51
|
Guo R, Fan E. Beyond low tidal volumes: ventilating the patient with acute respiratory distress syndrome. Clin Chest Med 2014; 35:729-41. [PMID: 25453421 DOI: 10.1016/j.ccm.2014.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cornerstone of lung protective ventilation in patients with acute respiratory distress syndrome (ARDS) is a pressure- and volume-limited strategy. Other interventions have also been investigated. Although no method for positive end-expiratory pressure (PEEP) titration has proven most advantageous, experimental and clinical data support the use of higher PEEP in patients with moderate/severe ARDS. There is no benefit to the early use of high-frequency oscillatory ventilation (HFOV) in patients with moderate/severe ARDS, although it may be considered as rescue therapy. Further investigations of novel methods of bedside monitoring of mechanical ventilation may help identify the optimal ventilatory strategy.
Collapse
Affiliation(s)
- Ray Guo
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
52
|
Beloncle F, Lorente JA, Esteban A, Brochard L. Update in acute lung injury and mechanical ventilation 2013. Am J Respir Crit Care Med 2014; 189:1187-93. [PMID: 24832743 DOI: 10.1164/rccm.201402-0262up] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- François Beloncle
- 1 Critical Care Department and Keenan Research Centre, St Michael's Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
53
|
Yehya N, Topjian AA, Lin R, Berg RA, Thomas NJ, Friess SH. High frequency oscillation and airway pressure release ventilation in pediatric respiratory failure. Pediatr Pulmonol 2014; 49:707-15. [PMID: 23853049 PMCID: PMC4092114 DOI: 10.1002/ppul.22853] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/31/2013] [Indexed: 11/12/2022]
Abstract
BACKGROUND Airway pressure release ventilation (APRV) and high frequency oscillatory ventilation (HFOV) are frequently used in acute lung injury (ALI) refractory to conventional ventilation. Our aim was to describe our experience with APRV and HFOV in refractory pediatric ALI, and to identify factors associated with survival. METHODS We analyzed 104 patients with hypoxemia refractory to conventional ventilation transitioned to either APRV or HFOV. Demographics, oxygenation index (OI), and PaO2 /FiO2 (PF ratio) were recorded before transition to either mode of nonconventional ventilation (NCV) and for every 12 hr after transition. RESULTS Relative to APRV, patients on HFOV were younger and had more significant lung disease evidenced by higher OI (28.5 [18.6, 36.2] vs. 21.0 [15.5, 30.0], P = 0.008), lower PF ratios (73 [59,94] vs. 99 [76,131], P = 0.002), and more frequent use of inhaled nitric oxide. In univariate analysis, HFOV was associated with more frequent neuromuscular blockade. Forty-one of 104 patients died on NCV (39.4%). Survivors demonstrated improvement in OI 24 hr after transition to NCV, whereas non-survivors did not (12.9 [8.9, 20.9] vs. 28.1 [17.6, 37.1], P < 0.001). After controlling for immunocompromised status, number of vasopressors, and OI before transition, mode of NCV was not associated with mortality. CONCLUSIONS In a heterogeneous PICU population with hypoxemia refractory to conventional ventilation transitioned to NCV, improvement in oxygenation at 24 hr was associated with survival. Immunocompromised status, number of vasopressor infusions, and the OI before transition to NCV were independently associated with survival.
Collapse
Affiliation(s)
- Nadir Yehya
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
54
|
Huang CT, Lin HH, Ruan SY, Lee MS, Tsai YJ, Yu CJ. Efficacy and adverse events of high-frequency oscillatory ventilation in adult patients with acute respiratory distress syndrome: a meta-analysis. Crit Care 2014; 18:R102. [PMID: 24886674 PMCID: PMC4075239 DOI: 10.1186/cc13880] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/07/2014] [Indexed: 11/10/2022] Open
Abstract
Introduction Theoretically, high-frequency oscillatory ventilation (HFOV) achieves all goals of a lung-protective ventilatory mode and seems ideal for the treatment of adult patients with acute respiratory distress syndrome (ARDS). However, its effects on mortality and adverse clinical outcomes remain uncertain given the paucity of high-quality studies in this area. This meta-analysis was performed to evaluate the efficacy and adverse events of HFOV in adults with ARDS. Methods We searched PubMed, EMBASE and Cochrane Central Register of Controlled Trials through February 2014 to retrieve randomized controlled trials of HFOV in adult ARDS patients. Two independent reviewers extracted data on study methods, clinical and physiological outcomes and adverse events. The primary outcome was 30-day or hospital mortality. Risk of bias was evaluated with the Cochrane Collaboration’s tool. Mortality, oxygenation and adverse effects of HFOV were compared to those of conventional mechanical ventilation. A random-effects model was applied for meta-analysis. Results A total of five trials randomly assigning 1,580 patients met inclusion criteria. Pooled data showed that HFOV significantly improved oxygenation on day one of therapy (four studies; 24% higher; 95% confidence interval (CI) 11 to 40%; P <0.01). However, HFOV did not reduce mortality risk (five studies; risk ratio (RR) 1.04; 95% CI 0.83 to 1.31; P = 0.71) and two early terminated studies suggested a harmful effect of HFOV in ARDS (two studies; RR 1.33; 95% CI 1.09 to 1.62; P <0.01). Safety profiles showed that HFOV was associated with a trend toward increased risk of barotrauma (five studies; RR 1.19; 95% CI 0.83 to 1.72; P = 0.34) and unfavorable hemodynamics (five studies; RR 1.16; 95% CI 0.97 to 1.39; P = 0.12). Conclusions HFOV improved oxygenation in adult patients with ARDS; however, it did not confer a survival benefit and might cause harm in the era of lung-protective ventilation strategy. The evidence suggests that HFOV should not be a routine practice in ARDS and further studies specifically selecting patients for this ventilator mode should be pursued.
Collapse
|
55
|
Cordioli RL, Park M, Costa ELV, Gomes S, Brochard L, Amato MBP, Azevedo LCP. Moderately high frequency ventilation with a conventional ventilator allows reduction of tidal volume without increasing mean airway pressure. Intensive Care Med Exp 2014; 2:13. [PMID: 26266914 PMCID: PMC4512987 DOI: 10.1186/2197-425x-2-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/21/2014] [Indexed: 11/10/2022] Open
Abstract
Background The aim of this study was to explore if positive-pressure ventilation delivered by a conventional ICU ventilator at a moderately high frequency (HFPPV) allows a safe reduction of tidal volume (VT) below 6 mL/kg in a porcine model of severe acute respiratory distress syndrome (ARDS) and at a lower mean airway pressure than high-frequency oscillatory ventilation (HFOV). Methods This is a prospective study. In eight pigs (median weight 34 [29,36] kg), ARDS was induced by pulmonary lavage and injurious ventilation. The animals were ventilated with a randomized sequence of respiratory rates: 30, 60, 90, 120, 150, followed by HFOV at 5 Hz. At each step, VT was adjusted to allow partial pressure of arterial carbon dioxide (PaCO2) to stabilize between 57 and 63 mmHg. Data are shown as median [P25th,P75th]. Results After lung injury, the PaO2/FiO2 (P/F) ratio was 92 [63,118] mmHg, pulmonary shunt 26 [17,31]%, and static compliance 11 [8,14] mL/cmH2O. Positive end-expiratory pressure (PEEP) was 14 [10,17] cmH2O. At 30 breaths/min, VT was higher than 6 (7.5 [6.8,10.2]) mL/kg, but at all higher frequencies, VT could be reduced and PaCO2 maintained, leading to reductions in plateau pressures and driving pressures. For frequencies of 60 to 150/min, VT progressively fell from 5.2 [5.1,5.9] to 3.8 [3.7,4.2] mL/kg (p < 0.001). There were no detrimental effects in terms of lung mechanics, auto-PEEP generation, hemodynamics, or gas exchange. Mean airway pressure was maintained constant and was increased only during HFOV. Conclusions During protective mechanical ventilation, HFPPV delivered by a conventional ventilator in a severe ARDS swine model safely allows further tidal volume reductions. This strategy also allowed decreasing airway pressures while maintaining stable PaCO2 levels.
Collapse
Affiliation(s)
- Ricardo Luiz Cordioli
- Research and Education Institute, Hospital Sírio-Libanês, Rua Dona Adma Jafet, 91, Bela Vista, São Paulo, 01308-050, Brazil,
| | | | | | | | | | | | | |
Collapse
|
56
|
Vrettou CS, Zakynthinos SG, Malachias S, Mentzelopoulos SD. The effect of high-frequency oscillatory ventilation combined with tracheal gas insufflation on extravascular lung water in patients with acute respiratory distress syndrome: a randomized, crossover, physiologic study. J Crit Care 2014; 29:568-73. [PMID: 24814973 DOI: 10.1016/j.jcrc.2014.03.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/31/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
PURPOSE High-frequency oscillation combined with tracheal gas insufflation (HFO-TGI) improves oxygenation in patients with acute respiratory distress syndrome (ARDS). There are limited physiologic data regarding the effects of HFO-TGI on hemodynamics and pulmonary edema during ARDS. The aim of this study was to investigate the effect of HFO-TGI on extravascular lung water (EVLW). MATERIALS AND METHODS We conducted a prospective, randomized, crossover study. Consecutive eligible patients with ARDS received sessions of conventional mechanical ventilation with recruitment maneuvers (RMs), followed by HFO-TGI with RMs, or vice versa. Each ventilatory technique was administered for 8 hours. The order of administration was randomly assigned. Arterial/central venous blood gas analysis and measurement of hemodynamic parameters and EVLW were performed at baseline and after each 8-hour period using the single-indicator thermodilution technique. RESULTS Twelve patients received 32 sessions. Pao2/fraction of inspired oxygen and respiratory system compliance were higher (P<.001 for both), whereas extravascular lung water index to predicted body weight and oxygenation index were lower (P=.021 and .029, respectively) in HFO-TGI compared with conventional mechanical ventilation. There was a significant correlation between Pao2/fraction of inspired oxygen improvement and extravascular lung water index drop during HFO-TGI (Rs=-0.452, P=.009). CONCLUSIONS High-frequency oscillation combined with tracheal gas insufflation improves gas exchange and lung mechanics in ARDS and potentially attenuates EVLW accumulation.
Collapse
Affiliation(s)
- Charikleia S Vrettou
- First Department of Critical Care Medicine and Pulmonary Services, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece.
| | - Spyros G Zakynthinos
- First Department of Critical Care Medicine and Pulmonary Services, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Sotirios Malachias
- First Department of Critical Care Medicine and Pulmonary Services, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| | - Spyros D Mentzelopoulos
- First Department of Critical Care Medicine and Pulmonary Services, National and Kapodistrian University of Athens Medical School, Evaggelismos General Hospital, Athens, Greece
| |
Collapse
|
57
|
Ventilation parameters used to guide cardiopulmonary function during mechanical ventilation. Curr Opin Crit Care 2014; 19:215-20. [PMID: 23563923 DOI: 10.1097/mcc.0b013e3283609288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW To describe the newly introduced ventilation parameters that are used at the bedside to estimate cardiopulmonary function during positive pressure ventilation (PPV). RECENT FINDINGS PPV induces right atrial pressure changes over the ventilator cycle. Positive end-expiratory pressure-induced central venous pressure changes and pulse pressure variation have been introduced as parameters that predict fluid responsiveness. Pulse pressure variation seems to be valid even at low tidal volume ventilation. A capnometer can be used to measure low perfusion lung area and to monitor the continuous breath-by-breath cardiac output of ventilated patients. Ultrasound evaluation of the lung parenchyma and diaphragm status is likely to become more popular. To evaluate ventilator settings, functional residual capacity (FRC) measurement and visual lung recruitment estimation via electric impedance tomography (EIT) have been introduced. SUMMARY The utility of lung ultrasound is expanding. Although the clinical implications of FRC measurement and lung monitoring with imaging tools such as EIT are starting to be realized, their efficacy in severe hypoxic respiratory failure should be evaluated further in well designed clinical trials. To improve the preemptive management of impending respiratory failure, an alarm index that integrates noninvasive cardiopulmonary function parameters should be developed.
Collapse
|
58
|
Repessé X, Charron C, Vieillard-Baron A. Une approche moderne de la ventilation dans le syndrome de détresse respiratoire aiguë: laissez le ventricule droit respirer ! MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-013-0822-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
59
|
|
60
|
Charbonney E, Tsang JL, Wassermann J, Adhikari NK. Acute refractory hypoxemia after chest trauma reversed by high-frequency oscillatory ventilation: a case report. J Med Case Rep 2013; 7:186. [PMID: 23855954 PMCID: PMC3726508 DOI: 10.1186/1752-1947-7-186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/26/2013] [Indexed: 11/24/2022] Open
Abstract
Introduction Polytrauma often results in significant hypoxemia secondary to direct lung contusion or indirectly through atelectasis, systemic inflammatory response, large volume fluid resuscitation and blood product transfusion. In addition to causing hypoxemia, atelectasis and acute lung injury can lead to right ventricular failure through an acute increase in pulmonary vascular resistance. Mechanical ventilation is often applied, accompanied with recruitment maneuvers and positive end-expiratory pressure in order to recruit alveoli and reverse atelectasis, while preventing excessive alveolar damage. This strategy should lead to the reversal of the hypoxemic condition and the detrimental heart–lung interaction that may occur. However, as described in this case report, hemodynamic instability and intractable alveolar atelectasis sometimes do not respond to conventional ventilation strategies. Case presentation We describe the case of a 21-year-old Caucasian man with severe chest trauma requiring surgical interventions, who developed refractory hypoxemia and overt right ventricular failure. After multiple failed attempts of recruitment using conventional ventilation, the patient was ventilated with high-frequency oscillatory ventilation. This mode of ventilation allowed the reversal of the hemodynamic effects of severe hypoxemia and of the acute cor pulmonale. We use this case report to describe the physiological advantages of high-frequency oscillatory ventilation in patients with chest trauma, and formulate the arguments to explain the positive effect observed in our patient. Conclusions High-frequency oscillatory ventilation can be used in the context of a blunt chest trauma accompanied by severe hypoxemia due to atelectasis. The positive effect is due to its capacity to recruit the collapsed alveoli and, as a result, the relief of increased pulmonary vascular resistance and subsequently the reversal of acute cor pulmonale. This approach may represent an alternative in case of failure of the conventional ventilation strategy.
Collapse
Affiliation(s)
- Emmanuel Charbonney
- Centre de Santé et de Services Sociaux de Trois-Rivières, 1991 Boul, du Carmel, Trois-Rivières, QC G8Z 3R9, Canada.
| | | | | | | |
Collapse
|
61
|
|
62
|
Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, Meade MO. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 2013; 368:795-805. [PMID: 23339639 DOI: 10.1056/nejmoa1215554] [Citation(s) in RCA: 522] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Previous trials suggesting that high-frequency oscillatory ventilation (HFOV) reduced mortality among adults with the acute respiratory distress syndrome (ARDS) were limited by the use of outdated comparator ventilation strategies and small sample sizes. METHODS In a multicenter, randomized, controlled trial conducted at 39 intensive care units in five countries, we randomly assigned adults with new-onset, moderate-to-severe ARDS to HFOV targeting lung recruitment or to a control ventilation strategy targeting lung recruitment with the use of low tidal volumes and high positive end-expiratory pressure. The primary outcome was the rate of in-hospital death from any cause. RESULTS On the recommendation of the data monitoring committee, we stopped the trial after 548 of a planned 1200 patients had undergone randomization. The two study groups were well matched at baseline. The HFOV group underwent HFOV for a median of 3 days (interquartile range, 2 to 8); in addition, 34 of 273 patients (12%) in the control group received HFOV for refractory hypoxemia. In-hospital mortality was 47% in the HFOV group, as compared with 35% in the control group (relative risk of death with HFOV, 1.33; 95% confidence interval, 1.09 to 1.64; P=0.005). This finding was independent of baseline abnormalities in oxygenation or respiratory compliance. Patients in the HFOV group received higher doses of midazolam than did patients in the control group (199 mg per day [interquartile range, 100 to 382] vs. 141 mg per day [interquartile range, 68 to 240], P<0.001), and more patients in the HFOV group than in the control group received neuromuscular blockers (83% vs. 68%, P<0.001). In addition, more patients in the HFOV group received vasoactive drugs (91% vs. 84%, P=0.01) and received them for a longer period than did patients in the control group (5 days vs. 3 days, P=0.01). CONCLUSIONS In adults with moderate-to-severe ARDS, early application of HFOV, as compared with a ventilation strategy of low tidal volume and high positive end-expiratory pressure, does not reduce, and may increase, in-hospital mortality. (Funded by the Canadian Institutes of Health Research; Current Controlled Trials numbers, ISRCTN42992782 and ISRCTN87124254, and ClinicalTrials.gov numbers, NCT00474656 and NCT01506401.).
Collapse
Affiliation(s)
- Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine, Department of Medicine, University of Toronto, University Health Network and Mount Sinai Hospital, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Kummerfeldt CE, DiVietro ML, Nestor JE. Right ventricular function during high-frequency oscillatory ventilation, use of noninvasive positive pressure ventilation for acute lung injury, and dexmedetomidine use for sedation during mechanical ventilation. Am J Respir Crit Care Med 2013. [PMID: 23204377 DOI: 10.1164/rccm.201206-1106rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Carlos E Kummerfeldt
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | |
Collapse
|
64
|
High-frequency oscillatory ventilation and right ventricular function. Crit Care Med 2012; 40:3106; author reply 3106-7. [DOI: 10.1097/ccm.0b013e3182632147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
65
|
|
66
|
Right ventricular function in mechanical ventilation. Crit Care Med 2012; 40:2925; author reply 2925-6. [DOI: 10.1097/ccm.0b013e31825f70e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|