51
|
Zhou W, Bolden-Tiller OU, Shetty G, Shao SH, Weng CC, Pakarinen P, Liu Z, Stivers DN, Meistrich ML. Changes in gene expression in somatic cells of rat testes resulting from hormonal modulation and radiation-induced germ cell depletion. Biol Reprod 2009; 82:54-65. [PMID: 19684331 DOI: 10.1095/biolreprod.109.078048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although gonadotropins and androgen are required for normal spermatogenesis and both testosterone and follicle-stimulating hormone (FSH) are responsible for the inhibition of spermatogonial differentiation that occurs in irradiated rats, it has been difficult to identify the specific genes involved. To study specific hormonally regulated changes in somatic cell gene expression in the testis that may be involved in these processes, without the complication of changing populations of germ cells, we used irradiated LBNF(1) rats, the testes of which contain almost exclusively somatic cells except for a few type A spermatogonia. Three different groups of these rats were treated with various combinations of gonadotropin-releasing hormone antagonist, an androgen receptor antagonist (flutamide), testosterone, and FSH, and we compared the gene expression levels 2 wk later to those of irradiated-only rats by microarray analysis. By dividing the gene expression patterns into three major patterns and 11 subpatterns, we successfully distinguished, in a single study, the genes that were specifically regulated by testosterone, by luteinizing hormone (LH), and by FSH from the large number of genes that were not hormonally regulated in the testis. We found that hormones produced more dramatic upregulation than downregulation of gene expression: Testosterone had the strongest upregulatory effect, LH had a modest but appreciable upregulatory effect, and FSH had a minor upregulatory effect. We also separately identified the somatic cell genes that were chronically upregulated by irradiation. Thus, the present study identified gene expression changes that may be responsible for hormonal action on somatic cells to support normal spermatogenesis and the hormone-mediated block in spermatogonial development after irradiation.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Experimental Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Kalujnaia S, Cramb G. Regulation of Expression of the Myo-inositol Monophosphatase 1 Gene in Osmoregulatory Tissues of the European Eel Anguilla anguilla after Seawater Acclimation. Ann N Y Acad Sci 2009; 1163:433-6. [DOI: 10.1111/j.1749-6632.2009.04457.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
53
|
Bersudsky Y, Shaldubina A, Agam G, Berry GT, Belmaker RH. Homozygote inositol transporter knockout mice show a lithium-like phenotype. Bipolar Disord 2008; 10:453-9. [PMID: 18452441 DOI: 10.1111/j.1399-5618.2007.00546.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Lithium inhibits inositol monophosphatase and also reduces inositol transporter function. To determine if one or more of these mechanisms might underlie the behavioral effects of lithium, we studied inositol transporter knockout mice. We previously reported that heterozygous knockout mice with reduction of 15-37% in brain inositol had no abnormalities of pilocarpine sensitivity or antidepressant-like behavior in the Porsolt forced swim test. We now report on studies of homozygous inositol transporter knockout mice. METHODS Homozygote knockout mice were rescued by 2% inositol supplementation to the drinking water of the dam mice through pregnancy and lactation. Genotyping was carried out by polymerase chain reaction followed by agarose electrophoresis. Brain free myo-inositol levels were determined gas-chromatographically. Motor activity and coordination were assessed by the rotarod test. Behavior of the mice was studied in lithium-pilocarpine seizure models for lithium action and in the Porsolt forced swim test model for depression. RESULTS In homozygote knockout mice, free inositol levels were reduced by 55% in the frontal cortex and by 60% in the hippocampus. There were no differences in weight or motor coordination by the rotarod test. They behaved similarly to lithium-treated animals in the model of pilocarpine seizures and in the Porsolt forced swimming test model of depression. CONCLUSIONS Reduction of brain inositol more than 15-37% may be required to elicit lithium-like neurobehavioral effects.
Collapse
Affiliation(s)
- Yuly Bersudsky
- Stanley Research Center, Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | | | | | | | | |
Collapse
|
54
|
Azab AN, Agam G, Kaplanski J, Delbar V, Greenberg ML. Inositol depletion: a good or bad outcome of valproate treatment? FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.3.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bipolar affective disorder is a severe and chronic disabling illness affecting 1.5% of the general population. Lithium, valproate and other mood stabilizers are used to treat bipolar disorder; however, these are ineffective for, and not tolerated by, a significant percentage of patients, underscoring the urgent need for better medications. Although not universally accepted, the inositol-depletion hypothesis is one of the main hypotheses suggested to explain the therapeutic mechanism of mood-stabilizing drugs. This paper reviews the relevance of the inositol-depletion hypothesis, paying special attention to the inhibition of inositol de novo synthesis by valproate. It also discusses inositol supplementation as a treatment strategy for multiple neurological disorders, including prophylactic use against valproate-induced neural tube defects.
Collapse
Affiliation(s)
- Abed N Azab
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Galila Agam
- Ben-Gurion University of the Negev, Psychiatry Research Unit & Department of Clinical Biochemistry, Faculty of Health Sciences, PO Box 4600, Beer-Sheva 84170, Israel
| | - Jacob Kaplanski
- Ben-Gurion University of the Negev, Department of Clinical Pharmacology, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Vered Delbar
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Miriam L Greenberg
- Wayne State University, Department of Biological Sciences, Detroit, MI 48202, USA
| |
Collapse
|
55
|
Martínez-Heredia J, de Mateo S, Vidal-Taboada JM, Ballescà JL, Oliva R. Identification of proteomic differences in asthenozoospermic sperm samples. Hum Reprod 2008; 23:783-91. [PMID: 18281682 DOI: 10.1093/humrep/den024] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Asthenozoospermia is one of the most common findings present in infertile males, but its aetiology remains unknown in most cases. Present proteomic tools now offer the opportunity to identify proteins which are differentially expressed in asthenozoospermic semen samples and potentially involved in infertility. METHODS We compared the expression of 101 sperm protein spots in 20 asthenozoospermic samples to that of 10 semen donor controls using two-dimensional proteomic analysis. RESULTS Seventeen protein spots have been identified at different amounts in the asthenozoospermic samples compared with controls. These are cytoskeletal actin-B, annexin-A5, cytochrome C oxidase-6B, histone H2A, prolactin-inducible protein and precursor, calcium binding protein-S100A9 (2 spots), clusterin precursor, dihydrolipoamide dehydrogenase precursor, fumarate hydratase precursor, heat shock protein-HSPA2, inositol-1 monophosphatase, 3-mercapto-pyruvate sulfurtransferase/dienoyl-CoA isomerase precursor, proteasome subunit-PSMB3, semenogelin 1 precursor and testis expressed sequence 12. The detected amount of these proteins enabled the grouping of asthenozoospermic sperm samples in an unsupervised clustering analysis. CONCLUSIONS We have identified several proteins present at different amount in asthenozoospermic sperm samples. These proteins could be candidates towards the development of diagnostic markers, and open up the opportunity to gain further insight into the pathogenic mechanisms involved in asthenozoospermia.
Collapse
Affiliation(s)
- Juan Martínez-Heredia
- Human Genetics Research Group, Genetics Unit, Faculty of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
56
|
|
57
|
Tsai LJ, Hsiao SH, Tsai LM, Lin CY, Tsai JJ, Liou DM, Lan JL. The sodium-dependent glucose cotransporter SLC5A11 as an autoimmune modifier gene in SLE. ACTA ACUST UNITED AC 2007; 71:114-26. [PMID: 18069935 DOI: 10.1111/j.1399-0039.2007.00975.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genetic studies in several human autoimmune diseases suggest that the pericentromeric region of chromosome 16 might harbor an autoimmune modifier gene. We hypothesized that the sodium-dependent glucose cotransporter gene SLC5A11 is such a gene, and so might interact with immune-related genes. Herein, this hypothesis was tested in a genetic evaluation of the multiple gene effect in systemic lupus erythematosus (SLE). We used the case-control candidate gene association approach. Eight immune-related genes involved in inflammation and autoantibody generation and clear-up [interleukin 1 receptor antagonist (IL1RN), interleukin 1-beta (IL1-beta), tumor necrosis factor-alpha (TNF-alpha), lymphotoxin-alpha (LTA), tumor necrosis factor ligand superfamily, member 6 (TNFSF6), programmed cell death 1 (PDCD1), C2, and complement component 4 (C4)] were selected for study. Frequency of each candidate's genotype and allele between case and control were compared. Results were stratified by reanalyzing genotype data with relevant symptoms. Finally, improved computational data mining was used to analyze the phenotypes in a large data set. In the frequency analysis, only IL1-beta was significantly associated with SLE. Stratification analysis showed a significant association with SLE symptoms between SLC5A11 and the other immune-related genes, with the exceptions of TNFSF6 and C4. SLC5A11 was significantly associated with low C4 (as was TNF-alpha), anti-Smith antibody (anti-Sm) (as was C2), serositis, and alopecia. Finally, SLC5A11 interacted with PDCD1, TNF-alpha, LTA, and C4. After our study, we concluded that SLC5A11 is involved with some immune effects and interacts with immune-related gene(s), consistent with its function as an autoimmune modifier gene. Furthermore, SLC5A11 might induce apoptosis through the TNF-alpha, PDCD1 pathway. The present genotype-phenotype mapping approach should be applicable to genetic study of other complex diseases.
Collapse
Affiliation(s)
- L-J Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
58
|
Kalujnaia S, McWilliam IS, Zaguinaiko VA, Feilen AL, Nicholson J, Hazon N, Cutler CP, Cramb G. Transcriptomic approach to the study of osmoregulation in the European eel Anguilla anguilla. Physiol Genomics 2007; 31:385-401. [PMID: 17666525 DOI: 10.1152/physiolgenomics.00059.2007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In euryhaline teleosts, osmoregulation is a fundamental and dynamic process that is essential for the maintenance of ion and water balance, especially when fish migrate between fresh water (FW) and sea water (SW) environments. The European eel has proved to be an excellent model species to study the molecular and physiological adaptations associated with this osmoregulatory plasticity. The life cycle of the European eel includes two migratory periods, the second being the migration of FW eels back to the Sargasso Sea for reproduction. Various anatomical and physiological changes allow the successful transition to SW. The aim of this study was to use a microarray approach to screen the osmoregulatory tissues of the eel for changes in gene expression following acclimation to SW. Tissues were sampled from fish at selected intervals over a 5-mo period following FW/SW transfer, and RNA was isolated. Suppressive subtractive hybridization was used for enrichment of differentially expressed genes. Microarrays comprising 6,144 cDNAs from brain, gill, intestine, and kidney libraries were hybridized with appropriate targets and analyzed; 229 differentially expressed clones with unique sequences were identified. These clones represented the sequences for 95 known genes, with the remaining sequences (59%) being unknown. The results of the microarray analysis were validated by quantification of 28 differentially expressed genes by Northern blotting. A number of the differentially expressed genes were already known to be involved in osmoregulation, but the functional roles of many others, not normally associated with ion or water transport, remain to be characterized.
Collapse
|
59
|
Shaldubina A, Buccafusca R, Johanson RA, Agam G, Belmaker RH, Berry GT, Bersudsky Y. Behavioural phenotyping of sodium-myo-inositol cotransporter heterozygous knockout mice with reduced brain inositol. GENES BRAIN AND BEHAVIOR 2006; 6:253-9. [PMID: 16848785 DOI: 10.1111/j.1601-183x.2006.00253.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inositol plays a key role in dopamine, serotonin, noradrenaline and acetylcholine neurotransmission, and inositol treatment is reported to have beneficial effects in depression and anxiety. Therefore, a reduction in brain intracellular inositol levels could be a cause of some psychiatric disorders, such as depression or anxiety. To determine the behavioural consequences of inositol depletion, we studied the behaviour of sodium-dependent myo-inositol cotransporter-1 heterozygous knockout mice. In heterozygous mice, free inositol levels were reduced by 15% in the frontal cortex and by 25% in the hippocampus, but they did not differ from their wild-type littermates in cholinergic-mediated lithium-pilocarpine seizures, in the apomorphine-induced stereotypic climbing model of dopaminergic system function, in the Porsolt forced-swimming test model of depression, in amphetamine-induced hyperactivity, or in the elevated plus-maze model of anxiety. Reduction of brain inositol by more than 25% may be required to elicit neurobehavioural effects.
Collapse
Affiliation(s)
- A Shaldubina
- Stanley Research Centre, Faculty of Health Sciences, Ben Gurion University of the Negev, Israel
| | | | | | | | | | | | | |
Collapse
|
60
|
Chen S, Glazer I, Gollop N, Cash P, Argo E, Innes A, Stewart E, Davidson I, Wilson MJ. Proteomic analysis of the entomopathogenic nematode Steinernema feltiae IS-6 IJs under evaporative and osmotic stresses. Mol Biochem Parasitol 2006; 145:195-204. [PMID: 16293323 DOI: 10.1016/j.molbiopara.2005.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 09/28/2005] [Accepted: 10/04/2005] [Indexed: 11/26/2022]
Abstract
In order to improve the storage capability under desiccation of the widely sold biological insecticides based on entomopathogenic nematodes (EPNs), we need to understand how these organisms respond to desiccation stress. As part of our studies to achieve this, we studied survival and protein expression in infective juveniles of the EPN Steinernema feltiae IS-6 when exposed to evaporative (exposure to 97% relative humidity (RH) for 3 days, followed by a 1-day exposure to 85% RH) and osmotic (exposure to 24% glycerol for 8h) stresses. More than 400 protein spots that were detected by proteomic analysis showed reproducible abundance within replications. Of these, 10 spots and 7 spots showed detectable changes in abundance under evaporative and osmotic stress, respectively, compared to fully hydrated nematodes. Three spots exhibited a differential response pattern between evaporative and osmotic desiccation (one was down regulated and two were novel in evaporative desiccation). Peptide mass mapping with MALDI-TOF mass spectrometry (MS) identified 10 desiccation-response proteins, among which several are known to be stress responsive including heat shock protein 60, coenzyme q biosynthesis protein, inositol monophosphatase and fumarate lyase that were found in both stresses. Other identified proteins are known to be involved in the cell cycle regulation, regulation of gene transcription, organization of macromolecular structure and some currently have no known functions. Our results suggest that it is unlikely that improvement of desiccation tolerance in EPNs can be achieved through genetic transformation and addition of single genes and that selective breeding could be the best approach to generate desiccation resistant worms.
Collapse
Affiliation(s)
- Songbi Chen
- Department of Food Science, ARO, The Volcani Center, Bet-Dagan, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Chau JFL, Lee MK, Law JWS, Chung SK, Chung SSM. Sodium/myo-inositol cotransporter-1 is essential for the development and function of the peripheral nerves. FASEB J 2005; 19:1887-9. [PMID: 16174787 DOI: 10.1096/fj.05-4192fje] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sodium/myo-inositol cotransporter-1 (SMIT-1) is one of the transporters responsible for importing myo-inositol (MI) into the cells. MI is a precursor for a family of signal transduction molecules, phosphatidylinositol, and its derivatives that regulates many cellular functions. SMIT-1 null mice died soon after birth due to respiratory failure, but neonatal lethality was prevented by prenatal maternal MI supplement. Although the lung air sacs were closed, lung development was not significantly affected in the SMIT-1 null mice. The development of the peripheral nerves, including the brachial plexus, facial, vagus, and intercostal nerves, and the phrenic nerve that innervates the diaphragm was severely affected. All of these peripheral nerve abnormalities were corrected by prenatal MI supplement, indicating that MI is essential for the development of peripheral nerve and that neonatal lethality of the SMIT-1 knockout mice is most likely due to abnormal development of the nerves that control breathing. In the adult SMIT-1 deficient mice rescued by MI supplement, MI content in their brain, kidney, skeletal muscle, liver, and sciatic nerve was greatly reduced. The sciatic nerve, in particular, was most dependent on SMIT-1 for the accumulation of MI, and nerve conduction velocity and protein kinase C activity in this tissue were significantly reduced by SMIT-1 deficiency.
Collapse
Affiliation(s)
- Jenny F L Chau
- Institute of Molecular Biology, The University of Hong Kong, Hong Kong, SAR, China
| | | | | | | | | |
Collapse
|
62
|
Abstract
The epididymis is an androgen-responsive tissue where spermatozoa mature and gain motility. The three major regions of the epididymis, caput, corpus, and cauda, are known to have different functions and exhibit varied gene expression. Specific genes within the different regions of the epididymis have been identified to be under the influence of androgens. The goal of this study was to begin to elucidate the profile of androgen-responsive genes that may be important for sperm maturation using the Affymetrix MGU74Av2 GeneChip oligonucleotide microarray platform. Adult mice (B6/129 strain) were castrated and treated 6 days after castration with two injections of 5 mg of dihydrotestosterone (DHT) or oil over a 48-h period. The mice were killed 48 h later and total RNA was purified from the caput, corpus, and cauda regions of the epididymis. Using GeneSpring 5.0 (Silicon Genetics) software, transcripts were identified that were upregulated 2-fold or more by DHT in the caput (33 transcripts), the corpus (8 transcripts), and the cauda (9 transcripts).
Collapse
Affiliation(s)
- Theodore R Chauvin
- Center for Reproductive Biology, School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | | |
Collapse
|