51
|
|
52
|
Kodama T, Togawa T, Tsukimura T, Kawashima I, Matsuoka K, Kitakaze K, Tsuji D, Itoh K, Ishida YI, Suzuki M, Suzuki T, Sakuraba H. Lyso-GM2 ganglioside: a possible biomarker of Tay-Sachs disease and Sandhoff disease. PLoS One 2011; 6:e29074. [PMID: 22205997 PMCID: PMC3243693 DOI: 10.1371/journal.pone.0029074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 11/20/2011] [Indexed: 11/18/2022] Open
Abstract
To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease.
Collapse
Affiliation(s)
- Takashi Kodama
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Tadayasu Togawa
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Takahiro Tsukimura
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Ikuo Kawashima
- Department of Clinical Genetics, Meiji Pharmaceutical University, Tokyo, Japan
- Department of Molecular Medical Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Matsuoka
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
| | - Keisuke Kitakaze
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
| | - Daisuke Tsuji
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
| | - Kohji Itoh
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
| | - Yo-ichi Ishida
- Department of Molecular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Minoru Suzuki
- Disease Glycomics Team, Systems Glycobiology Research Group, RIKEN, Saitama, Japan
| | - Toshihiro Suzuki
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
| | - Hitoshi Sakuraba
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
- Department of Clinical Genetics, Meiji Pharmaceutical University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
53
|
Evaluation of miglustat treatment in patients with type III mucopolysaccharidosis: a randomized, double-blind, placebo-controlled study. J Pediatr 2011; 159:838-844.e1. [PMID: 21658716 DOI: 10.1016/j.jpeds.2011.04.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/17/2011] [Accepted: 04/21/2011] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To evaluate the efficacy and safety of oral miglustat treatment in patients with mucopolysaccharidosis type III. The primary outcome was efficacy with improvement or stabilization in at least two domains of Vineland Adaptative Behavior Scales at 6 months. The secondary outcome measured the evolution of other cognitive tests at 12 months. The safety and tolerability were assessed throughout the study. STUDY DESIGN This was a randomized, double-blind, placebo-controlled, monocenter, institutional, phase IIb to III study. In case of efficacy at 6 months, the study would go on for another 6 months on an open design with all patients receiving miglustat. In the absence of efficacy at 6 months, the trial had to be continued for 6 more months with the initial design. RESULTS After 6 months, efficacy was not superior in patients with miglustat. The independent review board confirmed continuing the study until 12 months. CONCLUSION Miglustat treatment was not associated with any improvement/stabilization in behavior problems in patients with mucopolysaccharidosis type III. Miglustat has an acceptable safety profile. However, the study has confirmed that miglustat is able to pass through the blood-brain barrier without significantly decreasing ganglioside levels.
Collapse
|
54
|
Belmatoug N, Burlina A, Giraldo P, Hendriksz CJ, Kuter DJ, Mengel E, Pastores GM. Gastrointestinal disturbances and their management in miglustat-treated patients. J Inherit Metab Dis 2011; 34:991-1001. [PMID: 21779792 DOI: 10.1007/s10545-011-9368-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
Miglustat (Zavesca®) is approved for the oral treatment of adult patients with mild to moderate type 1 Gaucher disease (GD1) for whom enzyme replacement therapy is unsuitable, and for the treatment of progressive neurological manifestations in adult and paediatric patients with Niemann-Pick disease type C (NP-C). Gastrointestinal disturbances such as diarrhoea, flatulence and abdominal pain/discomfort have consistently been reported as the most frequent adverse events associated with miglustat during clinical trials and in real-world clinical practice settings. These adverse events are generally mild or moderate in severity, occurring mostly during the initial weeks of therapy. The mechanism underlying these gastrointestinal disturbances is the inhibition by miglustat of intestinal disaccharidase enzymes (mainly sucrase and maltase), leading to sub-optimal hydrolysis of carbohydrates and subsequent osmotic diarrhoea and altered colonic fermentation. Transient decreases in body weight, which are often observed during initial miglustat therapy, are considered likely due to gastrointestinal carbohydrate malabsorption and associated negative caloric balance. While most cases of diarrhoea resolve spontaneously during continued miglustat therapy, diarrhoea also responds well to anti-propulsive medications such as loperamide. Dietary modifications such as reduced consumption of dietary sucrose, maltose and lactose have been shown to improve the gastrointestinal tolerability of miglustat and reduce the magnitude of any changes in body weight, particularly if initiated at or before the start of therapy. Miglustat dose escalation at treatment initiation may also reduce gastrointestinal disturbances. This article discusses these aspects in detail, and provides practical recommendations on how to optimize the gastrointestinal tolerability of miglustat.
Collapse
Affiliation(s)
- Nadia Belmatoug
- Reference Centre for Lysosomal Diseases, Beaujon Hospital, Clichy, France
| | | | | | | | | | | | | |
Collapse
|
55
|
Hemsley KM, Hopwood JJ. Emerging therapies for neurodegenerative lysosomal storage disorders - from concept to reality. J Inherit Metab Dis 2011; 34:1003-12. [PMID: 21584766 DOI: 10.1007/s10545-011-9341-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 03/10/2011] [Accepted: 04/12/2011] [Indexed: 12/12/2022]
Abstract
Lysosomal storage disorders are inherited metabolic diseases in which a mutation in a gene encoding a lysosomal enzyme or lysosome-related protein results in the intra-cellular accumulation of substrate and reduced cell/tissue function. Few patients with neurodegenerative lysosomal storage disorders have access to safe and effective treatments although many therapeutic strategies have been or are presently being studied in vivo thanks to the availability of a large number of animal models. This review will describe the comparative advancement of a variety of therapeutic strategies through the 'research pipeline'. Our goal is to provide information for clinicians, researchers and patients/families alike on the leading therapeutic candidates at this point in time, and also to provide information on emerging approaches that may provide a safe and effective treatment in the future. The length of the pipeline represents the significant and sustained effort required to move a novel concept from the laboratory into the clinic.
Collapse
Affiliation(s)
- Kim M Hemsley
- Lysosomal Diseases Research Unit, 4th Floor Rogerson Building, SA Pathology, Women's and Children's Hospital campus, 72 King William Road, North Adelaide, SA, 5006, Australia.
| | | |
Collapse
|
56
|
Matsuoka K, Tsuji D, Taki T, Itoh K. Thymic involution and corticosterone level in Sandhoff disease model mice: new aspects the pathogenesis of GM2 gangliosidosis. J Inherit Metab Dis 2011; 34:1061-8. [PMID: 21598013 DOI: 10.1007/s10545-011-9316-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 03/04/2011] [Accepted: 03/08/2011] [Indexed: 11/28/2022]
Abstract
Sandhoff disease (SD) is a lysosomal disease caused by a mutation of the HEXB gene associated with excessive accumulation of GM2 ganglioside (GM2) in lysosomes and neurological manifestations. Production of autoantibodies against the accumulated gangliosides has been reported to be involved in the progressive pathogenesis of GM2 gangliosidosis, although the underlying mechanism has not been fully elucidated. The thymus is the key organ in the acquired immune system including the development of autoantibodies. We showed here that thymic involution and an increase in cell death in the organ occur in SD model mice at a late stage of the pathogenesis. Dramatic increases in the populations of Annexin-V(+) cells and terminal deoxynucletidyl transferase dUTP nick end labeling (TUNEL) (+) cells were observed throughout the thymuses of 15-week old SD mice. Enhanced caspase-3/7 activation, but not that of caspase-1/4, -6 ,-8, or -9, was also demonstrated. Furthermore, the serum level of corticosterone, a potent inducer of apoptosis of thymocytes, was elevated during the same period of apoptosis. Our studies suggested that an increase in endocrine corticosterone may be one of the causes that accelerate the apoptosis of thymocytes leading to thymic involution in GM2 gangliosidosis, and thus can be used as a disease marker for evaluation of the thymic condition and disease progression.
Collapse
Affiliation(s)
- Kazuhiko Matsuoka
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78 Sho-machi, Tokushima, Tokushima, 770-8505, Japan
| | | | | | | |
Collapse
|
57
|
Jenkinson SF, Fleet GWJ, Nash RJ, Koike Y, Adachi I, Yoshihara A, Morimoto K, Izumori K, Kato A. Looking-glass synergistic pharmacological chaperones: DGJ and L-DGJ from the enantiomers of tagatose. Org Lett 2011; 13:4064-7. [PMID: 21744786 DOI: 10.1021/ol201552q] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enantiomers of tagatose are converted to L-DGJ [a noncompetitive inhibitor of human lysosome α-galactosidase A (α-Gal A), K(i) 38.5 μM] and DGJ [a competitive inhibitor of α-Gal A, K(i) 15.1 nM] in 66% yield. L-DGJ and DGJ provide the first examples of pharmacological chaperones that (a) are enantiomeric iminosugars and (b) have synergistic activity with implications for the treatment of lysosomal storage disorders and other protein deficiencies.
Collapse
Affiliation(s)
- Sarah F Jenkinson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, OX1 3TA, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Ashe KM, Bangari D, Li L, Cabrera-Salazar MA, Bercury SD, Nietupski JB, Cooper CGF, Aerts JMFG, Lee ER, Copeland DP, Cheng SH, Scheule RK, Marshall J. Iminosugar-based inhibitors of glucosylceramide synthase increase brain glycosphingolipids and survival in a mouse model of Sandhoff disease. PLoS One 2011; 6:e21758. [PMID: 21738789 PMCID: PMC3126858 DOI: 10.1371/journal.pone.0021758] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/06/2011] [Indexed: 12/14/2022] Open
Abstract
The neuropathic glycosphingolipidoses are a subgroup of lysosomal storage disorders for which there are no effective therapies. A potential approach is substrate reduction therapy using inhibitors of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide and related glycosphingolipids that accumulate in the lysosomes. Genz-529468, a blood-brain barrier-permeant iminosugar-based GCS inhibitor, was used to evaluate this concept in a mouse model of Sandhoff disease, which accumulates the glycosphingolipid GM2 in the visceral organs and CNS. As expected, oral administration of the drug inhibited hepatic GM2 accumulation. Paradoxically, in the brain, treatment resulted in a slight increase in GM2 levels and a 20-fold increase in glucosylceramide levels. The increase in brain glucosylceramide levels might be due to concurrent inhibition of the non-lysosomal glucosylceramidase, Gba2. Similar results were observed with NB-DNJ, another iminosugar-based GCS inhibitor. Despite these unanticipated increases in glycosphingolipids in the CNS, treatment nevertheless delayed the loss of motor function and coordination and extended the lifespan of the Sandhoff mice. These results suggest that the CNS benefits observed in the Sandhoff mice might not necessarily be due to substrate reduction therapy but rather to off-target effects.
Collapse
Affiliation(s)
- Karen M. Ashe
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Dinesh Bangari
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Lingyun Li
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | | | - Scott D. Bercury
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | | | | | | | - Edward R. Lee
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Diane P. Copeland
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Seng H. Cheng
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - Ronald K. Scheule
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| | - John Marshall
- Genzyme Corporation, Framingham, Massachusetts, United States of America
| |
Collapse
|
59
|
Matsuoka K, Tamura T, Tsuji D, Dohzono Y, Kitakaze K, Ohno K, Saito S, Sakuraba H, Itoh K. Therapeutic potential of intracerebroventricular replacement of modified human β-hexosaminidase B for GM2 gangliosidosis. Mol Ther 2011; 19:1017-24. [PMID: 21487393 PMCID: PMC3129794 DOI: 10.1038/mt.2011.27] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/27/2011] [Indexed: 11/23/2022] Open
Abstract
To develop a novel enzyme replacement therapy for neurodegenerative Tay-Sachs disease (TSD) and Sandhoff disease (SD), which are caused by deficiency of β-hexosaminidase (Hex) A, we designed a genetically engineered HEXB encoding the chimeric human β-subunit containing partial amino acid sequence of the α-subunit by structure-based homology modeling. We succeeded in producing the modified HexB by a Chinese hamster ovary (CHO) cell line stably expressing the chimeric HEXB, which can degrade artificial anionic substrates and GM2 ganglioside in vitro, and also retain the wild-type (WT) HexB-like thermostability in the presence of plasma. The modified HexB was efficiently incorporated via cation-independent mannose 6-phosphate receptor into fibroblasts derived from Tay-Sachs patients, and reduced the GM2 ganglioside accumulated in the cultured cells. Furthermore, intracerebroventricular administration of the modified HexB to Sandhoff mode mice restored the Hex activity in the brains, and reduced the GM2 ganglioside storage in the parenchyma. These results suggest that the intracerebroventricular enzyme replacement therapy involving the modified HexB should be more effective for Tay-Sachs and Sandhoff than that utilizing the HexA, especially as a low-antigenic enzyme replacement therapy for Tay-Sachs patients who have endogenous WT HexB.
Collapse
Affiliation(s)
- Kazuhiko Matsuoka
- Department of Medicinal Biotechnology, Institute for Medicinal Research, Graduate School of Pharmaceutical Sciences, The University of Tokushima, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Abstract
There are over 70 human diseases that are caused by defects in various aspects of lysosomal function. Until 20 years ago, the only specific therapy available for lysosomal storage disorders was allogeneic haemopoietic stem cell transplantation. Over the last two decades, there has been remarkable progress and there are now licensed treatments for seven of these diseases. In some cases, a choice of agents is available. For selected enzyme-deficiency disordes, ERT (enzyme-replacement therapy) has proved to be highly effective. In other cases, ERT has been less impressive, and it seems that it is not possible to efficiently deliver recombinant enzyme to all tissues. These difficulties have led to the development of other small-molecule-based therapies, and a drug for SRT (substrate-reduction therapy) is now licensed and potential chaperone molecules for ERT are in the late stages of clinical development. Nonetheless, there is still significant unmet clinical need, particularly when it comes to treating LSDs which affect the brain. LSDs have led the way in the development of treatment for genetic disorders, and it seems likely that there will be further therapeutic innovations in the future.
Collapse
|
61
|
Nakamura K, Hattori K, Endo F. Newborn screening for lysosomal storage disorders. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2011; 157C:63-71. [DOI: 10.1002/ajmg.c.30291] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
62
|
Tsuji D, Akeboshi H, Matsuoka K, Yasuoka H, Miyasaki E, Kasahara Y, Kawashima I, Chiba Y, Jigami Y, Taki T, Sakuraba H, Itoh K. Highly phosphomannosylated enzyme replacement therapy for GM2 gangliosidosis. Ann Neurol 2010; 69:691-701. [DOI: 10.1002/ana.22262] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 08/16/2010] [Accepted: 09/09/2010] [Indexed: 12/19/2022]
|
63
|
Masciullo M, Santoro M, Modoni A, Ricci E, Guitton J, Tonali P, Silvestri G. Substrate reduction therapy with miglustat in chronic GM2 gangliosidosis type Sandhoff: results of a 3-year follow-up. J Inherit Metab Dis 2010; 33 Suppl 3:S355-61. [PMID: 20821051 DOI: 10.1007/s10545-010-9186-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 11/24/2022]
Abstract
GM2 gangliosidosis type Sandhoff is caused by a defect of beta-hexosaminidase, an enzyme involved in the catabolism of gangliosides. It has been proposed that substrate reduction therapy using N-butyl-deoxynojirimycin (miglustat) may delay neurological progression, at least in late-onset forms of GM2 gangliosidosis. We report the results of a 3-year treatment with miglustat (100 mg t.i.d) in a patient with chronic Sandhoff disease manifesting with an atypical, spinal muscular atrophy phenotype. The follow-up included serial neurological examinations, blood tests, abdominal ultrasound, and neurophysiologic, cognitive, brain, and muscle MRI studies. We document some minor effects on neurological progression in chronic Sandhoff disease by miglustat treatment, confirming the necessity of phase II therapeutic trials including early-stage patients in order to assess its putative efficacy in chronic Sandhoff disease.
Collapse
Affiliation(s)
- Marcella Masciullo
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
64
|
Champion H, Ramaswami U, Imrie J, Lachmann RH, Gallagher J, Cox TM, Wraith JE. Dietary modifications in patients receiving miglustat. J Inherit Metab Dis 2010; 33 Suppl 3:S379-83. [PMID: 20844964 DOI: 10.1007/s10545-010-9193-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/29/2010] [Accepted: 08/23/2010] [Indexed: 11/26/2022]
Abstract
Weight loss and gastrointestinal disturbances are often seen during miglustat therapy for lysosomal storage diseases. A retrospective analysis of data from a mixed group of patients treated with miglustat at two UK centres was performed to evaluate the effect of two different dietary interventions on body weight and gastrointestinal tolerability during the initial 6 months of miglustat therapy. Neurological outcomes in these patients are not discussed herein. Data were analysed from a total of 29 patients with varied neurolipidoses (21 children/adolescents; 8 adults). Negative mean changes in body weight were seen in children/adolescents on an unmodified diet (-8.1%), and in adults (-4.1%) and children/adolescents (-5.2%) on a low-lactose diet. Patients on the low-disaccharide diet showed a positive mean change in body weight (+2.0%), although there was high variability in this group. Non-parametric sub-analysis of median body-weight change in children/adolescents also showed high variability both within and between diet groups, with no statistically significant difference between the effects of different diets on body weight (p = 0.062). The low-lactose diet reduced gastrointestinal disturbances; single small doses of loperamide were required in some patients. Patients on the low-disaccharide diet showed the lowest frequency of gastrointestinal effects. In conclusion, simple dietary modifications allowed the maintenance of body-weight gain in line with normal growth potential during miglustat therapy in young patients with lysosomal storage diseases, and reduced gastrointestinal disturbances.
Collapse
Affiliation(s)
- H Champion
- Paediatric Metabolic Unit, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK.
| | | | | | | | | | | | | |
Collapse
|
65
|
Staretz-Chacham O, Choi JH, Wakabayashi K, Lopez G, Sidransky E. Psychiatric and behavioral manifestations of lysosomal storage disorders. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1253-65. [PMID: 20872765 DOI: 10.1002/ajmg.b.31097] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The different lysosomal storage disorders (LSDs) manifest with a wide spectrum of clinical presentations. Most of these disorders are typically diagnosed early in life, due to the severity of the associated phenotypes. However, it is important to appreciate that some of the LSDs present later in adolescence or adulthood. The diverse findings triggering the initial diagnosis, as well as the range of manifestations arising later during the disease course, contribute to the complexity of these issues. Clinical presentations occurring at a more advanced age, especially psychiatric and behavioral manifestations, can be overlooked or misdiagnosed. This review describes different psychiatric and behavioral manifestations encountered in individuals with LSDs, including psychosis, schizophrenia, mood disorders, aggressiveness, early-onset dementia, and conduct disorder. Twelve different disorders are presented, including descriptions of their associated biochemical abnormalities, clinical presentations, pathology, epidemiology, and genetics. In addition, discussions of neurocognitive, behavioral, and psychiatric findings are outlined for each disorder. A greater awareness of these features may help to reduce missed diagnoses, to avoid unnecessary, invasive and expensive testing, and to facilitate an earlier detection of these rare disorders. Earlier diagnosis can enable the implementation of appropriate interventions and improve genetic counseling.
Collapse
Affiliation(s)
- Orna Staretz-Chacham
- Office of the Clinical Director, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
66
|
Pathology and current treatment of neurodegenerative sphingolipidoses. Neuromolecular Med 2010; 12:362-82. [PMID: 20730629 DOI: 10.1007/s12017-010-8133-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 08/10/2010] [Indexed: 01/09/2023]
Abstract
Sphingolipidoses constitute a large subgroup of lysosomal storage disorders (LSDs). Many of them are associated with a progressive neurodegeneration. As is the case for LSDs in general, most sphingolipidoses are caused by deficiencies in lysosomal hydrolases. However, accumulation of sphingolipids can also result from deficiencies in proteins involved in the transport or posttranslational modification of lysosomal enzymes, transport of lipids, or lysosomal membrane proteins required for transport of lysosomal degradation end products. The accumulation of sphingolipids in the lysosome together with secondary changes in the concentration and localization of other lipids may cause trafficking defects of membrane lipids and proteins, affect calcium homeostasis, induce the unfolded protein response, activate apoptotic cascades, and affect various signal transduction pathways. To what extent, however, these changes contribute to the pathogenesis of the diseases is not fully understood. Currently, there is no cure for sphingolipidoses. Therapies like enzyme replacement, pharmacological chaperone, and substrate reduction therapy, which have been shown to be efficient in non-neuronopathic LSDs, are currently evaluated in clinical trials of neuronopathic sphingolipidoses. In the future, neural stem cell therapy and gene therapy may become an option for these disorders.
Collapse
|
67
|
Abstract
PURPOSE OF REVIEW Knowledge of the metabolic and genetic basis of known and previously unknown leukodystrophies is constantly increasing, opening new treatment options such as enzyme replacement or cell-based therapies. This brief review highlights some recent work, particularly emphasizing results from studies in adulthood leukodystrophies. RECENT FINDINGS Evidence from recent studies suggests increasing importance of metabolic dysfunctions, for example, in peroxisomal lipid metabolism or energy homeostasis, influencing axonal integrity and oligodendrocyte function and leading to white matter demyelination. In addition, diagnostic and therapeutic progress in metachromatic leukodystrophy, X-linked adrenoleukodystrophy, Krabbe diseases and other rare leukodystrophies with late onset are summarized. SUMMARY Better understanding of leukodystrophies in neurological routine practice is of crucial importance for differentiating between other white matter diseases such as toxic, inflammatory or vascular leukoencephalopathies. Many leukodystrophies are particularly important to recognize because specific treatments already exist or are currently under investigation. The article also provides an overview of currently known leukodystrophies in adulthood.
Collapse
|
68
|
Jardim LB, Villanueva MM, de Souza CFM, Netto CBO. Clinical aspects of neuropathic lysosomal storage disorders. J Inherit Metab Dis 2010; 33:315-29. [PMID: 20490930 DOI: 10.1007/s10545-010-9079-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 03/06/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
The purpose of this review is to describe neurological phenotypes associated with lysosomal storage diseases (LSDs), focusing on features arising from primary neuronal involvement. Clinical presentation, progression and genetic data, are discussed in detail in Part 2, the electronic material. Main features are summarized in Part 1. Insights gained from several observational studies are discussed. Prospective studies of the natural history of most neuronopathic LSDs have been hampered by the rarity of these conditions and the short survival of affected patients. Increasingly, longitudinal observations relating to neurological manifestations are being reported. Better clinical studies are necessary, including repeated measurements of disease progression to facilitate the development of sensitive scoring systems and appropriate counseling of affected individuals and their families. Ideally, clinical studies should involve a large cohort. As treatment becomes available, knowledge of disease expression and factors that influence the phenotype may enable critical assessment of therapeutic outcomes. It is hoped that increased familiarity with the clinical expression of individual LSDs will allow early diagnosis, so families at risk are given options to consider during future pregnancies. Early diagnosis also permits the introduction of timely intervention, to favoring improved outcome in cases that are potentially treatable.
Collapse
Affiliation(s)
- Laura Bannach Jardim
- Department of Internal Medicine, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2350, 90035-903, Porto Alegre, Brazil.
| | | | | | | |
Collapse
|
69
|
Abstract
The lysosomal storage disorders (LSDs) comprise a heterogeneous group of inborn errors of metabolism characterized by tissue substrate deposits, most often caused by a deficiency of the enzyme normally responsible for catabolism of various byproducts of cellular turnover. Individual entities are typified by involvement of multiple body organs, in a pattern reflecting the sites of substrate storage. It is increasingly recognized that one or more processes, such as aberrant inflammation, dysregulation of apoptosis and/or defects of autophagy, may mediate organ dysfunction or failure. Several therapeutic options for various LSDs have been introduced, including hematopoietic stem cell transplantation, enzyme replacement therapy and substrate reduction therapy. Additional strategies are being explored, including the use of pharmacological chaperones and gene therapy. Most LSDs include a variant characterized by primary central nervous system (CNS) involvement. At present, therapy of the CNS manifestations remains a major challenge because of the inability to deliver therapeutic agents across the intact blood-brain barrier. With improved understanding of underlying disease mechanisms, additional therapeutic options may be developed, complemented by various strategies to deliver the therapeutic agent(s) to recalcitrant sites of pathology such as brain, bones and lungs.
Collapse
Affiliation(s)
- Gregory M. Pastores
- Correspondence to: Gregory M. Pastores, MD Department of Neurology and Pediatrics, NYU School of Medicine, 403 East 34th Street, New York, NY 10016, USA
| |
Collapse
|
70
|
Clarke JTR. RECOGNITION AND MANAGEMENT OF LYSOSOMAL STORAGE DISEASES IN ADULTS. Continuum (Minneap Minn) 2009. [DOI: 10.1212/01.con.0000348881.16694.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|