Fuke H, Shiraki K, Sugimoto K, Tanaka J, Beppu T, Yoneda K, Yamamoto N, Ito K, Masuya M, Takei Y. Jak inhibitor induces S phase cell-cycle arrest and augments TRAIL-induced apoptosis in human hepatocellular carcinoma cells.
Biochem Biophys Res Commun 2007;
363:738-44. [PMID:
17904524 DOI:
10.1016/j.bbrc.2007.09.049]
[Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2007] [Accepted: 09/08/2007] [Indexed: 11/28/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in various cancers and plays a crucial role in oncogensis, including the activation of genes encoding apoptosis inhibitors and cell-cycle regulators. We investigated the biological significance of the Janus kinase (Jak)-STAT pathway in human hepatocellular carcinoma (HCC). Constitutive activation of STAT3 was seen in 49.4% of human HCC specimens and in HCC cell lines. Jak inhibitor AG490 inhibited activation of STAT3 and markedly reduced cell viability without significant apoptosis. AG490 also induced S phase cell-cycle arrest with down-regulation of cyclin D1, A, E and up-regulation of p21, p27, phospho-Chk2. AG490 also inhibited caspase inhibitory proteins, such as XIAP and survivin, and augmented TRAIL-induced apoptosis. Our study suggests that the Jak-STAT pathway plays an important role in cell-cycle progression and resistance to apoptosis. Inhibition of the Jak-STAT pathway may thus be a therapeutic target for HCC.
Collapse