatus Liberibacter asiaticus' (CaLas) often do not look fully mature and exhibit off-flavours described as bitter, harsh, and metallic rather than juicy and fruity. Although previous studies have been carried out to understand the effect of CaLas on the flavour of orange juice using metabolomic methods, the mechanisms leading to the off-flavour that occurs in Huanglongbing (HLB)-symptomatic fruit are not well understood. In this study, fruits were collected from symptomatic and healthy Valencia sweet orange (Citrus sinensis) trees grafted on Swingle (C. paradisi X Poncirus trifoliata) rootstock. Isobaric tags for relative and absolute quantification (iTRAQ) and gas chromatography-mass spectrometry (GC-MS) were used to measure the proteins, sugars, organic acids, amino acids, and volatile terpenoids. The results showed that most of the differentially expressed proteins involved in glycolysis, the tricarboxylic acid (TCA) cycle and amino-acid biosynthesis were degraded, and terpenoid metabolism was significantly downregulated in the symptomatic fruit. Valencene, limonene, 3-carene, linalool, myrcene, and α-terpineol levels were significantly lower in fruit from CaLas-infected trees than from healthy trees. Similar phenomena were observed for sucrose and glucose. Our study indicated that off-flavour of symptomatic fruit was associated with a reduction in the levels of terpenoid products and the downregulation of proteins in glycolysis, the TCA cycle, and the terpenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Lixiao Yao
- Citrus Research Institute, Southwest University, Chongqing, China
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Ming Huang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Weilun Hung
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Jude Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Shanchun Chen
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Yu Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Frederick G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| |
Collapse
|
70
|
Deng H, Achor D, Exteberria E, Yu Q, Du D, Stanton D, Liang G, Gmitter Jr. FG. Phloem Regeneration Is a Mechanism for Huanglongbing-Tolerance of "Bearss" Lemon and "LB8-9" Sugar Belle ® Mandarin. FRONTIERS IN PLANT SCIENCE 2019; 10:277. [PMID: 30949186 PMCID: PMC6435995 DOI: 10.3389/fpls.2019.00277] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/20/2019] [Indexed: 05/22/2023]
Abstract
Huanglongbing (HLB) is an extremely destructive and lethal disease of citrus worldwide, presumably caused by phloem-limited bacteria, Candidatus Liberibacter asiaticus (CLas). The widespread invasiveness of the HLB pathogen and lack of natural HLB-resistant citrus cultivars have underscored the need for identifying tolerant citrus genotypes to support the current citrus industry's survival and potentially to lead to future natural HLB resistance. In this study, transverse sections of leaf lamina and midribs were examined with light and epifluorescence microscopy to determine anatomical characteristics that underlie HLB-tolerant mechanisms operating among "Bearss" lemon, "LB8-9" Sugar Belle® mandarin, and its sibling trees compared with HLB-sensitive "Valencia" sweet orange. The common anatomical aberrations observed in all CLas-infected varieties are as follows: phloem necrosis, hypertrophic phloem parenchyma cells, phloem plugging with abundant callose depositions, phloem collapse with cell wall distortion and thickening, excessive starch accumulation, and sometimes even cambium degeneration. Anatomical distribution of starch accumulation even extended to tracheid elements. Although there were physical, morphological, and pathological similarities in the examined foliage, internal structural preservation in "Bearss" lemon and "LB8-9" Sugar Belle® mandarin was superior compared with HLB-sensitive "Valencia" sweet orange and siblings of "LB8-9" Sugar Belle® mandarin. Intriguingly, there was substantial phloem regeneration in the tolerant types that may compensate for the dysfunctional phloem, in comparison with the sensitive selections. The lower levels of phloem disruption, together with greater phloem regeneration, are two key elements that contribute to HLB tolerance in diverse citrus cultivars.
Collapse
Affiliation(s)
- Honghong Deng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Ed Exteberria
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Dongliang Du
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Daniel Stanton
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Fred G. Gmitter Jr.
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
- *Correspondence: Fred G. Gmitter Jr.,
| |
Collapse
|
71
|
Katsir L, Zhepu R, Santos Garcia D, Piasezky A, Jiang J, Sela N, Freilich S, Bahar O. Genome Analysis of Haplotype D of Candidatus Liberibacter Solanacearum. Front Microbiol 2018; 9:2933. [PMID: 30619106 PMCID: PMC6295461 DOI: 10.3389/fmicb.2018.02933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/14/2018] [Indexed: 11/20/2022] Open
Abstract
Candidatus Liberibacter solanacearum (Lso) haplotype D (LsoD) is a suspected bacterial pathogen, spread by the phloem-feeding psyllid Bactericera trigonica Hodkinson and found to infect carrot plants throughout the Mediterranean. Haplotype D is one of six haplotypes of Lso that each have specific and overlapping host preferences, disease symptoms, and psyllid vectors. Genotyping of rRNA genes has allowed for tracking the haplotype diversity of Lso and genome sequencing of several haplotypes has been performed to advance a comprehensive understanding of Lso diseases and of the phylogenetic relationships among the haplotypes. To further pursue that aim we have sequenced the genome of LsoD from its psyllid vector and report here its draft genome. Genome-based single nucleotide polymorphism analysis indicates LsoD is most closely related to the A haplotype. Genomic features and the metabolic potential of LsoD are assessed in relation to Lso haplotypes A, B, and C, as well as the facultative strain Liberibacter crescens. We identify genes unique to haplotype D as well as putative secreted effectors that may play a role in disease characteristics specific to this haplotype of Lso.
Collapse
Affiliation(s)
- Leron Katsir
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Ruan Zhepu
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Diego Santos Garcia
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Piasezky
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Shiri Freilich
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ofir Bahar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
72
|
Hilf ME, Luo W. Dynamics of 'Candidatus Liberibacter asiaticus' Colonization of New Growth of Citrus. PHYTOPATHOLOGY 2018; 108:1165-1171. [PMID: 29757704 DOI: 10.1094/phyto-12-17-0408-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
'Candidatus Liberibacter asiaticus' is a phloem-colonizing intracellular bacterial pathogen of citrus associated with the disease huanglongbing. A study of patterns of colonization and bacterial population growth in new growth of different citrus types was conducted by pruning infected citron, sweet orange, sour orange, mandarin, citrange, and Citrus macrophylla trees to force the growth of axillary and adventitious shoots. The first three leaves on newly emerged shoots were collected at 30, 60, and 90 days to assess colonization and population growth of 'Ca. L. asiaticus' using real time PCR (qPCR). Single trials were conducted with mandarin and citron, two trials each for citrange, sour orange and sweet orange, and four trials for C. macrophylla. In citron the proportion of colonized leaves increased significantly over time, with 67, 85, and 96% of leaves colonized at 30, 60, and 90 days, respectively. For the other citrus types, the exact proportion of colonized leaves differed, but colonization exceeded 60% in mandarin, sour orange, and citrange, and exceeded 80% at 30 days in two trials with sweet orange and three trials with C. macrophylla, but there was no significant increase in the proportion of colonized leaves at 60 and 90 days. Bacteria were readily detected by 30 days in new leaves of all citrus types. Differences in the growth of the bacterial population between citrus types and at different times of the year were noted, but common trends were apparent. In general, bacterial titers peaked at 60 days, except in leaves of C. macrophylla where bacterial titers peaked at 30 days. The early and consistently high proportion of leaf colonization observed for new growth of sweet orange during two trials and for C. macrophylla during three trials indicates a near synchronous colonization of new leaves by 30 days.
Collapse
Affiliation(s)
- Mark E Hilf
- First author: U.S. Department of Agriculture-Agriculture Research Service (USDA-ARS), 2001 South Rock Road, Fort Pierce, FL 34945; and second author: USDA-ARS, Fort Pierce, Florida and North Carolina State University, Center for Integrated Pest Management, Raleigh 27606
| | - Weiqi Luo
- First author: U.S. Department of Agriculture-Agriculture Research Service (USDA-ARS), 2001 South Rock Road, Fort Pierce, FL 34945; and second author: USDA-ARS, Fort Pierce, Florida and North Carolina State University, Center for Integrated Pest Management, Raleigh 27606
| |
Collapse
|
73
|
Tang J, Ding Y, Nan J, Yang X, Sun L, Zhao X, Jiang L. Transcriptome sequencing and ITRAQ reveal the detoxification mechanism of Bacillus GJ1, a potential biocontrol agent for Huanglongbing. PLoS One 2018; 13:e0200427. [PMID: 30091977 PMCID: PMC6084860 DOI: 10.1371/journal.pone.0200427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/26/2018] [Indexed: 11/18/2022] Open
Abstract
Huanglongbing (HLB) is the most serious disease affecting citrus production worldwide. No HLB-resistant citrus varieties exist. The HLB pathogen Candidatus Liberibacter asiaticus is nonculturable, increasing the difficulty of preventing and curing the disease. We successfully screened the biocontrol agent Bacillus GJ1 for the control of HLB in nursery-grown citrus plants. RNA sequencing (RNA-seq) of the transcriptome and isobaric tags for relative and absolute quantification of the proteome revealed differences in the detoxification responses of Bacillus GJ1-treated and -untreated Ca. L. asiaticus-infected citrus. Phylogenetic tree alignment showed that GJ1 was classified as B. amyloliquefaciens. The effect of eliminating the HLB pathogen was measured using real-time quantitative polymerase chain reaction (qPCR) and PCR. The results indicate that the rate of detoxification reached 50% after seven irrigations, of plants with an OD600nm≈1 Bacillus GJ1 suspension. Most importantly, photosynthesis-antenna proteins, photosynthesis, plant-pathogen interactions, and protein processing in the endoplasmic reticulum were significantly upregulated (padj < 0.05), as shown by the KEGG enrichment analysis of the transcriptomes; nine of the upregulated genes were validated by qPCR. Transcription factor analysis of the transcriptomes was performed, and 10 TFs were validated by qPCR. Cyanoamino acid metabolism, regulation of autophagy, isoflavonoid biosynthesis, starch and sucrose metabolism, protein export, porphyrin and chlorophyll metabolism, and carotenoid biosynthesis were investigated by KEGG enrichment analysis of the proteome, and significant differences were found in the expression of the genes involved in those pathways. Correlation analysis of the proteome and transcriptome showed common entries for the significantly different expression of proteins and the significantly different expression of genes in the GO and KEGG pathways, respectively. The above results reveal important information about the detoxification pathways.
Collapse
Affiliation(s)
- Jizhou Tang
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuanxi Ding
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jing Nan
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiangyu Yang
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Liang Sun
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiuyun Zhao
- College of life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ling Jiang
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei, China.,National Indoor Conservation Center of Virus-free Germplasm of Fruit Crops, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
74
|
Clark K, Franco JY, Schwizer S, Pang Z, Hawara E, Liebrand TWH, Pagliaccia D, Zeng L, Gurung FB, Wang P, Shi J, Wang Y, Ancona V, van der Hoorn RAL, Wang N, Coaker G, Ma W. An effector from the Huanglongbing-associated pathogen targets citrus proteases. Nat Commun 2018; 9:1718. [PMID: 29712915 PMCID: PMC5928222 DOI: 10.1038/s41467-018-04140-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/06/2018] [Indexed: 01/29/2023] Open
Abstract
The citrus industry is facing an unprecedented challenge from Huanglongbing (HLB). All cultivars can be affected by the HLB-associated bacterium 'Candidatus Liberibacter asiaticus' (CLas) and there is no known resistance. Insight into HLB pathogenesis is urgently needed in order to develop effective management strategies. Here, we use Sec-delivered effector 1 (SDE1), which is conserved in all CLas isolates, as a molecular probe to understand CLas virulence. We show that SDE1 directly interacts with citrus papain-like cysteine proteases (PLCPs) and inhibits protease activity. PLCPs are defense-inducible and exhibit increased protein accumulation in CLas-infected trees, suggesting a role in citrus defense responses. We analyzed PLCP activity in field samples, revealing specific members that increase in abundance but remain unchanged in activity during infection. SDE1-expressing transgenic citrus also exhibit reduced PLCP activity. These data demonstrate that SDE1 inhibits citrus PLCPs, which are immune-related proteases that enhance defense responses in plants.
Collapse
Affiliation(s)
- Kelley Clark
- Department of Microbiology and Plant Pathology, University of California, Riverside, 92521, CA, USA
| | | | - Simon Schwizer
- Department of Microbiology and Plant Pathology, University of California, Riverside, 92521, CA, USA.,Center for Plant Cell Biology, University of California, Riverside, 92521, CA, USA
| | - Zhiqian Pang
- Citrus Research and Education Center, University of Florida, Lake Alfred, 33850, FL, USA
| | - Eva Hawara
- Department of Microbiology and Plant Pathology, University of California, Riverside, 92521, CA, USA
| | - Thomas W H Liebrand
- Department of Plant Pathology, University of California, Davis, 95616, CA, USA
| | - Deborah Pagliaccia
- Department of Microbiology and Plant Pathology, University of California, Riverside, 92521, CA, USA
| | - Liping Zeng
- Department of Microbiology and Plant Pathology, University of California, Riverside, 92521, CA, USA.,Center for Plant Cell Biology, University of California, Riverside, 92521, CA, USA
| | - Fatta B Gurung
- Citrus Center, Texas A&M University, Weslaco, 78599, TX, USA
| | - Pengcheng Wang
- Department of Chemistry, University of California, Riverside, 92521, CA, USA
| | - Jinxia Shi
- Department of Microbiology and Plant Pathology, University of California, Riverside, 92521, CA, USA.,College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, 92521, CA, USA
| | - Veronica Ancona
- Citrus Center, Texas A&M University, Weslaco, 78599, TX, USA
| | | | - Nian Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, 33850, FL, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, 95616, CA, USA.
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, 92521, CA, USA. .,Center for Plant Cell Biology, University of California, Riverside, 92521, CA, USA.
| |
Collapse
|
75
|
Pitino M, Allen V, Duan Y. LasΔ5315 Effector Induces Extreme Starch Accumulation and Chlorosis as Ca. Liberibacter asiaticus Infection in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2018; 9:113. [PMID: 29467782 PMCID: PMC5808351 DOI: 10.3389/fpls.2018.00113] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/22/2018] [Indexed: 05/21/2023]
Abstract
Huanglongbing (HLB), a destructive plant bacterial disease, severely impedes worldwide citrus production. HLB is associated with a phloem-limited α-proteobacterium, Candidatus Liberibacter asiaticus (Las). Las infection causes yellow shoots and blotchy mottle on leaves and is associated with excessive starch accumulation. However, the mechanisms underlying the starch accumulation remain unknown. We previously showed that the Las5315mp effector induced callose deposition and cell death in Nicotiana benthamiana. In this study, we demonstrated that Las can experimentally infect N. benthamiana via dodder transmission. Furthermore, we revealed another key function of the Las5315 effector by demonstrating that transient expression of the truncated form of the effector, LasΔ5315, induced excessive starch accumulation by 6 fold after 8 dpi in N. benthamiana after removal of the chloroplast transit peptide from the Las5315mp. The induction mechanisms of LasΔ5315 in N. benthamiana were attributed to the up-regulation of ADP-glucose pyrophosphorylase, granule-bound starch synthase, soluble starch synthase, and starch branching enzyme for increasing starch production, and to the significant down-regulation of the starch degradation enzymes: alpha-glucosidase, alpha-amylase, and glycosyl hydrolase for decreasing starch degradation. This is the first report that Las can infect the model plant N. benthamiana. Using this model plant, we demonstrated that the LasΔ5315 effector caused the most prominent HLB symptoms, starch accumulation and chlorosis as Las infection in N. benthamiana. Altogether the Las 5315 effector is critical for Las pathogenesis, and therefore, an important target for interference.
Collapse
Affiliation(s)
| | | | - Yongping Duan
- US Horticultural Research Laboratory, USDA-ARS, Fort Pierce, FL, United States
| |
Collapse
|
76
|
Suh JH, Niu YS, Wang Z, Gmitter FG, Wang Y. Metabolic Analysis Reveals Altered Long-Chain Fatty Acid Metabolism in the Host by Huanglongbing Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1296-1304. [PMID: 29328677 DOI: 10.1021/acs.jafc.7b05273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Candidatus Liberibacter asiaticus (CLas) is the presumed causal agent of Huanglongbing, one of the most destructive diseases in citrus. However, the lipid metabolism component of host response to this pathogen has not been investigated well. Here, metabolic profiling of a variety of long-chain fatty acids and their oxidation products was first performed to elucidate altered host metabolic responses of disease. Fatty acid signals were found to decrease obviously in response to disease regardless of cultivar. Several lipid oxidation products strongly correlated with those fatty acids were also consistently reduced in the diseased group. Using a series of statistical methods and metabolic pathway mapping, we found significant markers contributing to the pathological symptoms and identified their internal relationships and metabolic network. Our findings suggest that the infection of CLas may cause the altered metabolism of long-chain fatty acids, possibly leading to manipulation of the host's defense derived from fatty acids.
Collapse
Affiliation(s)
| | - Yue S Niu
- Department of Mathematics, University of Arizona , 617 North Santa Rita Avenue, Tucson, Arizona 85721, United States
| | - Zhibin Wang
- Department of Citrus Breeding, The Citrus Research Institute, Southwest University , 2# Tiansheng Rd, Beibei, Chongqing 400715, China
| | | | | |
Collapse
|
77
|
Bendix C, Lewis JD. The enemy within: phloem-limited pathogens. MOLECULAR PLANT PATHOLOGY 2018; 19:238-254. [PMID: 27997761 PMCID: PMC6638166 DOI: 10.1111/mpp.12526] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 05/06/2023]
Abstract
The growing impact of phloem-limited pathogens on high-value crops has led to a renewed interest in understanding how they cause disease. Although these pathogens cause substantial crop losses, many are poorly characterized. In this review, we present examples of phloem-limited pathogens that include intracellular bacteria with and without cell walls, and viruses. Phloem-limited pathogens have small genomes and lack many genes required for core metabolic processes, which is, in part, an adaptation to the unique phloem environment. For each pathogen class, we present multiple case studies to highlight aspects of disease caused by phloem-limited pathogens. The pathogens presented include Candidatus Liberibacter asiaticus (citrus greening), Arsenophonus bacteria, Serratia marcescens (cucurbit yellow vine disease), Candidatus Phytoplasma asteris (Aster Yellows Witches' Broom), Spiroplasma kunkelii, Potato leafroll virus and Citrus tristeza virus. We focus on commonalities in the virulence strategies of these pathogens, and aim to stimulate new discussions in the hope that widely applicable disease management strategies can be found.
Collapse
Affiliation(s)
- Claire Bendix
- United States Department of AgriculturePlant Gene Expression CenterAlbanyCA94710USA
| | - Jennifer D. Lewis
- United States Department of AgriculturePlant Gene Expression CenterAlbanyCA94710USA
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCA94720USA
| |
Collapse
|
78
|
Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Śmiech M, Zhao K, Rahman M, Islam T. Application of CRISPR/Cas9 Genome Editing Technology for the Improvement of Crops Cultivated in Tropical Climates: Recent Progress, Prospects, and Challenges. FRONTIERS IN PLANT SCIENCE 2018; 9:617. [PMID: 29868073 PMCID: PMC5952327 DOI: 10.3389/fpls.2018.00617] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/18/2018] [Indexed: 05/19/2023]
Abstract
The world population is expected to increase from 7.3 to 9.7 billion by 2050. Pest outbreak and increased abiotic stresses due to climate change pose a high risk to tropical crop production. Although conventional breeding techniques have significantly increased crop production and yield, new approaches are required to further improve crop production in order to meet the global growing demand for food. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (CRISPR-associated protein9) genome editing technology has shown great promise for quickly addressing emerging challenges in agriculture. It can be used to precisely modify genome sequence of any organism including plants to achieve the desired trait. Compared to other genome editing tools such as zinc finger nucleases (ZFNs) and transcriptional activator-like effector nucleases (TALENs), CRISPR/Cas9 is faster, cheaper, precise and highly efficient in editing genomes even at the multiplex level. Application of CRISPR/Cas9 technology in editing the plant genome is emerging rapidly. The CRISPR/Cas9 is becoming a user-friendly tool for development of non-transgenic genome edited crop plants to counteract harmful effects from climate change and ensure future food security of increasing population in tropical countries. This review updates current knowledge and potentials of CRISPR/Cas9 for improvement of crops cultivated in tropical climates to gain resiliency against emerging pests and abiotic stresses.
Collapse
Affiliation(s)
- Effi Haque
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Md. Mahmudul Hassan
- Division of Genetics, Genomics and Development School of Biosciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Pankaj Bhowmik
- National Research Council of Canada, Saskatoon, SK, Canada
| | - M. Rezaul Karim
- Department of Biotechnology and Genetic Engineering Jahangirnagar University Savar, Dhaka, Bangladesh
| | - Magdalena Śmiech
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Kaijun Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mahfuzur Rahman
- Extension Service, West Virginia University, Morgantown, WV, United States
| | - Tofazzal Islam
- Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Extension Service, West Virginia University, Morgantown, WV, United States
- *Correspondence: Tofazzal Islam
| |
Collapse
|
79
|
Balan B, Ibáñez AM, Dandekar AM, Caruso T, Martinelli F. Identifying Host Molecular Features Strongly Linked With Responses to Huanglongbing Disease in Citrus Leaves. FRONTIERS IN PLANT SCIENCE 2018; 9:277. [PMID: 29541089 PMCID: PMC5836289 DOI: 10.3389/fpls.2018.00277] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A bioinformatic analysis of previously published RNA-Seq studies on Huanglongbing (HLB) response and tolerance in leaf tissues was performed. The aim was to identify genes commonly modulated between studies and genes, pathways and gene set categories strongly associated with this devastating Citrus disease. Bioinformatic analysis of expression data of four datasets present in NCBI provided 46-68 million reads with an alignment percentage of 72.95-86.76%. Only 16 HLB-regulated genes were commonly identified between the three leaf datasets. Among them were key genes encoding proteins involved in cell wall modification such as CESA8, pectinesterase, expansin8, expansin beta 3.1, and a pectate lyase. Fourteen HLB-regulated genes were in common between all four datasets. Gene set enrichment analysis showed some different gene categories affected by HLB disease. Although sucrose and starch metabolism was highly linked with disease symptoms, different genes were significantly regulated depending on leaf growth and infection stages and experimental conditions. Histone-related transcription factors were highly affected by HLB in the analyzed RNA-Seq datasets. HLB tolerance was linked with induction of proteins involved in detoxification. Protein-protein interaction (PPI) network analysis confirmed a possible role for heat shock proteins in curbing disease progression.
Collapse
Affiliation(s)
- Bipin Balan
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Ana M. Ibáñez
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Tiziano Caruso
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Federico Martinelli
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Palermo, Italy
- *Correspondence: Federico Martinelli,
| |
Collapse
|
80
|
Hu Y, Zhong X, Liu X, Lou B, Zhou C, Wang X. Comparative transcriptome analysis unveils the tolerance mechanisms of Citrus hystrix in response to 'Candidatus Liberibacter asiaticus' infection. PLoS One 2017; 12:e0189229. [PMID: 29232716 PMCID: PMC5726760 DOI: 10.1371/journal.pone.0189229] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 11/21/2017] [Indexed: 11/26/2022] Open
Abstract
Citrus Huanglongbing (HLB), a highly devastating citrus disease, is associated with 'Candidatus Liberibacter asiacitus' (CLas), a member of phloem-inhabiting α-proteobacteria. HLB can affect all cultivated citrus and no cure is currently available. Previous studies showed that Kaffir lime (Citrus hystrix), primarily grown in South Asia and Southeast Asia, was tolerant to HLB but the molecular mechanism remains unknown. In this study, gene expression profiling experiments were performed on HLB-tolerant C. hystrix and HLB-susceptible C. sinensis three months after inoculation with CLas using RNA-seq data. Differentially expressed genes (DEGs) in the two citrus cultivars were mainly involved in diverse cellular functions including carbohydrate metabolism, photosynthesis, cell wall metabolism, secondary metabolism, hormone metabolism and oxidation/reduction processes. Notably, starch synthesis and photosynthesis process were not disturbed in CLas-infected C. hystrix. Most of the DEGs involved in cell wall metabolism and secondary metabolism were up-regulated in C. hystrix. In addition, the activation of peroxidases, Cu/Zn-SOD and POD4, may also enhance the tolerance of C. hystrix to CLas. This study provides an insight into the host response of HLB-tolerant citrus cultivar to CLas. C. hystrix is potentially useful for HLB-tolerant/resistant citrus breeding in the future.
Collapse
Affiliation(s)
- Yan Hu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, P. R. China
- Ganzhou Bureau of Fruit Industry, Ganzhou, Jiangxi, P. R. China
| | - Xi Zhong
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, P. R. China
| | - Xuelu Liu
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, P. R. China
| | - Binghai Lou
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, Guangxi, P. R. China
| | - Changyong Zhou
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, P. R. China
| | - Xuefeng Wang
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, P. R. China
| |
Collapse
|
81
|
Nwugo CC, Sengoda VG, Tian L, Lin H. Characterization of physiological and molecular processes associated with potato response to Zebra chip disease. HORTICULTURE RESEARCH 2017; 4:17069. [PMID: 29238599 PMCID: PMC5717366 DOI: 10.1038/hortres.2017.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/22/2017] [Accepted: 10/30/2017] [Indexed: 05/29/2023]
Abstract
Transcriptional analyses identified molecular mechanisms associated with the response of leaf and root potato tissues to 'Candidatus. Liberibacter solanacearum' (Lso) infection, presumptive causal agent of zebra chip disease (ZC). Putative Lso infection affected several host processes including defense response-, regulation-, starch metabolism- and energy production-related processes. Interestingly, while proteinase inhibitors were strongly upregulated in leaf tissues, a concomitant downregulation was observed in root tissues. Quantitative polymerase chain reaction (qPCR) analysis suggests that alternative splicing might play a role. Furthermore, the transcriptional expression of redox homeostasis-related genes, including superoxide dismutase, showed the most inconsistent response to Lso in leaf and root tissues, highlighting potential targets of Lso susceptibility. Additionally, a net increase in gene expression in ZC-affected tissues despite the concomitant downregulation of photosynthesis-related processes, suggests a putative Lso-mediated low resource-use-efficiency. Subsequent nutritional analyses revealed a hypothesized Lso-mediated increase in nutrient accumulation, particularly a 210 and 108% increases in the potassium concentration of ZC-affected leaf and root tissues, respectively, suggesting an important role for potassium in ZC pathophysiology. This study highlights insights of above and below ground tissues in molecular and physiological aspects associated with potato response to ZC.
Collapse
Affiliation(s)
- Chika C Nwugo
- San Joaquin Valley Agricultural Sciences Center, USDA-ARS, Parlier, CA 93658, USA
| | - Venkatesan G Sengoda
- California Seed and Plant Labs, Sacramento, CA 95668, USA
- USDA-ARS, Yakima Agricultural Research Laboratory, Wapato, WA 98951, USA
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Hong Lin
- San Joaquin Valley Agricultural Sciences Center, USDA-ARS, Parlier, CA 93658, USA
| |
Collapse
|
82
|
Church J, Armas SM, Patel PK, Chumbimuni-Torres K, Lee WH. Development and Characterization of Needle-type Ion-selective Microsensors forin situDetermination of Foliar Uptake of Zn2+in Citrus Plants. ELECTROANAL 2017. [DOI: 10.1002/elan.201700697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jared Church
- Department of Civil, Environmental and Construction Engineering; University of Central Florida, Orlando, Florida; 32816-2450 United States
| | - Stephanie M. Armas
- Department of Chemistry; University of Central Florida, Orlando, Florida; 32816-2366 United States
| | - Parth K. Patel
- Department of Chemistry; University of Central Florida, Orlando, Florida; 32816-2366 United States
| | - Karin Chumbimuni-Torres
- Department of Chemistry; University of Central Florida, Orlando, Florida; 32816-2366 United States
| | - Woo Hyoung Lee
- Department of Civil, Environmental and Construction Engineering; University of Central Florida, Orlando, Florida; 32816-2450 United States
| |
Collapse
|
83
|
Tamborindeguy C, Huot OB, Ibanez F, Levy J. The influence of bacteria on multitrophic interactions among plants, psyllids, and pathogen. INSECT SCIENCE 2017; 24:961-974. [PMID: 28493539 DOI: 10.1111/1744-7917.12474] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 05/10/2023]
Abstract
The recent emergence of several plant diseases caused by psyllid-borne bacterial pathogens worldwide (Candidatus Liberibacter spp.) has created renewed interest on the interaction between psyllids and bacteria. In spite of these efforts to understand psyllid association with bacteria, many aspects of their interactions remain poorly understood. As more organisms are studied, subtleties on the molecular interactions as well as on the effects of the bacteria on the psyllid host are being uncovered. Additionally, psyllid-borne bacterial phytopathogens can also affect the host plant, which in turn can impact psyllid physiology and behavior. Here, we review the current literature on different aspects of the influence of bacteria on multitrophic interactions among plants, psyllids, and pathogens. We then highlight gaps that need to be addressed to advance this field, which can have significant implications for controlling these newly emergent and other plant diseases.
Collapse
Affiliation(s)
| | - Ordom Brian Huot
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Freddy Ibanez
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Julien Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
84
|
Rawat N, Kumar B, Albrecht U, Du D, Huang M, Yu Q, Zhang Y, Duan YP, Bowman KD, Gmitter FG, Deng Z. Genome resequencing and transcriptome profiling reveal structural diversity and expression patterns of constitutive disease resistance genes in Huanglongbing-tolerant Poncirus trifoliata and its hybrids. HORTICULTURE RESEARCH 2017; 4:17064. [PMID: 29152310 PMCID: PMC5686287 DOI: 10.1038/hortres.2017.64] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 05/22/2023]
Abstract
Huanglongbing (HLB) is the most destructive bacterial disease of citrus worldwide. While most citrus varieties are susceptible to HLB, Poncirus trifoliata, a close relative of Citrus, and some of its hybrids with Citrus are tolerant to HLB. No specific HLB tolerance genes have been identified in P. trifoliata but recent studies have shown that constitutive disease resistance (CDR) genes were expressed at much higher levels in HLB-tolerant Poncirus hybrids and the expression of CDR genes was modulated by Candidatus Liberibacter asiaticus (CLas), the pathogen of HLB. The current study was undertaken to mine and characterize the CDR gene family in Citrus and Poncirus and to understand its association with HLB tolerance in Poncirus. We identified 17 CDR genes in two citrus genomes, deduced their structures, and investigated their phylogenetic relationships. We revealed that the expansion of the CDR family in Citrus seems to be due to segmental and tandem duplication events. Through genome resequencing and transcriptome sequencing, we identified eight CDR genes in the Poncirus genome (PtCDR1-PtCDR8). The number of SNPs was the highest in PtCDR2 and the lowest in PtCDR7. Most of the deletion and insertion events were observed in the UTR regions of Citrus and Poncirus CDR genes. PtCDR2 and PtCDR8 were in abundance in the leaf transcriptomes of two HLB-tolerant Poncirus genotypes and were also upregulated in HLB-tolerant, Poncirus hybrids as revealed by real-time PCR analysis. These two CDR genes seem to be good candidate genes for future studies of their role in citrus-CLas interactions.
Collapse
Affiliation(s)
- Nidhi Rawat
- University of Florida, IFAS, Gulf Coast Research and Education Center, Wimauma, FL, USA
| | - Brajendra Kumar
- Ocimum BioSolutions Ltd., Royal Demeure, Plot no. 12/2, Sector- 1, HUDA Techno Enclave, Madhapur, Hyderabad, India
| | - Ute Albrecht
- University of Florida, IFAS, Southwest Florida Research and Education Center, Immokalee, FL, USA
| | - Dongliang Du
- University of Florida, IFAS, Citrus Research and Education Center, Lake Alfred, FL, USA
| | - Ming Huang
- University of Florida, IFAS, Citrus Research and Education Center, Lake Alfred, FL, USA
| | - Qibin Yu
- University of Florida, IFAS, Citrus Research and Education Center, Lake Alfred, FL, USA
| | - Yi Zhang
- University of Florida, IFAS, Citrus Research and Education Center, Lake Alfred, FL, USA
| | - Yong-Ping Duan
- U.S. Horticultural Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Fort Pierce, FL, USA
| | - Kim D Bowman
- U.S. Horticultural Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Fort Pierce, FL, USA
| | - Fred G Gmitter
- University of Florida, IFAS, Citrus Research and Education Center, Lake Alfred, FL, USA
| | - Zhanao Deng
- University of Florida, IFAS, Gulf Coast Research and Education Center, Wimauma, FL, USA
| |
Collapse
|
85
|
Fu S, Shao J, Paul C, Zhou C, Hartung JS. Transcriptional analysis of sweet orange trees co-infected with 'Candidatus Liberibacter asiaticus' and mild or severe strains of Citrus tristeza virus. BMC Genomics 2017; 18:837. [PMID: 29089035 PMCID: PMC5664567 DOI: 10.1186/s12864-017-4174-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Citrus worldwide is threatened by huanglongbing (HLB) and tristeza diseases caused by 'Candidatus Liberibacter asiaticus' (CaLas) and Citrus tristeza virus (CTV). Although the pathogens are members of the α-proteobacteria and Closteroviridae, respectively, both are restricted to phloem cells in infected citrus and are transmitted by insect vectors. The response of sweet orange to single infection by either of these two pathogens has been characterized previously by global gene expression analysis. But because of the ubiquity of these pathogens where the diseases occur, co-infection by both pathogens is very common and could lead to increased disease severity based on synergism. We therefore co-inoculated sweet orange trees with CaLas and either a mild or a severe strain of CTV, and measured changes of gene expression in host plants. RESULTS In plants infected with CaLas-B232, the overall alteration in gene expression was much greater in plants co-inoculated with the severe strain of CTV, B6, than when co-infected with the mild strain of CTV, B2. Plants co-infected with CaLas-B232 and either strain of CTV died but trees co-infected with CTV-B2 survived much longer than those co-infected with CTV-B6. Many important pathways were perturbed by both CTV-B2/CaLas-B232 and/or CTV-B6/CaLas-B232, but always more severely by CTV-B6/CaLas-B232. Genes related to cell wall modification and metal transport responded differently to infection by the pathogens in combination than by the same pathogens singly. The expressions of genes encoding phloem proteins and sucrose loading proteins were also differentially altered in response to CTV-B2 or CTV-B6 in combination with CaLas-B232, leading to different phloem environments in plants co-infected by CaLas and mild or severe CTV. CONCLUSIONS Many host genes were expressed differently in response to dual infection as compared to single infections with the same pathogens. Interactions of the pathogens within the host may lead to a better or worse result for the host plant. CTV-B6 may exert a synergistic effect with CaLas-B232 in weakening the plant; on the other hand, the responses activated by the mild strain CTV-B2 may provide some beneficial effects against CaLas-B232 by increasing the defense response of the host.
Collapse
Affiliation(s)
- Shimin Fu
- Citrus Research Institute, Southwest University, Chongqing, China
- United States Department of Agriculture-Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD USA
| | - Jonathan Shao
- United States Department of Agriculture-Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD USA
| | - Cristina Paul
- United States Department of Agriculture-Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD USA
| | - Changyong Zhou
- Citrus Research Institute, Southwest University, Chongqing, China
| | - John S. Hartung
- United States Department of Agriculture-Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD USA
| |
Collapse
|
86
|
Doud MM, Wang Y, Hoffman MT, Latza CL, Luo W, Armstrong CM, Gottwald TR, Dai L, Luo F, Duan Y. Solar thermotherapy reduces the titer of Candidatus Liberibacter asiaticus and enhances canopy growth by altering gene expression profiles in HLB-affected citrus plants. HORTICULTURE RESEARCH 2017; 4:17054. [PMID: 28955443 PMCID: PMC5615044 DOI: 10.1038/hortres.2017.54] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/03/2017] [Accepted: 09/03/2017] [Indexed: 05/13/2023]
Abstract
Huanglongbing (HLB), a systemic and destructive disease of citrus, is associated with 'Candidatus Liberibacter asiaticus' (Las) in the United States. Our earlier work has shown that Las bacteria were significantly reduced or eliminated when potted HLB-affected citrus were continuously exposed to high temperatures of 40 to 42 °C for a minimum of 48 h. To determine the feasibility and effectiveness of solar thermotherapy in the field, portable plastic enclosures were placed over commercial and residential citrus, exposing trees to high temperatures through solarization. Within 3-6 weeks after treatment, most trees responded with vigorous new growth. Las titer in new growth was greatly reduced for 18-36 months after treatment. Unlike with potted trees, exposure to high heat did not eradicate the Las population under field conditions. This may be attributed to reduced temperatures at night in the field compared to continuous high temperature exposure that can be maintained in growth chambers, and the failure to achieve therapeutic temperatures in the root zone. Despite the presence of Las in heat-treated commercial citrus, many trees produced abundant flush and grew vigorously for 2 to 3 years after treatment. Transcriptome analysis comparing healthy trees to HLB-affected citrus both before and after heat treatment demonstrated that post-treatment transcriptional expression patterns more closely resembled the expression patterns of healthy controls for most differentially expressed genes and that genes involved with plant-bacterium interactions are upregulated after heat treatment. Overall, these results indicate that solar thermotherapy can be an effective component of an integrated control strategy for citrus HLB.
Collapse
Affiliation(s)
- Melissa M Doud
- United States Department of Agriculture-Agriculture Research Service-United States Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Yungsheng Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- School of Computing, Clemson University, Clemson, SC 29634-0974, USA
| | - Michelle T Hoffman
- United States Department of Agriculture-Agriculture Research Service-United States Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Christina L Latza
- United States Department of Agriculture-Agriculture Research Service-United States Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Weiqi Luo
- United States Department of Agriculture-Agriculture Research Service-United States Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
- Center for Integrated Pest Management, North Carolina State University, Raleigh, NC 27606, USA
| | - Cheryl M Armstrong
- United States Department of Agriculture-Agriculture Research Service-United States Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Tim R Gottwald
- United States Department of Agriculture-Agriculture Research Service-United States Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Liangying Dai
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC 29634-0974, USA
| | - Yongping Duan
- United States Department of Agriculture-Agriculture Research Service-United States Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| |
Collapse
|
87
|
Wang N, Pierson EA, Setubal JC, Xu J, Levy JG, Zhang Y, Li J, Rangel LT, Martins J. The Candidatus Liberibacter-Host Interface: Insights into Pathogenesis Mechanisms and Disease Control. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017. [PMID: 28637377 DOI: 10.1146/annurev-phyto-080516-035513] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
"Candidatus Liberibacter" species are associated with economically devastating diseases of citrus, potato, and many other crops. The importance of these diseases as well as the proliferation of new diseases on a wider host range is likely to increase as the insects vectoring the "Ca. Liberibacter" species expand their territories worldwide. Here, we review the progress on understanding pathogenesis mechanisms of "Ca. Liberibacter" species and the control approaches for diseases they cause. We discuss the Liberibacter virulence traits, including secretion systems, putative effectors, and lipopolysaccharides (LPSs), as well as other important traits likely to contribute to disease development, e.g., flagella, prophages, and salicylic acid hydroxylase. The pathogenesis mechanisms of Liberibacters are discussed. Liberibacters secrete Sec-dependent effectors (SDEs) or other virulence factors into the phloem elements or companion cells to interfere with host targets (e.g., proteins or genes), which cause cell death, necrosis, or other phenotypes of phloem elements or companion cells, leading to localized cell responses and systemic malfunction of phloem. Receptors on the remaining organelles in the phloem, such as plastid, vacuole, mitochondrion, or endoplasmic reticulum, interact with secreted SDEs and/or other virulence factors secreted or located on the Liberibacter outer membrane to trigger cell responses. Some of the host genes or proteins targeted by SDEs or other virulence factors of Liberibacters serve as susceptibility genes that facilitate compatibility (e.g., promoting pathogen growth or suppressing immune responses) or disease development. In addition, Liberibacters trigger plant immunity response via pathogen-associated molecular patterns (PAMPs, such as lipopolysaccharides), which leads to premature cell death, callose deposition, or phloem protein accumulation, causing a localized response and/or systemic effect on phloem transportation. Physical presence of Liberibacters and their metabolic activities may disturb the function of phloem, via disrupting osmotic gradients, or the integrity of phloem conductivity. We also review disease management strategies, including promising new technologies. Citrus production in the presence of Huanglongbing is possible if the most promising management approaches are integrated. HLB management is discussed in the context of local, area-wide, and regional Huanglongbing/Asian Citrus Psyllid epidemiological zones. For zebra chip disease control, aggressive psyllid management enables potato production, although insecticide resistance is becoming an issue. Meanwhile, new technologies such as clustered regularly interspaced short palindromic repeat (CRISPR)-derived genome editing provide an unprecedented opportunity to provide long-term solutions.
Collapse
Affiliation(s)
- Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850;
| | - Elizabeth A Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843
| | - João Carlos Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850;
| | - Julien G Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas 77843
| | - Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850;
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850;
| | - Luiz Thiberio Rangel
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Joaquim Martins
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| |
Collapse
|
88
|
Li J, Pang Z, Trivedi P, Zhou X, Ying X, Jia H, Wang N. 'Candidatus Liberibacter asiaticus' Encodes a Functional Salicylic Acid (SA) Hydroxylase That Degrades SA to Suppress Plant Defenses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:620-630. [PMID: 28488467 DOI: 10.1094/mpmi-12-16-0257-r] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pathogens from the fastidious, phloem-restricted 'Candidatus Liberibacter' species cause the devastating Huanglongbing (HLB) disease in citrus worldwide and cause diseases on many solanaceous crops and plants in the Apiaceae family. However, little is known about the pathogenic mechanisms due to the difficulty in culturing the corresponding 'Ca. Liberibacter' species. Here, we report that the citrus HLB pathogen 'Ca. L. asiaticus' uses an active salicylate hydroxylase SahA to degrade salicylic acid (SA) and suppress plant defenses. Purified SahA protein displays strong enzymatic activity to degrade SA and its derivatives. Overexpression of SahA in transgenic tobacco plants abolishes SA accumulation and hypersensitive response (HR) induced by nonhost pathogen infection. By degrading SA, 'Ca. L. asiaticus' not only enhances the susceptibility of citrus plants to both nonpathogenic and pathogenic Xanthomonas citri but also attenuates the responses of citrus plants to exogenous SA. In addition, foliar spraying of 2,1,3-benzothiadiazole and 2,6-dichloroisonicotinic acid, SA functional analogs not degradable by SahA, displays comparable (and even better) effectiveness with SA in suppressing 'Ca. L. asiaticus' population growth and HLB disease progression in infected citrus trees under field conditions. This study demonstrates one or more pathogens suppress plant defenses by degrading SA and establish clues for developing novel SA derivatives-based management approaches to control the associated plant diseases.
Collapse
Affiliation(s)
- Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Zhiqian Pang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Pankaj Trivedi
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Xiaofeng Zhou
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Xiaobao Ying
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Hongge Jia
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
89
|
The AGPase Family Proteins in Banana: Genome-Wide Identification, Phylogeny, and Expression Analyses Reveal Their Involvement in the Development, Ripening, and Abiotic/Biotic Stress Responses. Int J Mol Sci 2017; 18:ijms18081581. [PMID: 28757545 PMCID: PMC5577994 DOI: 10.3390/ijms18081581] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 11/20/2022] Open
Abstract
ADP-glucose pyrophosphorylase (AGPase) is the first rate-limiting enzyme in starch biosynthesis and plays crucial roles in multiple biological processes. Despite its importance, AGPase is poorly studied in starchy fruit crop banana (Musa acuminata L.). In this study, eight MaAGPase genes have been identified genome-wide in M. acuminata, which could be clustered into the large (APL) and small (APS) subunits. Comprehensive transcriptomic analysis revealed temporal and spatial expression variations of MaAPLs and MaAPSs and their differential responses to abiotic/biotic stresses in two banana genotypes, Fen Jiao (FJ) and BaXi Jiao (BX). MaAPS1 showed generally high expression at various developmental and ripening stages and in response to abiotic/biotic stresses in both genotypes. MaAPL-3 and -2a were specifically induced by abiotic stresses including cold, salt, and drought, as well as by fungal infection in FJ, but not in BX. The presence of hormone-related and stress-relevant cis-acting elements in the promoters of MaAGPase genes suggests that MaAGPases may play an important role in multiple biological processes. Taken together, this study provides new insights into the complex transcriptional regulation of AGPases, underlying their key roles in promoting starch biosynthesis and enhancing stress tolerance in banana.
Collapse
|
90
|
Rivera MJ, Pelz‐Stelinski KS, Martini X, Stelinski LL. Bacterial phytopathogen infection disrupts belowground plant indirect defense mediated by tritrophic cascade. Ecol Evol 2017; 7:4844-4854. [PMID: 28690813 PMCID: PMC5496533 DOI: 10.1002/ece3.3052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 04/16/2017] [Indexed: 12/13/2022] Open
Abstract
Plants can defend themselves against herbivores through activation of defensive pathways and attraction of third-trophic-level predators and parasites. Trophic cascades that mediate interactions in the phytobiome are part of a larger dynamic including the pathogens of the plant itself, which are known to greatly influence plant defenses. As such, we investigated the impact of a phloem-limited bacterial pathogen, Candidatus Liberibacter asiaticus (CLas), in cultivated citrus rootstock on a well-studied belowground tritrophic interaction involving the attraction of an entomopathogenic nematode (EPN), Steinernema diaprepesi, to their root-feeding insect hosts, Diaprepes abbreviatus larvae. Using belowground olfactometers, we show how CLas infection interferes with this belowground interaction by similarly inducing the release of a C12 terpene, pregeijerene, and disconnecting the association of the terpene with insect presence. D. abbreviatus larvae that were not feeding but in the presence of a CLas-infected plant were more likely to be infected by EPN than those near uninfected plants. Furthermore, nonfeeding larvae associated with CLas-infected plants were just as likely to be infected by EPN as those near noninfected plants with D. abbreviatus larval damage. Larvae of two weevil species, D. abbreviatus and Pachnaeus litus, were also more attracted to plants with infection than to uninfected plants. D. abbreviatus larvae were most active when exposed to pregeijerene at a concentration of 0.1 μg/μl. We attribute this attraction to CLas-infected plants to the same signal previously thought to be a herbivore-induced plant volatile specifically induced by root-feeding insects, pregeijerene, by assessing volatiles collected from the roots of infected plants and uninfected plants with and without feeding D. abbreviatus. Synthesis. Phytopathogens can influence the structuring of soil communities extending to the third trophic level. Field populations of EPN may be less effective at host-finding using pregeijerene as a cue in citrus grove agroecosystems with high presence of CLas infection.
Collapse
Affiliation(s)
- Monique J. Rivera
- Entomology and Nematology DepartmentCitrus Research and Education CenterUniversity of FloridaLake AlfredFLUSA
| | - Kirsten S. Pelz‐Stelinski
- Entomology and Nematology DepartmentCitrus Research and Education CenterUniversity of FloridaLake AlfredFLUSA
| | - Xavier Martini
- Entomology and Nematology DepartmentCitrus Research and Education CenterUniversity of FloridaLake AlfredFLUSA
- Entomology and Nematology DepartmentNorth Florida Research and Education CenterUniversity of FloridaQuincyFLUSA
| | - Lukasz L. Stelinski
- Entomology and Nematology DepartmentCitrus Research and Education CenterUniversity of FloridaLake AlfredFLUSA
| |
Collapse
|
91
|
Boava LP, Cristofani-Yaly M, Machado MA. Physiologic, Anatomic, and Gene Expression Changes in Citrus sunki, Poncirus trifoliata, and Their Hybrids After 'Candidatus Liberibacter asiaticus' Infection. PHYTOPATHOLOGY 2017; 107:590-599. [PMID: 28068188 DOI: 10.1094/phyto-02-16-0077-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Huanglongbing (HLB) is a destructive disease of citrus caused by phloem-limited bacteria, namely 'Candidatus Liberibacter asiaticus' (Las), 'Candidatus Liberibacter africanus', and 'Candidatus Liberibacter americanus'. Although there are no known HLB-resistant citrus species, studies have reported Poncirus trifoliata as being more tolerant. Assuming that callose deposition in the phloem of infected plants can inhibit translocation of photosynthetic products and cause starch accumulation, we compared callose deposition in petioles and starch accumulation in infected leaves of three genotypes (Citrus sinensis, C. sunki, and P. trifoliata) and 15 hybrids (C. sunki × P. trifoliata). Compared with the mock-inoculated plants, higher bacterial counts and greater accumulation of callose and starch were found in C. sinensis, C. sunki, and 10 of the hybrid plants. Lower titer and fewer metabolic changes due to Las infection were observed in P. trifoliata and in two Las-positive hybrids while three hybrids were Las-negative. Callose accumulation was linked to and correlated with genes involved in phloem functionality and starch accumulation was linked to up-regulation of genes involved in starch biosynthesis and repression of those related to starch breakdown. Lower expression of genes involved in phloem functionality in resistant and tolerant plants can partially explain the absence of distinct disease symptoms associated with starch accumulation that are usually observed in HLB-susceptible genotypes.
Collapse
Affiliation(s)
- Leonardo Pires Boava
- First, second, and third authors: Centro de Citricultura Sylvio Moreira, CP4, 13490-970, Cordeirópolis-São Paulo-Brazil
| | - Mariângela Cristofani-Yaly
- First, second, and third authors: Centro de Citricultura Sylvio Moreira, CP4, 13490-970, Cordeirópolis-São Paulo-Brazil
| | - Marcos Antonio Machado
- First, second, and third authors: Centro de Citricultura Sylvio Moreira, CP4, 13490-970, Cordeirópolis-São Paulo-Brazil
| |
Collapse
|
92
|
Dalio RJD, Magalhães DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA. PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. ANNALS OF BOTANY 2017; 119:749-774. [PMID: 28065920 PMCID: PMC5571375 DOI: 10.1093/aob/mcw238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 07/08/2016] [Accepted: 10/22/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Recent application of molecular-based technologies has considerably advanced our understanding of complex processes in plant-pathogen interactions and their key components such as PAMPs, PRRs, effectors and R-genes. To develop novel control strategies for disease prevention in citrus, it is essential to expand and consolidate our knowledge of the molecular interaction of citrus plants with their pathogens. SCOPE This review provides an overview of our understanding of citrus plant immunity, focusing on the molecular mechanisms involved in the interactions with viruses, bacteria, fungi, oomycetes and vectors related to the following diseases: tristeza, psorosis, citrus variegated chlorosis, citrus canker, huanglongbing, brown spot, post-bloom, anthracnose, gummosis and citrus root rot.
Collapse
Affiliation(s)
- Ronaldo J. D. Dalio
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Diogo M. Magalhães
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Carolina M. Rodrigues
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Gabriella D. Arena
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Tiago S. Oliveira
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Reinaldo R. Souza-Neto
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Simone C. Picchi
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Paula M. M. Martins
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Paulo J. C. Santos
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Heros J. Maximo
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Inaiara S. Pacheco
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Alessandra A. De Souza
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| | - Marcos A. Machado
- Citrus Biotechnology Lab, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis-SP, Brazil
| |
Collapse
|
93
|
Canale MC, Tomaseto AF, Haddad MDL, Della Coletta-Filho H, Lopes JRS. Latency and Persistence of 'Candidatus Liberibacter asiaticus' in Its Psyllid Vector, Diaphorina citri (Hemiptera: Liviidae). PHYTOPATHOLOGY 2017; 107:264-272. [PMID: 27841960 DOI: 10.1094/phyto-02-16-0088-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although 'Candidatus Liberibacter asiaticus' (Las) is a major pathogen associated with citrus huanglongbing (HLB), some characteristics of transmission by the psyllid vector Diaphorina citri are not fully understood. We examined the latent period and persistence of transmission of Las by D. citri in a series of experiments at 25°C, in which third-instar psyllid nymphs and 1-week-old adults were confined on infected citrus for an acquisition access period (AAP), and submitted to sequential inoculation access periods (IAPs) on healthy citrus seedlings. The median latent period (LP50, i.e., acquisition time after which 50% of the individuals can inoculate) of 16.8 and 17.8 days for psyllids that acquired Las as nymphs and adults, respectively, was determined by transferring single individuals in 48-h IAPs. Inoculation events were intermittent and randomly distributed over the IAPs, but were more frequent after acquisition by nymphs. A minimum latent period of 7 to 10 days was observed by transferring groups of 10 psyllids in 48-h IAPs, after a 96-h AAP by nymphs. Psyllids transmitted for up to 5 weeks, when submitted to sequential 1-week IAPs after a 14-day AAP as nymphs. The long latent period and persistence of transmission are indirect evidences of circulative propagation of Las in D. citri.
Collapse
Affiliation(s)
- Maria Cristina Canale
- First, second, third, and fifth authors: Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, C.P. 9, Piracicaba, SP, 13.418-900, Brazil; first author: Agricultural Research Company of Santa Catarina State, Epagri, C.P. 791, Chapecó, SC, 89803-904, Brazil; and fourth author: Centro de Citricultura Sylvio Moreira, IAC, C.P. 4, Cordeirópolis, SP, 13490-970, Brazil
| | - Arthur Fernando Tomaseto
- First, second, third, and fifth authors: Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, C.P. 9, Piracicaba, SP, 13.418-900, Brazil; first author: Agricultural Research Company of Santa Catarina State, Epagri, C.P. 791, Chapecó, SC, 89803-904, Brazil; and fourth author: Centro de Citricultura Sylvio Moreira, IAC, C.P. 4, Cordeirópolis, SP, 13490-970, Brazil
| | - Marineia de Lara Haddad
- First, second, third, and fifth authors: Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, C.P. 9, Piracicaba, SP, 13.418-900, Brazil; first author: Agricultural Research Company of Santa Catarina State, Epagri, C.P. 791, Chapecó, SC, 89803-904, Brazil; and fourth author: Centro de Citricultura Sylvio Moreira, IAC, C.P. 4, Cordeirópolis, SP, 13490-970, Brazil
| | - Helvécio Della Coletta-Filho
- First, second, third, and fifth authors: Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, C.P. 9, Piracicaba, SP, 13.418-900, Brazil; first author: Agricultural Research Company of Santa Catarina State, Epagri, C.P. 791, Chapecó, SC, 89803-904, Brazil; and fourth author: Centro de Citricultura Sylvio Moreira, IAC, C.P. 4, Cordeirópolis, SP, 13490-970, Brazil
| | - João Roberto Spotti Lopes
- First, second, third, and fifth authors: Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, C.P. 9, Piracicaba, SP, 13.418-900, Brazil; first author: Agricultural Research Company of Santa Catarina State, Epagri, C.P. 791, Chapecó, SC, 89803-904, Brazil; and fourth author: Centro de Citricultura Sylvio Moreira, IAC, C.P. 4, Cordeirópolis, SP, 13490-970, Brazil
| |
Collapse
|
94
|
Pitino M, Armstrong CM, Duan Y. Molecular mechanisms behind the accumulation of ATP and H 2O 2 in citrus plants in response to ' Candidatus Liberibacter asiaticus' infection. HORTICULTURE RESEARCH 2017; 4:17040. [PMID: 35211319 PMCID: PMC7713647 DOI: 10.1038/hortres.2017.40] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 05/22/2023]
Abstract
Candidatus Liberibacter asiaticus (Las) is a fastidious, phloem-restricted pathogen with a significantly reduced genome, and attacks all citrus species with no immune cultivars documented to date. Like other plant bacterial pathogens, Las deploys effector proteins into the organelles of plant cells, such as mitochondria and chloroplasts to manipulate host immunity and physiology. These organelles are responsible for the synthesis of adenosine triphosphate (ATP) and have a critical role in plant immune signaling during hydrogen peroxide (H2O2) production. In this study, we investigated H2O2 and ATP accumulation in relation to citrus huanglongbing (HLB) in addition to revealing the expression profiles of genes critical for the production and detoxification of H2O2 and ATP synthesis. We also found that as ATP and H2O2 concentrations increased in the leaf, so did the severity of the HLB symptoms, a trend that remained consistent among the four different citrus varieties tested. Furthermore, the upregulation of ATP synthase, a key enzyme for energy conversion, may contribute to the accumulation of ATP in infected tissues, whereas downregulation of the H2O2 detoxification system may cause oxidative damage to plant macromolecules and cell structures. This may explain the cause of some of the HLB symptoms such as chlorosis or leaf discoloration. The findings in this study highlight important molecular and physiological mechanisms involved in the host plants' response to Las infection and provide new targets for interrupting the disease cycle.
Collapse
Affiliation(s)
- Marco Pitino
- USDA-ARS, US Horticultural Research Laboratory, 2001 S. Rock Road, Fort Pierce, 34945 FL USA
| | - Cheryl M Armstrong
- USDA-ARS, US Horticultural Research Laboratory, 2001 S. Rock Road, Fort Pierce, 34945 FL USA
| | - Yongping Duan
- USDA-ARS, US Horticultural Research Laboratory, 2001 S. Rock Road, Fort Pierce, 34945 FL USA
| |
Collapse
|
95
|
Martinelli F, Dandekar AM. Genetic Mechanisms of the Devious Intruder Candidatus Liberibacter in Citrus. FRONTIERS IN PLANT SCIENCE 2017; 8:904. [PMID: 28620403 PMCID: PMC5449717 DOI: 10.3389/fpls.2017.00904] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/15/2017] [Indexed: 05/22/2023]
Affiliation(s)
- Federico Martinelli
- Dipartimento di Scienze Agrarie Alimentari e Forestali, Università degli Studi di PalermoPalermo, Italy
| | - Abhaya M. Dandekar
- Plant Sciences Department, University of California, DavisDavis, CA, United States
- *Correspondence: Abhaya M. Dandekar
| |
Collapse
|
96
|
Yu Q, Chen C, Du D, Huang M, Yao J, Yu F, Brlansky RH, Gmitter FG. Reprogramming of a defense signaling pathway in rough lemon and sweet orange is a critical element of the early response to ' Candidatus Liberibacter asiaticus'. HORTICULTURE RESEARCH 2017; 4:17063. [PMID: 29214028 PMCID: PMC5705785 DOI: 10.1038/hortres.2017.63] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 05/04/2023]
Abstract
Huanglongbing (HLB) in citrus infected by Candidatus Liberibacter asiaticus (CLas) has caused tremendous losses to the citrus industry. No resistant genotypes have been identified in citrus species or close relatives. Among citrus varieties, rough lemon (Citrus jambhiri) has been considered tolerant due to its ability to produce a healthy flush of new growth after infection. The difference between tolerance and susceptibility is often defined by the speed and intensity of a plant's response to a pathogen, especially early defense responses. RNA-seq data were collected from three biological replicates of CLas- and mock-inoculated rough lemon and sweet orange at week 0 and 7 following infection. Functional analysis of the differentially expressed genes (DEGs) indicated that genes involved in the mitogen activated protein kinase (MAPK) signaling pathway were highly upregulated in rough lemon. MAPK induces the transcription of WRKY and other transcription factors which potentially turn on multiple defense-related genes. A Subnetwork Enrichment Analysis further revealed different patterns of regulation of several functional categories, suggesting DEGs with different functions were subjected to reprogramming. In general, the amplitude of the expression of defense-related genes is much greater in rough lemon than in sweet orange. A quantitative disease resistance response may contribute to the durable tolerance level to HLB observed in rough lemon.
Collapse
Affiliation(s)
- Qibin Yu
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | - Chunxian Chen
- USDA, ARS, SEFTNRL, 21 Dunbar Road, Byron, GA 31008, USA
| | - Dongliang Du
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | - Ming Huang
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | - Jiqiang Yao
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, Florida 32611, USA
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, Florida 32611, USA
| | - Ronald H Brlansky
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
| | - Frederick G. Gmitter
- University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, FL 33850, USA
- ()
| |
Collapse
|
97
|
Nwugo CC, Doud MS, Duan YP, Lin H. Proteomics analysis reveals novel host molecular mechanisms associated with thermotherapy of 'Ca. Liberibacter asiaticus'-infected citrus plants. BMC PLANT BIOLOGY 2016; 16:253. [PMID: 27842496 PMCID: PMC5109811 DOI: 10.1186/s12870-016-0942-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/02/2016] [Indexed: 05/22/2023]
Abstract
BACKGROUND Citrus Huanglongbing (HLB), which is linked to the bacterial pathogen 'Ca. Liberibacter asiaticus' (Las), is the most devastating disease of citrus plants, and longer-term control measures via breeding or genetic engineering have been unwieldy because all cultivated citrus species are susceptible to the disease. However, the degree of susceptibility varies among citrus species, which has prompted efforts to identify potential Las resistance/tolerance-related genes in citrus plants for application in breeding or genetic engineering programs. Plant exposure to one form of stress has been shown to serendipitously induce innate resistance to other forms of stress and a recent study showed that continuous heat treatment (40 to 42 °C) reduced Las titer and HLB-associated symptoms in citrus seedlings. The goal of the present study was to apply comparative proteomics analysis via 2-DE and mass spectrometry to elucidate the molecular processes associated with heat-induced mitigation of HLB in citrus plants. Healthy or Las-infected citrus grapefruit plants were exposed to room temperature or to continuous heat treatment of 40 °C for 6 days. RESULTS An exhaustive total protein extraction process facilitated the identification of 107 differentially-expressed proteins in response to Las and/or heat treatment, which included a strong up-regulation of chaperones including small (23.6, 18.5 and 17.9 kDa) heat shock proteins, a HSP70-like protein and a ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)-binding 60 kDa chaperonin, particularly in response to heat treatment. Other proteins that were generally down-regulated due to Las infection but up-regulated in response to heat treatment include RuBisCO activase, chlorophyll a/b binding protein, glucosidase II beta subunit-like protein, a putative lipoxygenase protein, a ferritin-like protein, and a glutathione S-transferase. CONCLUSIONS The differentially-expressed proteins identified in this study highlights a premier characterization of the molecular mechanisms potentially involved in the reversal of Las-induced pathogenicity processes in citrus plants and are hence proposed targets for application towards the development of cisgenic Las-resistant/tolerant citrus plants.
Collapse
Affiliation(s)
- Chika C. Nwugo
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, 93648 CA USA
| | - Melissa S. Doud
- USDA, Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, 34945 FL USA
| | - Yong-ping Duan
- USDA, Agricultural Research Service, U.S. Horticultural Research Laboratory, Fort Pierce, 34945 FL USA
| | - Hong Lin
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, 93648 CA USA
| |
Collapse
|
98
|
Gardner CL, Pagliai FA, Pan L, Bojilova L, Torino MI, Lorca GL, Gonzalez CF. Drug Repurposing: Tolfenamic Acid Inactivates PrbP, a Transcriptional Accessory Protein in Liberibacter asiaticus. Front Microbiol 2016; 7:1630. [PMID: 27803694 PMCID: PMC5067538 DOI: 10.3389/fmicb.2016.01630] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/30/2016] [Indexed: 01/11/2023] Open
Abstract
CLIBASIA_01510, PrbP, is a predicted RNA polymerase binding protein in Liberibacter asiaticus. PrbP was found to regulate expression of a small subset of ribosomal genes through interactions with the β-subunit of the RNA polymerase and a short, specific sequence on the promoter region. Molecular screening assays were performed to identify small molecules that interact with PrbP in vitro. Chemical hits were analyzed for therapeutic efficacy against L. asiaticus via an infected leaf assay, where the transcriptional activity of L. asiaticus was found to decrease significantly after exposure to tolfenamic acid. Similarly, tolfenamic acid was found to inhibit L. asiaticus infection in highly symptomatic citrus seedlings. Our results indicate that PrbP is an important transcriptional regulator for survival of L. asiaticus in planta, and the chemicals identified by molecular screening assays could be used as a therapeutic treatment for huanglongbing disease.
Collapse
Affiliation(s)
- Christopher L Gardner
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Fernando A Pagliai
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Lei Pan
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Lora Bojilova
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Maria I Torino
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Graciela L Lorca
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| | - Claudio F Gonzalez
- Microbiology and Cell Science Department, Genetics Institute & Institute of Food and Agricultural Science, University of Florida Gainesville, FL, USA
| |
Collapse
|
99
|
Albrecht U, Fiehn O, Bowman KD. Metabolic variations in different citrus rootstock cultivars associated with different responses to Huanglongbing. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 107:33-44. [PMID: 27236226 DOI: 10.1016/j.plaphy.2016.05.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 05/03/2023]
Abstract
Huanglongbing (HLB) is one of the most destructive bacterial diseases of citrus. No resistant cultivars have been identified, although tolerance has been observed in the genus Poncirus and some of its hybrids with Citrus that are commonly used as rootstocks. In this study we exploited this tolerance by comparing five different tolerant hybrids with a cultivar that shows pronounced HLB sensitivity to discern potential contributing metabolic factors. Whole leaves of infected and non-infected greenhouse-grown seedlings were extracted and subjected to untargeted GC-TOF MS based metabolomics. After BinBase data filtering, 342 (experiment 1) and 650 (experiment 2) unique metabolites were quantified, of which 122 and 195, respectively, were assigned by chemical structures. The number of metabolites found to be differently regulated in the infected state compared with the non-infected state varied between the cultivars and was largest (166) in the susceptible cultivar Cleopatra mandarin (Citrus reticulata) and lowest (3) in the tolerant cultivars US-897 (C. reticulata 'Cleopatra' × Poncirus trifoliata) and US-942 (C. reticulata 'Sunki' × P. trifoliata) from experiment 2. Tolerance to HLB did not appear to be associated with accumulation of higher amounts of protective metabolites in response to infection. Many metabolites were found in higher concentrations in the tolerant cultivars compared with susceptible Cleopatra mandarin and may play important roles in conferring tolerance to HLB. Lower availability of specific sugars necessary for survival of the pathogen may also be a contributing factor in the decreased disease severity observed for these cultivars.
Collapse
Affiliation(s)
- Ute Albrecht
- Southwest Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 2685 SR 29 North, Immokalee, FL 34142, USA; US Horticultural Research Laboratory, United States Department of Agriculture, Agricultural Research Service, 2001 South Rock Rd., Fort Pierce, FL 34945, USA.
| | - Oliver Fiehn
- UC Davis Genome Center - Metabolomics, University of California, 451 Health Drive, Davis, CA 95616, USA; King Abdulaziz University, Biochemistry Department, Jeddah, Saudi Arabia
| | - Kim D Bowman
- US Horticultural Research Laboratory, United States Department of Agriculture, Agricultural Research Service, 2001 South Rock Rd., Fort Pierce, FL 34945, USA
| |
Collapse
|
100
|
Martinelli F, Reagan RL, Dolan D, Fileccia V, Dandekar AM. Proteomic analysis highlights the role of detoxification pathways in increased tolerance to Huanglongbing disease. BMC PLANT BIOLOGY 2016; 16:167. [PMID: 27465111 PMCID: PMC4963945 DOI: 10.1186/s12870-016-0858-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/20/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Huanglongbing (HLB) disease is still the greatest threat to citriculture worldwide. Although there is not any resistance source in the Citrus germplasm, a certain level of moderated tolerance is present. A large-scale analysis of proteomic responses of Citrus may help: 1) clarifying physiological and molecular effects of disease progression, 2) validating previous data at transcriptomic level, and 3) identifying biomarkers for development of early diagnostics, short-term therapeutics and long-term genetic resistance. RESULTS In this work we have conducted a proteomic analysis of mature leaves of two Citrus genotypes with well-known differing tolerances to HLB: Navel orange (highly susceptible) and Volkameriana (moderately tolerant). Pathway enrichment analysis showed that amino acid degradation processes occurred to a larger degree in the Navel orange. No clear differences between the two genotypes were observed for primary metabolic pathways. The most important finding was that four glutathione-S-transferases were upregulated in Volkameriana and not in Navel orange. These proteins are involved in radical ion detoxification. CONCLUSIONS Upregulation of proteins involved in radical ion detoxification should be considered as an important mechanism of increased tolerance to HLB.
Collapse
Affiliation(s)
- Federico Martinelli
- Department of Agricultural and Forest Sciences, University of Palermo, viale delle scienze ed. 4, 90128 Palermo, Italy
| | - Russell L. Reagan
- Plant Sciences Department, University of California, One Shields Avenue, 95616 Davis, CA USA
| | - David Dolan
- Plant Sciences Department, University of California, One Shields Avenue, 95616 Davis, CA USA
| | - Veronica Fileccia
- Department of Agricultural and Forest Sciences, University of Palermo, viale delle scienze ed. 4, 90128 Palermo, Italy
| | - Abhaya M. Dandekar
- Plant Sciences Department, University of California, One Shields Avenue, 95616 Davis, CA USA
| |
Collapse
|