51
|
|
52
|
New strategies to develop novel pain therapies: addressing thermoreceptors from different points of view. Pharmaceuticals (Basel) 2011; 5:16-48. [PMID: 24288041 PMCID: PMC3763626 DOI: 10.3390/ph5010016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 12/16/2011] [Accepted: 12/21/2011] [Indexed: 01/23/2023] Open
Abstract
One approach to develop successful pain therapies is the modulation of dysfunctional ion channels that contribute to the detection of thermal, mechanical and chemical painful stimuli. These ion channels, known as thermoTRPs, promote the sensitization and activation of primary sensory neurons known as nociceptors. Pharmacological blockade and genetic deletion of thermoTRP have validated these channels as therapeutic targets for pain intervention. Several thermoTRP modulators have progressed towards clinical development, although most failed because of the appearance of unpredicted side effects. Thus, there is yet a need to develop novel channel modulators with improved therapeutic index. Here, we review the current state-of-the art and illustrate new pharmacological paradigms based on TRPV1 that include: (i) the identification of activity-dependent modulators of this thermoTRP channel; (ii) the design of allosteric modulators that interfere with protein-protein interaction involved in the functional coupling of stimulus sensing and gate opening; and (iii) the development of compounds that abrogate the inflammation-mediated increase of receptor expression in the neuronal surface. These new sites of action represent novel strategies to modulate pathologically active TRPV1, while minimizing an effect on the TRPV1 subpopulation involved in physiological and protective roles, thus increasing their potential therapeutic use.
Collapse
|
53
|
Cheng W, Yang F, Liu S, Colton CK, Wang C, Cui Y, Cao X, Zhu MX, Sun C, Wang K, Zheng J. Heteromeric heat-sensitive transient receptor potential channels exhibit distinct temperature and chemical response. J Biol Chem 2011; 287:7279-88. [PMID: 22184123 DOI: 10.1074/jbc.m111.305045] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPV1 and TRPV3 are two heat-sensitive ion channels activated at distinct temperature ranges perceived by human as hot and warm, respectively. Compounds eliciting human sensations of heat or warmth can also potently activate these channels. In rodents, TRPV3 is expressed predominantly in skin keratinocytes, whereas in humans TRPV1 and TRPV3 are co-expressed in sensory neurons of dorsal root ganglia and trigeminal ganglion and are known to form heteromeric channels with distinct single channel conductances as well as sensitivities to TRPV1 activator capsaicin and inhibitor capsazepine. However, how heteromeric TRPV1/TRPV3 channels respond to heat and other stimuli remains unknown. In this study, we examined the behavior of heteromeric TRPV1/TRPV3 channels activated by heat, capsaicin, and voltage. Our results demonstrate that the heteromeric channels exhibit distinct temperature sensitivity, activation threshold, and heat-induced sensitization. Changes in gating properties apparently originate from interactions between TRPV1 and TRPV3 subunits. Our results suggest that heteromeric TRPV1/TRPV3 channels are unique heat sensors that may contribute to the fine-tuning of sensitivity to sensory inputs.
Collapse
Affiliation(s)
- Wei Cheng
- Laboratory of Biomedical Optics, College of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116023, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Vidal-Mosquera M, Fernández-Carvajal A, Moure A, Valente P, Planells-Cases R, González-Ros JM, Bujons J, Ferrer-Montiel A, Messeguer A. Triazine-Based Vanilloid 1 Receptor Open Channel Blockers: Design, Synthesis, Evaluation, and SAR Analysis. J Med Chem 2011; 54:7441-52. [DOI: 10.1021/jm200981s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Pierluigi Valente
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche, Spain
| | | | - José M. González-Ros
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche, Spain
| | | | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche, Spain
| | | |
Collapse
|
55
|
de Groot T, van der Hagen EAE, Verkaart S, te Boekhorst VAM, Bindels RJM, Hoenderop JGJ. Role of the transient receptor potential vanilloid 5 (TRPV5) protein N terminus in channel activity, tetramerization, and trafficking. J Biol Chem 2011; 286:32132-9. [PMID: 21795703 DOI: 10.1074/jbc.m111.226878] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The epithelial Ca(2+) channel transient receptor potential vanilloid 5 (TRPV5) constitutes the apical entry site for active Ca(2+) reabsorption in the kidney. The TRPV5 channel is a member of the TRP family of cation channels, which are composed of four subunits together forming a central pore. Regulation of channel activity is tightly controlled by the intracellular N and C termini. The TRPV5 C terminus regulates channel activity by various mechanisms, but knowledge regarding the role of the N terminus remains scarce. To study the role of the N terminus in TRPV5 regulation, we generated different N-terminal deletion constructs. We found that deletion of the first 32 residues did not affect TRPV5-mediated (45)Ca(2+) uptake, whereas deletion up to residue 34 and 75 abolished channel function. Immunocytochemistry demonstrated that these mutant channels were retained in the endoplasmic reticulum and in contrast to wild-type TRPV5 did not reach the Golgi apparatus, explaining the lack of complex glycosylation of the mutants. A limited amount of mutant channels escaped the endoplasmic reticulum and reached the plasma membrane, as shown by cell surface biotinylation. These channels did not internalize, explaining the reduced but significant amount of these mutant channels at the plasma membrane. Wild-type TRPV5 channels, despite significant plasma membrane internalization, showed higher plasma membrane levels compared with the mutant channels. The assembly into tetramers was not affected by the N-terminal deletions. Thus, the N-terminal residues 34-75 are critical in the formation of a functional TRPV5 channel because the deletion mutants were present at the plasma membrane as tetramers, but lacked channel activity.
Collapse
Affiliation(s)
- Theun de Groot
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
56
|
Hirschler-Laszkiewicz I, Tong Q, Waybill K, Conrad K, Keefer K, Zhang W, Chen SJ, Cheung JY, Miller BA. The transient receptor potential (TRP) channel TRPC3 TRP domain and AMP-activated protein kinase binding site are required for TRPC3 activation by erythropoietin. J Biol Chem 2011; 286:30636-30646. [PMID: 21757714 DOI: 10.1074/jbc.m111.238360] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Modulation of intracellular calcium ([Ca(2+)](i)) by erythropoietin (Epo) is an important signaling pathway controlling erythroid proliferation and differentiation. Transient receptor potential (TRP) channels TRPC3 and homologous TRPC6 are expressed on normal human erythroid precursors, but Epo stimulates an increase in [Ca(2+)](i) through TRPC3 but not TRPC6. Here, the role of specific domains in the different responsiveness of TRPC3 and TRPC6 to erythropoietin was explored. TRPC3 and TRPC6 TRP domains differ in seven amino acids. Substitution of five amino acids (DDKPS) in the TRPC3 TRP domain with those of TRPC6 (EERVN) abolished the Epo-stimulated increase in [Ca(2+)](i). Substitution of EERVN in TRPC6 TRP domain with DDKPS in TRPC3 did not confer Epo responsiveness. However, substitution of TRPC6 TRP with DDKPS from TRPC3 TRP, as well as swapping the TRPC6 distal C terminus (C2) with that of TRPC3, resulted in a chimeric TRPC6 channel with Epo responsiveness similar to TRPC3. Substitution of TRPC6 with TRPC3 TRP and the putative TRPC3 C-terminal AMP-activated protein kinase (AMPK) binding site straddling TRPC3 C1/C2 also resulted in TRPC6 activation. In contrast, substitution of the TRPC3 C-terminal leucine zipper motif or TRPC3 phosphorylation sites Ser-681, Ser-708, or Ser-764 with TRPC6 sequence did not affect TRPC3 Epo responsiveness. TRPC3, but not TRPC6, and TRPC6 chimeras expressing TRPC3 C2 showed significantly increased plasma membrane insertion following Epo stimulation and substantial cytoskeletal association. The TRPC3 TRP domain, distal C terminus (C2), and AMPK binding site are critical elements that confer Epo responsiveness. In particular, the TRPC3 C2 and AMPK site are essential for association of TRPC3 with the cytoskeleton and increased channel translocation to the cell surface in response to Epo stimulation.
Collapse
Affiliation(s)
| | - Qin Tong
- Departments of Pediatrics, Hershey, Pennsylvania 17033
| | | | | | - Kerry Keefer
- Departments of Pediatrics, Hershey, Pennsylvania 17033
| | - Wenyi Zhang
- Departments of Pediatrics, Hershey, Pennsylvania 17033
| | - Shu-Jen Chen
- Departments of Pediatrics, Hershey, Pennsylvania 17033
| | - Joseph Y Cheung
- Department of Medicine, Jefferson Medical College, Philadelphia, Pennsylvania 19107
| | - Barbara A Miller
- Departments of Pediatrics, Hershey, Pennsylvania 17033; Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033.
| |
Collapse
|
57
|
Devesa I, Planells-Cases R, Fernández-Ballester G, González-Ros JM, Ferrer-Montiel A, Fernández-Carvajal A. Role of the transient receptor potential vanilloid 1 in inflammation and sepsis. J Inflamm Res 2011; 4:67-81. [PMID: 22096371 PMCID: PMC3218746 DOI: 10.2147/jir.s12978] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The transient receptor potential vanilloid 1 (TRPV1) is a thermoreceptor that responds to noxious temperatures, as well as to chemical agonists, such as vanilloids and protons. In addition, its channel activity is notably potentiated by proinflammatory mediators released upon tissue damage. The TRPV1 contribution to sensory neuron sensitization by proalgesic agents has signaled this receptor as a prime target for analgesic and anti-inflammatory drug intervention. However, TRPV1 antagonists have notably failed in clinical and preclinical studies because of their unwanted side effects. Recent reports have unveiled previously unrecognized anti-inflammatory and protective functions of TRPV1 in several diseases. For instance, this channel has been suggested to play an anti-inflammatory role in sepsis. Therefore, the use of potent TRPV1 antagonists as a general strategy to treat inflammation must be cautiously considered, given the deleterious effects that may arise from inhibiting the population of channels that have a protective function. The use of TRPV1 antagonists may be limited to treating those pathologies where enhanced receptor activity contributes to the inflamed state. Alternatively, therapeutic paradigms, such as reduction of inflammatory-mediated increase of receptor expression in the cell surface, may be a better strategy to prevent abrogation of the TRPV1 subpopulation involved in anti-inflammatory and protective processes.
Collapse
Affiliation(s)
- Isabel Devesa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante
| | | | | | | | | | | |
Collapse
|
58
|
Valente P, Fernández-Carvajal A, Camprubí-Robles M, Gomis A, Quirce S, Viana F, Fernández-Ballester G, González-Ros JM, Belmonte C, Planells-Cases R, Ferrer-Montiel A. Membrane-tethered peptides patterned after the TRP domain (TRPducins) selectively inhibit TRPV1 channel activity. FASEB J 2011; 25:1628-40. [PMID: 21307333 DOI: 10.1096/fj.10-174433] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The transient receptor potential vanilloid 1 (TRPV1) channel is a thermosensory receptor implicated in diverse physiological and pathological processes. The TRP domain, a highly conserved region in the C terminus adjacent to the internal channel gate, is critical for subunit tetramerization and channel gating. Here, we show that cell-penetrating, membrane-anchored peptides patterned after this protein domain are moderate and selective TRPV1 antagonists both in vitro and in vivo, blocking receptor activity in intact rat primary sensory neurons and their peripheral axons with mean decline time of 30 min. The most potent lipopeptide, TRP-p5, blocked all modes of TRPV1 gating with micromolar efficacy (IC(50)<10 μM), without significantly affecting other thermoTRP channels. In contrast, its retrosequence or the corresponding sequences of other TRPV channels did not alter TRPV1 channel activity (IC(50)>100 μM). TRP-p5 did not affect the capsaicin sensitivity of the vanilloid receptor. Our data suggest that TRP-p5 interferes with protein-protein interactions at the level of the TRP domain that are essential for the "conformational" change that leads to gate opening. Therefore, these palmitoylated peptides, which we termed TRPducins, are noncompetitive, voltage-independent, sequence-specific TRPV1 blockers. Our findings indicate that TRPducin-like peptides may embody a novel molecular strategy that can be exploited to generate a selective pharmacological arsenal for the TRP superfamily of ion channels.
Collapse
Affiliation(s)
- Pierluigi Valente
- Instituto de Biología Molecular y Celular, Universidad Miguel Herna´ndez, Elche, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
TRPV1: A Therapy Target That Attracts the Pharmaceutical Interests. TRANSIENT RECEPTOR POTENTIAL CHANNELS 2011; 704:637-65. [DOI: 10.1007/978-94-007-0265-3_34] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
60
|
Loukin S, Su Z, Zhou X, Kung C. Forward genetic analysis reveals multiple gating mechanisms of TRPV4. J Biol Chem 2010; 285:19884-90. [PMID: 20424166 DOI: 10.1074/jbc.m110.113936] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
TRPV4 is a polymodal cation channel gain-of-function (GOF) allele which causes skeletal dysplasia in humans. To better understand its gating, we screened for additional GOF alleles based on their ability to block yeast proliferation. Repeatedly, only a limited number of such growth-blocking mutations were isolated. Expressed in oocytes, wild-type channels can be strongly activated by either hypotonicity or exposure to the potent agonist 4alphaPDD, although the GOF channels behaved as if they were fully prestimulated as well as lacking a previously uncharacterized voltage-dependent inactivation. Five of six mutations occurred at or near the inner ends of the predicted core helices, giving further direct evidence that this region indeed forms the main intracellular gate in TRP channels. Surprisingly, both wild-type channels as well as these GOF channels maintain strong steady-state outward rectification that is not due to a Ca(2+) block, as has been proposed elsewhere. We conclude that TRPV4 contains an additional voltage-dependent gating mechanism in series with the main intracellular gate.
Collapse
Affiliation(s)
- Stephen Loukin
- Laboratory of Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
61
|
Thermosensitive TRP channel pore turret is part of the temperature activation pathway. Proc Natl Acad Sci U S A 2010; 107:7083-8. [PMID: 20351268 DOI: 10.1073/pnas.1000357107] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Temperature sensing is crucial for homeotherms, including human beings, to maintain a stable body core temperature and respond to the ambient environment. A group of exquisitely temperature-sensitive transient receptor potential channels, termed thermoTRPs, serve as cellular temperature sensors. How thermoTRPs convert thermal energy (heat) into protein conformational changes leading to channel opening remains unknown. Here we demonstrate that the pathway for temperature-dependent activation is distinct from those for ligand- and voltage-dependent activation and involves the pore turret. We found that mutant channels with an artificial pore turret sequence lose temperature sensitivity but maintain normal ligand responses. Using site-directed fluorescence recordings we observed that temperature change induces a significant rearrangement of TRPV1 pore turret that is coupled to channel opening. This movement is specifically associated to temperature-dependent activation and is not observed during ligand- and voltage-dependent channel activation. These observations suggest that the turret is part of the temperature-sensing apparatus in thermoTRP channels, and its conformational change may give rise to the large entropy that defines high temperature sensitivity.
Collapse
|
62
|
Laínez S, Valente P, Ontoria-Oviedo I, Estévez-Herrera J, Camprubí-Robles M, Ferrer-Montiel A, Planells-Cases R. GABAA receptor associated protein (GABARAP) modulates TRPV1 expression and channel function and desensitization. FASEB J 2010; 24:1958-70. [PMID: 20179142 DOI: 10.1096/fj.09-151472] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transient receptor potential vanilloid (TRPV1) transduces noxious chemical and physical stimuli in high-threshold nociceptors. The pivotal role of TRPV1 in the physiopathology of pain transduction has thrust the identification and characterization of interacting partners that modulate its cellular function. Here, we report that TRPV1 associates with gamma-amino butyric acid A-type (GABA(A)) receptor associated protein (GABARAP) in HEK293 cells and in neurons from dorsal root ganglia coexpressing both proteins. At variance with controls, GABARAP augmented TRPV1 expression in cotransfected cells and stimulated surface receptor clustering. Functionally, GABARAP expression attenuated voltage and capsaicin sensitivity of TRPV1 in the presence of extracellular calcium. Furthermore, the presence of the anchor protein GABARAP notably lengthened the kinetics of vanilloid-induced tachyphylaxia. Notably, the presence of GABARAP selectively increased the interaction of tubulin with the C-terminal domain of TRPV1. Disruption of tubulin cytoskeleton with nocodazole reduced capsaicin-evoked currents in cells expressing TRPV1 and GABARAP, without affecting the kinetics of vanilloid-induced desensitization. Taken together, these findings indicate that GABARAP is an important component of the TRPV1 signaling complex that contributes to increase the channel expression, to traffic and cluster it on the plasma membrane, and to modulate its functional activity at the level of channel gating and desensitization.
Collapse
Affiliation(s)
- S Laínez
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
63
|
Shigematsu H, Sokabe T, Danev R, Tominaga M, Nagayama K. A 3.5-nm structure of rat TRPV4 cation channel revealed by Zernike phase-contrast cryoelectron microscopy. J Biol Chem 2009; 285:11210-8. [PMID: 20044482 DOI: 10.1074/jbc.m109.090712] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) is a non-selective cation channel responsive to various stimuli including cell swelling, warm temperatures (27-35 degrees C), and chemical compounds such as phorbol ester derivatives. Here we report the three-dimensional structure of full-length rat TRPV4 purified from baculovirus-infected Sf9 cells. Hexahistidine-tagged rat TRPV4 (His-rTRPV4) was solubilized with detergent and purified through affinity chromatography and size-exclusion chromatography. Chemical cross-linking analysis revealed that detergent-solubilized His-rTRPV4 was a tetramer. The 3.5-nm structure of rat TRPV4 was determined by cryoelectron microscopy using single-particle reconstruction from Zernike phase-contrast images. The overall structure comprises two distinct regions; a larger dense component, likely corresponding to the cytoplasmic N- and C-terminal regions, and a smaller component corresponding to the transmembrane region.
Collapse
Affiliation(s)
- Hideki Shigematsu
- Division of Nano-Structure Physiology, Okazaki Institute for Integrative Bioscience, Higashiyama, Myodaiji, Okazaki 444-8787 Japan
| | | | | | | | | |
Collapse
|
64
|
Malkia A, Pertusa M, Fernández-Ballester G, Ferrer-Montiel A, Viana F. Differential role of the menthol-binding residue Y745 in the antagonism of thermally gated TRPM8 channels. Mol Pain 2009; 5:62. [PMID: 19886999 PMCID: PMC2778643 DOI: 10.1186/1744-8069-5-62] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 11/03/2009] [Indexed: 11/10/2022] Open
Abstract
Background TRPM8 is a non-selective cation channel that belongs to the melastatin subfamily of the transient receptor potential (TRP) ion channels. TRPM8 is activated by voltage, cold and cooling compounds such as menthol. Despite its essential role for cold temperature sensing in mammals, the pharmacology of TRPM8 is still in its infancy. Recently, tyrosine 745 (Y745) was identified as a critical residue for menthol sensitivity of the channel. In this report, we study the effect of mutating this residue on the action of several known TRPM8 antagonists: BCTC, capsazepine, SKF96365, and clotrimazole as well as two new inhibitor candidates, econazole and imidazole. Results We show that Y745 at the menthol binding site is critical for inhibition mediated by SKF96365 of cold- and voltage-activated TRPM8 currents. In contrast, the inhibition by other antagonists was unaffected by the mutation (BCTC) or only partially reduced (capsazepine, clotrimazole, econazole), suggesting that additional binding sites exist on the TRPM8 channel from where the inhibitors exert their negative modulation. Indeed, a molecular docking model implies that menthol and SKF96365 interact readily with Y745, while BCTC is unable to bind to this residue. Conclusion In summary, we identify structural elements on the TRPM8 channel that are critical for the action of channel antagonists, providing valuable information for the future design of new, specific modulator compounds.
Collapse
Affiliation(s)
- Annika Malkia
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain.
| | | | | | | | | |
Collapse
|
65
|
Camprubí-Robles M, Planells-Cases R, Ferrer-Montiel A. Differential contribution of SNARE-dependent exocytosis to inflammatory potentiation of TRPV1 in nociceptors. FASEB J 2009; 23:3722-33. [PMID: 19584302 DOI: 10.1096/fj.09-134346] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Potentiation of the pain-integrator ion channel transient receptor potential vanilloid type 1 (TRPV1) underlies thermal hyperalgesia mediated by a variety of proinflammatory factors. Two complementary mechanisms of TRPV1 inflammatory sensitization have been proposed, namely a decrease of its activation threshold and an increment of its surface expression in nociceptors. Here we investigated the involvement of regulated exocytosis to the inflammatory sensitization of TRPV1 in rat neonatal dorsal root ganglion neurons by proalgesic agents. The contribution of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent exocytosis was evaluated using a small peptide patterned after the synaptosomal-associated protein of 25 kDa (SNAP-25) protein that acts as a specific and potent inhibitor of neuronal exocytosis. We found that TRPV1 sensitization mediated by nerve growth factor, ATP, and IGF-I was accompanied by a higher channel expression in the neuronal plasma membrane, which was prevented by blockade of regulated exocytosis. In contrast, TRPV1 sensitization caused by bradykinin, IL-1beta, and artemin was insensitive to inhibition of SNARE-dependent vesicular fusion and was not due to an increase in TRPV1 surface expression. Therefore, it appears that some, but not all, proinflammatory agents sensitize rat nociceptors by promoting the recruitment of TRPV1 channels to the neuronal surface. These findings support the tenet that SNARE complex-mediated exocytosis of TRPV1 may be a valid therapeutic target to treat inflammatory pain.
Collapse
Affiliation(s)
- M Camprubí-Robles
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Av de la Universidad s/n, 03202 Elche, Alicante, Spain
| | | | | |
Collapse
|
66
|
Two amino acid residues determine 2-APB sensitivity of the ion channels TRPV3 and TRPV4. Proc Natl Acad Sci U S A 2009; 106:1626-31. [PMID: 19164517 DOI: 10.1073/pnas.0812209106] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Temperature-activated transient receptor potential ion channels (thermoTRPs) are polymodal detectors of various stimuli including temperature, voltage, and chemicals. To date, it is not known how TRP channels integrate the action of such disparate stimuli. Identifying specific residues required for channel-activation by distinct stimuli is necessary for understanding overall TRP channel function. TRPV3 is activated by warm temperatures and various chemicals, and is modulated by voltage. One potent activator of TRPV3 is 2-aminoethyl diphenylborinate (2-APB), a synthetic chemical that modulates many TRP channels. In a high-throughput mutagenesis screen of approximately 14,000 mutated mouse TRPV3 clones, we found 2 residues (H426 and R696) specifically required for sensitivity of TRPV3 to 2-APB, but not to camphor or voltage. The cytoplasmic N-terminal mutation H426N in human, dog, and frog TRPV3 also effectively abolished 2-APB activation without affecting camphor responses. Interestingly, chicken TRPV3 is weakly sensitive to 2-APB, and the equivalent residue at 426 is an asparagine (N). Mutating this residue to histidine induced 2-APB sensitivity of chicken TRPV3 to levels comparable for other TRPV3 orthologs. The cytoplasmic C-terminal mutation R696K in the TRP box displayed 2-APB specific deficits only in the presence of extracellular calcium, suggesting involvement in gating. TRPV4, a related thermoTRP, is 2-APB insensitive and has variant sequences at both residues identified here. Remarkably, mutating these 2 residues in TRPV4 to TRPV3 sequences (N426H and W737R) was sufficient to induce TRPV3-like 2-APB sensitivity. Therefore, 2-APB activation of TRPV3 is separable from other activation mechanisms, and depends on 2 cytoplasmic residues.
Collapse
|
67
|
Molecular modeling of the full-length human TRPV1 channel in closed and desensitized states. J Membr Biol 2008; 223:161-72. [PMID: 18791833 DOI: 10.1007/s00232-008-9123-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
The transient receptor potential vanilloid subtype 1 (TRPV1) is a member of the TRP family gated by vanilloids, heat, and protons. Structurally, TRPV1 subunits have a modular architecture underlying different functionalities, namely stimuli recognition, channel gating, ion selectivity, subunit oligomerization, and regulation by intracellular signaling molecules. Considering modular organization and recent structural information in the ion channel field, we have modeled a full-length TRPV1 by assembly of its major modules: the cytosolic N-terminal, C-terminal, and membrane-spanning region. For N-terminal, we used the ankyrin repeat structure fused with the N-end segment. The membrane domain was modeled with the structure of the eukaryotic, voltage-gated Kv1.2 K+ channel. The C-terminus was cast using the coordinates of HCN channels. The extensive structure-function data available for TRPV1 was used to validate the models in terms of the location of molecular determinants of function in the structure. Additionally, the current information allowed the modeling of the vanilloid receptor in the closed and desensitized states. The closed state shows the N-terminal module highly exposed and accessible to adenosine triphosphate and the C-terminal accessible to phosphoinositides. In contrast, the desensitized state depicts the N-terminal and C-terminal modules close together, compatible with an interaction mediated by Ca2+ -calmodulin complex. These models identify potential previously unrecognized intra- and interdomain interactions that may play an important functional role. Although the molecular models should be taken with caution, they provide a helpful tool that yields testable hypothesis that further our understanding on ion channels work in terms of underlying protein structure.
Collapse
|