51
|
Junco A, Bhullar B, Tarnasky HA, van der Hoorn FA. Kinesin light-chain KLC3 expression in testis is restricted to spermatids. Biol Reprod 2001; 64:1320-30. [PMID: 11319135 PMCID: PMC3161965 DOI: 10.1095/biolreprod64.5.1320] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Kinesins are tetrameric motor molecules, consisting of two kinesin heavy chains (KHCs) and two kinesin light chains (KLCs) that are involved in transport of cargo along microtubules. The function of the light chain may be in cargo binding and regulation of kinesin activity. In the mouse, two KLC genes, KLC1 and KLC2, had been identified. KLC1 plays a role in neuronal transport, and KLC2 appears to be more widely expressed. We report the cloning from a testicular cDNA expression library of a mammalian light chain, KLC3. The KLC3 gene is located in close proximity to the ERCC2 gene. KLC3 can be classified as a genuine light chain: it interacts in vitro with the KHC, the interaction is mediated by a conserved heptad repeat sequence, and it associates in vitro with microtubules. In mouse and rat testis, KLC3 protein expression is restricted to round and elongating spermatids, and KLC3 is present in sperm tails. In contrast, KLC1 and KLC2 can only be detected before meiosis in testis. Interestingly, the expression profiles of the three known KHCs and KLC3 differ significantly: Kif5a and Kif5b are not expressed after meiosis, and Kif5c is expressed at an extremely low level in spermatids but is not detectable in sperm tails. Our characterization of the KLC3 gene suggests that it carries out a unique and specialized role in spermatids.
Collapse
Affiliation(s)
| | | | | | - Frans A. van der Hoorn
- Correspondence: Frans A. van der Hoorn, Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB, Canada T2N 4N1. FAX: 403 283 8727;
| |
Collapse
|
52
|
O'Donnell L, Stanton PG, Bartles JR, Robertson DM. Sertoli cell ectoplasmic specializations in the seminiferous epithelium of the testosterone-suppressed adult rat. Biol Reprod 2000; 63:99-108. [PMID: 10859247 DOI: 10.1095/biolreprod63.1.99] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Sertoli cell ectoplasmic specialization is a unique junctional structure involved in the interaction between elongating spermatids and Sertoli cells. We have previously shown that suppression of testicular testosterone in adult rats by low-dose testosterone and estradiol (TE) treatment causes the premature detachment of step 8 round spermatids from the Sertoli cell. Because these detaching round spermatids would normally associate with the Sertoli cell via the ectoplasmic specialization, we hypothesized that ectoplasmic specializations would be absent in the seminiferous epithelium of TE-treated rats, and the lack of this junction would cause round spermatids to detach. In this study, we investigated Sertoli cell ectoplasmic specializations in normal and TE-treated rat testis using electron microscopy and localization of known ectoplasmic specialization-associated proteins (espin, actin, and vinculin) by immunocytochemistry and confocal microscopy. In TE-treated rats where round spermatid detachment was occurring, ectoplasmic specializations of normal morphology were observed opposite the remaining step 8 spermatids in the epithelium and, importantly, in the adluminal Sertoli cell cytoplasm during and after round spermatid detachment. When higher doses of testosterone were administered to promote the reattachment of all step 8 round spermatids, newly elongating spermatids associated with ectoplasmic specialization proteins within 2 days. We concluded that the Sertoli cell ectoplasmic specialization structure is qualitatively normal in TE-treated rats, and thus the absence of this structure is unlikely to be the cause of round spermatid detachment. We suggest that defects in adhesion molecules between round spermatids and Sertoli cells are likely to be involved in the testosterone-dependent detachment of round spermatids from the seminiferous epithelium.
Collapse
Affiliation(s)
- L O'Donnell
- Prince Henry's Institute of Medical Research, Monash Medical Centre, Clayton, Victoria 3168, Australia.
| | | | | | | |
Collapse
|
53
|
Guttman JA, Kimel GH, Vogl AW. Dynein and plus-end microtubule-dependent motors are associated with specialized Sertoli cell junction plaques (ectoplasmic specializations). J Cell Sci 2000; 113 ( Pt 12):2167-76. [PMID: 10825290 DOI: 10.1242/jcs.113.12.2167] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanism responsible for spermatid translocation in the mammalian seminiferous epithelium was proposed to be the microtubule-based transport of specialized junction plaques (ectoplasmic specializations) that occur in Sertoli cell regions attached to spermatid heads. These plaques each consist of a cistern of endoplasmic reticulum, a layer of actin filaments and the adjacent plasma membrane. It is predicted that motor proteins function to move the junction plaques, and hence the attached spermatids, first towards the base and then back to the apex of the epithelium, along microtubules. If this hypothesis is true, motor proteins should be associated with the cytoplasmic face of the endoplasmic reticulum component of ectoplasmic specializations. In addition, isolated junction plaques should support microtubule movement both in the plus and minus directions to account for the bidirectional translocation of spermatids in vivo. To determine if cytoplasmic dynein is localized to the endoplasmic reticulum of the plaques, perfusion-fixed rat testes were immunologically probed, at the ultrastructural level, for the intermediate chain of cytoplasmic dynein (IC74). In addition, testicular fractions enriched for spermatid/junction complexes were incubated with and without gelsolin, centrifuged and the supernatants compared, by western blot analysis, for Glucose Regulated Protein 94 (a marker for endoplasmic reticulum) and IC74. At the ultrastructural level, the probe for IC74 clearly labelled material associated with the cytoplasmic face of the endoplasmic reticulum component of the junction plaques. In the gelsolin experiments, both probes reacted more strongly with appropriate bands from the gelsolin-treated supernatants than with corresponding bands from controls. To determine if the junction plaques support microtubule transport in both directions, polarity-labelled microtubules were bound to isolated spermatid/junction complexes and then assessed for motility in the presence of ATP and testicular cytosol (2 mg/ml). Of 25 recorded motility events, 17 were in a direction consistent with a plus-end directed motor being present, and 8 were in the minus-end direction. The results are consistent with the conclusion that the junction plaques have the potential for moving along microtubules in both the plus and minus directions and that both a kinesin-type and a dynein-type motor may be associated with the junction plaques. The data also indicate that cytoplasmic dynein is localized to the cytoplasmic face of the endoplasmic reticulum component of the plaques.
Collapse
Affiliation(s)
- J A Guttman
- Department of Anatomy, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3.
| | | | | |
Collapse
|
54
|
Navolanic PM, Sperry AO. Identification of isoforms of a mitotic motor in mammalian spermatogenesis. Biol Reprod 2000; 62:1360-9. [PMID: 10775188 DOI: 10.1095/biolreprod62.5.1360] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have isolated the full-length coding sequence for mouse KIFC5A (kinesin family c-terminal 5A) cDNA, encoding a motor protein found in the testes. The complete sequence of the KIFC5A cDNA is homologous to a group of carboxyl-terminal motors, including hamster CHO2, human HSET, and mouse KIFC1 and KIFC4. The KIFC5A and KIFC1 cDNAs are nearly identical except for the presence of two additional sequence blocks in the 5'-end of KIFC5A and a number of single base-pair differences in their motor domains. Polymerase chain reaction amplification and sequencing of the 5'-end of KIFC5A identified 3 distinct RNA species in testes and other tissues. Sequence comparison and genetic mapping confirmed the existence of a small multi-gene family in the mouse and suggest possible mechanisms of alternative splicing, genetic duplication, and separate genetic loci in the generation of these motors. In order to examine the possible role of these motors in germ cells of the testes, an antibody to a shared epitope was used to localize this group of proteins to different spermatogenic cell types. These experiments suggest that KIFC5-like motor proteins are associated with multiple microtubule complexes in male germ cells, including the meiotic spindle, the manchette, and the flagella.
Collapse
Affiliation(s)
- P M Navolanic
- Department of Pharmacology, East Carolina University School of Medicine, Greenville, North Carolina 27858, USA
| | | |
Collapse
|
55
|
Marszalek JR, Goldstein LS. Understanding the functions of kinesin-II. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1496:142-50. [PMID: 10722883 DOI: 10.1016/s0167-4889(00)00015-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Species ranging from Chlamydomonas to humans possess the heterotrimeric kinesin-II holoenzyme composed of two different motor subunits and one non-motor accessory subunit. An important function of kinesin-II is that it transports the components needed for the construction and maintenance of cilia and flagella from the site of synthesis in the cell body to the site of growth at the distal tip. Recent work suggests that kinesin-II does not directly interact with these components, but rather via a large protein complex, which has been termed a raft (intraflagellar transport (IFT)). While ciliary transport is the best-established function for kinesin-II, evidence has been reported for possible roles in neuronal transport, melanosome transport, the secretory pathway and during mitosis.
Collapse
Affiliation(s)
- J R Marszalek
- Program in Biomedical Sciences, Division of Cellular and Molecular Medicine, Rm. 334, Department of Pharmacology, Howard Hughes Medical Institute, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0683, USA
| | | |
Collapse
|
56
|
Moreno RD, Ramalho-Santos J, Chan EK, Wessel GM, Schatten G. The Golgi apparatus segregates from the lysosomal/acrosomal vesicle during rhesus spermiogenesis: structural alterations. Dev Biol 2000; 219:334-49. [PMID: 10694426 DOI: 10.1006/dbio.2000.9606] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The acrosome is an acidic secretory vesicle containing hydrolytic enzymes that are involved in the sperm's passage across the zona pellucida. Imaging of the acrosomal vesicle and the Golgi apparatus in live rhesus monkey spermatids was accomplished by using the vital fluorescent probe LysoTracker DND-26. Concurrently, the dynamics of living spermatid mitochondria was visualized using the specific probe MitoTracker CMTRos and LysoTracker DND-26 detected the acrosomal vesicle from its formation through spermatid differentiation. LysoTracker DND-26 also labeled the Golgi apparatus in spermatogenic cells. In spermatocytes the Golgi is spherical and, in round spermatids, it is localized over the acrosomal vesicle, as confirmed by using polyclonal antibodies against Golgin-95/GM130, Golgin-97, and Golgin-160. Using both live LysoTracker DND-26 imaging and Golgi antibodies, we found that the Golgi apparatus is cast off from the acrosomal vesicle and migrates toward the sperm tail in elongated spermatids. The Golgi is discarded in the cytoplasmic droplet and is undetectable in mature ejaculated spermatozoa. The combined utilization of three vital fluorescent probes (Hoechst 33342, LysoTracker DND-26, and MitoTracker CMTRos) permits the dynamic imaging of four organelles during primate spermiogenesis: the nucleus, the mitochondria, the acrosomal vesicle, and the Golgi apparatus.
Collapse
Affiliation(s)
- R D Moreno
- Oregon Regional Primate Research Center, 505 NW 185th Avenue, Beaverton, Oregon, 97006, USA
| | | | | | | | | |
Collapse
|
57
|
Vogl AW, Pfeiffer DC, Mulholland D, Kimel G, Guttman J. Unique and multifunctional adhesion junctions in the testis: ectoplasmic specializations. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2000; 63:1-15. [PMID: 10770585 DOI: 10.1679/aohc.63.1] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this paper, we review the structure and function of a unique type of actin-related intercellular adhesion junctions in the testis. Based on their ultrastructure, the junctions are divided into five distinct domains. The currently identified molecular components of each domain are summarized. In addition, the architecture of the mammalian system is compared with that of non-mammalian vertebrates. Functionally, the junctions are related to the turnover of adhesion between Sertoli cells, to the attachment of spermatids to the seminiferous epithelium, and to sperm release. They also are part of the mechanism by which spermatids are moved through the epithelium. Evidence consistent with adhesion and motility related functions is discussed. Control, both of junction turnover and of microtubule-based transport, is identified as an important avenue for future research.
Collapse
Affiliation(s)
- A W Vogl
- Department of Anatomy, Faculty of Medicine, The University of British Columbia, Vancouver, Canada.
| | | | | | | | | |
Collapse
|
58
|
Beach SF, Vogl AW. Spermatid translocation in the rat seminiferous epithelium: coupling membrane trafficking machinery to a junction plaque. Biol Reprod 1999; 60:1036-46. [PMID: 10084982 DOI: 10.1095/biolreprod60.4.1036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In this study, we demonstrate that specialized junction plaques that occur between Sertoli cells and spermatids in the rat testis support microtubule translocation in vitro. During spermatogenesis, Sertoli cells are attached to spermatids by specialized adhesion junctions termed ectoplasmic specializations (ESs). These structures consist of regions of the plasma membrane adherent to the spermatid head, a submembrane layer of tightly packed actin filaments, and an attached cistern of endoplasmic reticulum. It has been proposed that motor proteins on the endoplasmic reticulum interact with adjacent microtubules to translocate the junction plaques, and hence the attached spermatids, within the epithelium. If this hypothesis is true, then isolated junctions should support microtubule transport. To verify this prediction, we have mechanically isolated rat spermatids, together with their attached ESs, and tested them for their ability to transport microtubules in vitro. Most assays were done in the presence of 2 mg/ml testicular cytosol and at room temperature. ESs attached to spermatids supported microtubule translocation. In some cases in which motility events were detected, microtubules moved smoothly over the junction site. In others, the movement was slow but progressive, saltatory and "inch-worm-like." No motility was detected in the absence of exogenous ATP or in the presence of apyrase (an enzyme that catalyses the breakdown of ATP). Our results are consistent with the microtubule-based motility hypothesis of spermatid translocation.
Collapse
Affiliation(s)
- S F Beach
- Department of Anatomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | | |
Collapse
|