Fazelzadeh P, Hoefsloot HCJ, Hankemeier T, Most J, Kersten S, Blaak EE, Boekschoten M, van Duynhoven J. Global testing of shifts in metabolic phenotype.
Metabolomics 2018;
14:139. [PMID:
30830386 PMCID:
PMC6208751 DOI:
10.1007/s11306-018-1435-8]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/21/2018] [Indexed: 11/02/2022]
Abstract
INTRODUCTION
Current metabolomics approaches to unravel impact of diet- or lifestyle induced phenotype variation and shifts predominantly deploy univariate or multivariate approaches, with a posteriori interpretation at pathway level. This however often provides only a fragmented view on the involved metabolic pathways.
OBJECTIVES
To demonstrate the feasibility of using Goeman's global test (GGT) for assessment of variation and shifts in metabolic phenotype at the level of a priori defined pathways.
METHODS
Two intervention studies with identified phenotype variations and shifts were examined. In a weight loss (WL) intervention study obese subjects received a mixed meal challenge before and after WL. In a polyphenol (PP) intervention study obese subjects received a high fat mixed meal challenge (61E% fat) before and after a PP intervention. Plasma samples were obtained at fasting and during the postprandial response. Besides WL- and PP-induced phenotype shifts, also correlation of plasma metabolome with phenotype descriptors was assessed at pathway level. The plasma metabolome covered organic acids, amino acids, biogenic amines, acylcarnitines and oxylipins.
RESULTS
For the population of the WL study, GGT revealed that HOMA correlated with the fasting levels of the TCA cycle, BCAA catabolism, the lactate, arginine-proline and phenylalanine-tyrosine pathways. For the population of the PP study, HOMA correlated with fasting metabolite levels of TCA cycle, fatty acid oxidation and phenylalanine-tyrosine pathways. These correlations were more pronounced for metabolic pathways in the fasting state, than during the postprandial response. The effect of the WL and PP intervention on a priori defined metabolic pathways, and correlation of pathways with insulin sensitivity as described by HOMA was in line with previous studies.
CONCLUSION
GGT confirmed earlier biological findings in a hypothesis led approach. A main advantage of GGT is that it provides a direct view on involvement of a priori defined pathways in phenotype shifts.
Collapse