51
|
Cipolla E, Fisher AJ, Gu H, Mickler EA, Agarwal M, Wilke CA, Kim KK, Moore BB, Vittal R. IL-17A deficiency mitigates bleomycin-induced complement activation during lung fibrosis. FASEB J 2017; 31:5543-5556. [PMID: 28821630 DOI: 10.1096/fj.201700289r] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/07/2017] [Indexed: 01/07/2023]
Abstract
Interleukin 17A (IL-17A) and complement (C') activation have each been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). We have reported that IL-17A induces epithelial injury via TGF-β in murine bronchiolitis obliterans; that TGF-β and the C' cascade present signaling interactions in mediating epithelial injury; and that the blockade of C' receptors mitigates lung fibrosis. In the present study, we investigated the role of IL-17A in regulating C' in lung fibrosis. Microarray analyses of mRNA isolated from primary normal human small airway epithelial cells indicated that IL-17A (100 ng/ml; 24 h; n = 5 donor lungs) induces C' components (C' factor B, C3, and GPCR kinase isoform 5), cytokines (IL8, -6, and -1B), and cytokine ligands (CXCL1, -2, -3, -5, -6, and -16). IL-17A induces protein and mRNA regulation of C' components and the synthesis of active C' 3a (C3a) in normal primary human alveolar type II epithelial cells (AECs). Wild-type mice subjected to IL-17A neutralization and IL-17A knockout (il17a-/- ) mice were protected against bleomycin (BLEO)-induced fibrosis and collagen deposition. Further, BLEO-injured il17a-/- mice had diminished levels of circulating Krebs Von Den Lungen 6 (alveolar epithelial injury marker), local caspase-3/7, and local endoplasmic reticular stress-related genes. BLEO-induced local C' activation [C3a, C5a, and terminal C' complex (C5b-9)] was attenuated in il17a-/- mice, and IL-17A neutralization prevented the loss of epithelial C' inhibitors (C' receptor-1 related isoform Y and decay accelerating factor), and an increase in local TUNEL levels. RNAi-mediated gene silencing of il17a in fibrotic mice arrested the progression of lung fibrosis, attenuated cellular apoptosis (caspase-3/7) and lung deposition of collagen and C' (C5b-9). Compared to normals, plasma from IPF patients showed significantly higher hemolytic activity. Our findings demonstrate that limiting complement activation by neutralizing IL-17A is a potential mechanism in ameliorating lung fibrosis.-Cipolla, E., Fisher, A. J., Gu, H., Mickler, E. A., Agarwal, M., Wilke, C. A., Kim, K. K., Moore, B. B., Vittal, R. IL-17A deficiency mitigates bleomycin-induced complement activation during lung fibrosis.
Collapse
Affiliation(s)
- Ellyse Cipolla
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Amanda J Fisher
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; and
| | - Hongmei Gu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; and
| | - Elizabeth A Mickler
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA; and
| | - Manisha Agarwal
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Carol A Wilke
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ragini Vittal
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan, USA;
| |
Collapse
|
52
|
The role of insulin growth factor-1 on the vascular regenerative effect of MAA coated disks and macrophage-endothelial cell crosstalk. Biomaterials 2017; 144:199-210. [PMID: 28841464 DOI: 10.1016/j.biomaterials.2017.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/14/2017] [Indexed: 12/21/2022]
Abstract
The IGF-1 signaling pathway and IGF-1-dependent macrophage/endothelial cell crosstalk was found to be critical features of the vascular regenerative effect displayed by implanted methacrylic acid -co-isodecyl acrylate (MAA-co-IDA; 40% MAA) coated disks in CD1 mice. Inhibition of IGF-1 signaling using AG1024 an IGF1-R tyrosine kinase inhibitor abrogated vessel formation 14 days after disk implantation in a subcutaneous pocket. Explanted tissue had increased arginase 1 expression and reduced iNOS expression consistent with the greater shift from "M1" ("pro-inflammatory") macrophages to "M2" ("pro-angiogenic") macrophages for MAA coated disks relative to control MM (methyl methacrylate-co-IDA) disks; the latter did not generate a vascular response and the polarization shift was muted with AG1024. In vitro, medium conditioned by macrophages (both human dTHP1 cells and mouse bone marrow derived macrophages) had elevated IGF-1 mRNA and protein levels, while the cells had reduced IGF1-R but elevated IGFBP-3 mRNA levels. These cells also had reduced iNOS and elevated Arg1 expression, consistent with the in vivo polarization results, including the inhibitory effects of AG1024. On the other hand, HUVEC exposed to dTHP1 conditioned medium migrated and proliferated faster suggesting that the primary target of the macrophage released IGF-1 was endothelial cells. Although further investigation is warranted, IGF-1 appears to be a key feature underpinning the observed vascularization. Why MAA based materials have this effect remains to be defined, however.
Collapse
|
54
|
Hawksworth OA, Li XX, Coulthard LG, Wolvetang EJ, Woodruff TM. New concepts on the therapeutic control of complement anaphylatoxin receptors. Mol Immunol 2017; 89:36-43. [PMID: 28576324 DOI: 10.1016/j.molimm.2017.05.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022]
Abstract
The complement system is a pivotal driver of innate immunity, coordinating the host response to protect against pathogens. At the heart of the complement response lie the active fragments, C3a and C5a, acting through their specific receptors, C3aR, C5aR1, and C5aR2, to direct the cellular response to inflammation. Their potent function however, places them at risk of damaging the host, with aberrant C3a and C5a signaling activity linked to a wide range of disorders of inflammatory, autoimmune, and neurodegenerative etiologies. As such, the therapeutic control of these receptors represents an attractive drug target, though, the realization of this clinical potential remains limited. With the success of eculizumab, and the progression of a number of novel C5a-C5aR1 targeted drugs to phase II and III clinical trials, there is great promise for complement therapeutics in future clinical practice. In contrast, the toolbox of drugs available to modulate C3aR and C5aR2 signaling remains limited, however, the emergence of new selective ligands and molecular tools, and an increased understanding of the function of these receptors in disease, has highlighted their unique potential for clinical applications. This review provides an update on the growing arsenal of drugs now available to target C5, and C5a and C3a receptor signaling, and discusses their utility in both clinical and pre-clinical development.
Collapse
Affiliation(s)
- Owen A Hawksworth
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Australia
| | - Xaria X Li
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia
| | - Liam G Coulthard
- Royal Brisbane and Women's Hospital, Herston, QLD, Australia; School of Medicine, University of Queensland, Herston, QLD, Australia
| | - Ernst J Wolvetang
- Australian Institute of Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, St. Lucia, Australia.
| |
Collapse
|
55
|
O'Dwyer DN, Norman KC, Xia M, Huang Y, Gurczynski SJ, Ashley SL, White ES, Flaherty KR, Martinez FJ, Murray S, Noth I, Arnold KB, Moore BB. The peripheral blood proteome signature of idiopathic pulmonary fibrosis is distinct from normal and is associated with novel immunological processes. Sci Rep 2017; 7:46560. [PMID: 28440314 PMCID: PMC5404506 DOI: 10.1038/srep46560] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/17/2017] [Indexed: 12/27/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial pneumonia. The disease pathophysiology is poorly understood and the etiology remains unclear. Recent advances have generated new therapies and improved knowledge of the natural history of IPF. These gains have been brokered by advances in technology and improved insight into the role of various genes in mediating disease, but gene expression and protein levels do not always correlate. Thus, in this paper we apply a novel large scale high throughput aptamer approach to identify more than 1100 proteins in the peripheral blood of well-characterized IPF patients and normal volunteers. We use systems biology approaches to identify a unique IPF proteome signature and give insight into biological processes driving IPF. We found IPF plasma to be altered and enriched for proteins involved in defense response, wound healing and protein phosphorylation when compared to normal human plasma. Analysis also revealed a minimal protein signature that differentiated IPF patients from normal controls, which may allow for accurate diagnosis of IPF based on easily-accessible peripheral blood. This report introduces large scale unbiased protein discovery analysis to IPF and describes distinct biological processes that further inform disease biology.
Collapse
Affiliation(s)
- David N O'Dwyer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Katy C Norman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Meng Xia
- Biostatistics Department, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Yong Huang
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| | - Stephen J Gurczynski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shanna L Ashley
- Immunology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Eric S White
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kevin R Flaherty
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Fernando J Martinez
- Department of Internal Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Susan Murray
- Biostatistics Department, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Imre Noth
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| | - Kelly B Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|