51
|
Negri M, Silva S, Breda D, Henriques M, Azeredo J, Oliveira R. Candida tropicalis biofilms: effect on urinary epithelial cells. Microb Pathog 2012; 53:95-9. [PMID: 22627049 DOI: 10.1016/j.micpath.2012.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/11/2012] [Accepted: 05/12/2012] [Indexed: 11/25/2022]
Abstract
Candida tropicalis infection is strongly associated with the presence of biofilms in urinary catheters. Thus, the aim of this work was to study the behaviour of C. tropicalis in biofilms of different ages (24-120 h) formed in artificial urine (AU) and their effect in human urinary bladder cells (TCC-SUP). Reference strain ATCC 750 and two isolates from patients with candiduria (U69 and U75) were used in this study. The adhesion to human cells was evaluated after 2 h of contact with Candida biofilms, using the Crystal violet staining method, and the human cells response was evaluated in terms of activity inhibition and cell damage. Candida tropicalis aspartyl proteinase (SAPT) gene expression was determined by real-time PCR. Candida tropicalis biofilm cells were able to adhere to TCC-SUP cells. The highest extent of yeast attachment was obtained for the 72 h old biofilm cells. Yeasts affected TCC-SUP cells, with 120 h-biofilm cells causing the highest levels of cell injury. Generally, SAPT3 was highly expressed and SAPT4 was only detected in the reference strain. Overall, it is important to highlight that C. tropicalis cells detached from biofilms are able to colonize human cells and cause some injury and reduction of metabolic activity.
Collapse
Affiliation(s)
- Melyssa Negri
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
52
|
Mullangi PK, Shahani L, Koirala J. Role of endogenous biological response modifiers in pathogenesis of infectious diseases. Infect Dis Clin North Am 2012; 25:733-54. [PMID: 22054753 DOI: 10.1016/j.idc.2011.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biologic response modifiers (BRMs) interact with the host immune system and modify the immune response. BRMs can be therapeutically used to restore, augment, or dampen the host immune response. Although they have been used for decades, their clinical applications have been expanded in the past decade for diagnosis and treatment of many diseases including cancers, immunologic disorders, and infections. This article discusses endogenous biological response modifiers (ie, naturally occurring immunomodulators as a part of the host immune system), which play vital roles as regulators of both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Praveen K Mullangi
- Division of Infectious Diseases, Springfield Clinic, Springfield, IL 62701, USA
| | | | | |
Collapse
|
53
|
Vandeputte P, Ischer F, Sanglard D, Coste AT. In vivo systematic analysis of Candida albicans Zn2-Cys6 transcription factors mutants for mice organ colonization. PLoS One 2011; 6:e26962. [PMID: 22073120 PMCID: PMC3205040 DOI: 10.1371/journal.pone.0026962] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 10/07/2011] [Indexed: 12/23/2022] Open
Abstract
The incidence of fungal infections in immuno-compromised patients increased considerably over the last 30 years. New treatments are therefore needed against pathogenic fungi. With Candida albicans as a model, study of host-fungal pathogen interactions might reveal new sources of therapies. Transcription factors (TF) are of interest since they integrate signals from the host environment and participate in an adapted microbial response. TFs of the Zn2-Cys6 class are specific to fungi and are important regulators of fungal metabolism. This work analyzed the importance of the C. albicans Zn2-Cys6 TF for mice kidney colonization. For this purpose, 77 Zn2-Cys6 TF mutants were screened in a systemic mice model of infection by pools of 10 mutants. We developed a simple barcoding strategy to specifically detect each mutant DNA from mice kidney by quantitative PCR. Among the 77 TF mutant strains tested, eight showed a decreased colonization including mutants for orf19.3405, orf19.255, orf19.5133, RGT1, UGA3, orf19.6182, SEF1 and orf19.2646, and four an increased colonization including mutants for orf19.4166, ZFU2, orf19.1685 and UPC2 as compared to the isogenic wild type strain. Our approach was validated by comparable results obtained with the same animal model using a single mutant and the revertant for an ORF (orf19.2646) with still unknown functions. In an attempt to identify putative involvement of such TFs in already known C. albicans virulence mechanisms, we determined their in vitro susceptibility to pH, heat and oxidative stresses, as well as ability to produce hyphae and invade agar. A poor correlation was found between in vitro and in vivo assays, thus suggesting that TFs needed for mice kidney colonization may involve still unknown mechanisms. This large-scale analysis of mice organ colonization by C. albicans can now be extended to other mutant libraries since our in vivo screening strategy can be adapted to any preexisting mutants.
Collapse
Affiliation(s)
- Patrick Vandeputte
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Françoise Ischer
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Alix T. Coste
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
54
|
Increased susceptibility to Candida infection following cecal ligation and puncture. Biochem Biophys Res Commun 2011; 414:37-43. [PMID: 21939638 DOI: 10.1016/j.bbrc.2011.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/06/2011] [Indexed: 12/16/2022]
Abstract
Secondary infection following septic insult represents a significant cause of morbidity and mortality in hospitalized patients. Sepsis induced immunosuppression is a major factor in the host's susceptibility to nosocomial infections and Candida albicans accounts for a growing number of these. Given the importance of improving our understanding of the immune response to sepsis and the increasing rates of C. albicans infections, we sought to develop a murine model of double injury consisting of primary peritonitis, i.e., cecal ligation and puncture (CLP), followed by a secondary challenge of C. albicans. As observed in previous work, after primary injury the immune profile of the host changes over time. Therefore, while keeping the mortality rates from the respective individual injuries low, we altered the timing of the secondary injury between two post-CLP time points, day two and day four. Mice subjected to C. albicans infection following CLP have significantly different survival rates dependent upon timing of secondary injury. Animals challenged with C. albicans at two days post CLP had 91% mortality whereas animals challenged at four days had 47% mortality. This improvement in survival at four days was associated with restoration of innate cell populations and as evidenced by stimulated splenocytes, increases in certain inflammatory cytokines. In addition, we show that susceptibility to C. albicans infection following CLP is dependent upon the depth of immunosuppression. Although at four days post-CLP there is a partial reconstitution of the immune system, these animals remain more susceptible to infection compared to their single injury (C. albicans alone) counterparts. Collectively, these studies demonstrate that immunosuppression following initial septic insult changes over time. This novel, two hit model of CLP followed by Candida provides additional insight into the immune compromised state created by primary peritonitis, and thereby opens up another avenue of investigation into the causes and possible cures of an emerging clinical problem.
Collapse
|
55
|
Eggimann P, Bille J, Marchetti O. Diagnosis of invasive candidiasis in the ICU. Ann Intensive Care 2011; 1:37. [PMID: 21906271 PMCID: PMC3224461 DOI: 10.1186/2110-5820-1-37] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 09/01/2011] [Indexed: 12/22/2022] Open
Abstract
Invasive candidiasis ranges from 5 to 10 cases per 1,000 ICU admissions and represents 5% to 10% of all ICU-acquired infections, with an overall mortality comparable to that of severe sepsis/septic shock. A large majority of them are due to Candida albicans, but the proportion of strains with decreased sensitivity or resistance to fluconazole is increasingly reported. A high proportion of ICU patients become colonized, but only 5% to 30% of them develop an invasive infection. Progressive colonization and major abdominal surgery are common risk factors, but invasive candidiasis is difficult to predict and early diagnosis remains a major challenge. Indeed, blood cultures are positive in a minority of cases and often late in the course of infection. New nonculture-based laboratory techniques may contribute to early diagnosis and management of invasive candidiasis. Both serologic (mannan, antimannan, and betaglucan) and molecular (Candida-specific PCR in blood and serum) have been applied as serial screening procedures in high-risk patients. However, although reasonably sensitive and specific, these techniques are largely investigational and their clinical usefulness remains to be established. Identification of patients susceptible to benefit from empirical antifungal treatment remains challenging, but it is mandatory to avoid antifungal overuse in critically ill patients. Growing evidence suggests that monitoring the dynamic of Candida colonization in surgical patients and prediction rules based on combined risk factors may be used to identify ICU patients at high risk of invasive candidiasis susceptible to benefit from prophylaxis or preemptive antifungal treatment.
Collapse
Affiliation(s)
- Philippe Eggimann
- Adult Critical Care Medicine and Burn Centre, Centre Hospitalier Universitaire Vaudois (CHUV) -- BH 08-619, Bugnon 46 CH-1011 Lausanne, Switzerland.
| | | | | |
Collapse
|
56
|
Tobudic S, Kratzer C, Lassnigg A, Presterl E. Antifungal susceptibility of Candida albicans in biofilms. Mycoses 2011; 55:199-204. [DOI: 10.1111/j.1439-0507.2011.02076.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
57
|
Cutler JE, Corti M, Lambert P, Ferris M, Xin H. Horizontal transmission of Candida albicans and evidence of a vaccine response in mice colonized with the fungus. PLoS One 2011; 6:e22030. [PMID: 21818288 PMCID: PMC3139608 DOI: 10.1371/journal.pone.0022030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/13/2011] [Indexed: 11/27/2022] Open
Abstract
Disseminated candidiasis is the third leading nosocomial blood stream infection in the United States and is often fatal. We previously showed that disseminated candidiasis was preventable in normal mice by immunization with either a glycopeptide or a peptide synthetic vaccine, both of which were Candida albicans cell wall derived. A weakness of these studies is that, unlike humans, mice do not have a C. albicans GI flora and they lack Candida serum antibodies. We examined the influence of C. albicans GI tract colonization and serum antibodies on mouse vaccination responses to the peptide, Fba, derived from fructose bisphosphate aldolase which has cytosolic and cell wall distributions in the fungus. We evaluated the effect of live C. albicans in drinking water and antimicrobial agents on establishment of Candida colonization of the mouse GI tract. Body mass, C. albicans in feces, and fungal-specific serum antibodies were monitored longitudinally. Unexpectedly, C. albicans colonization occurred in mice that received only antibiotics in their drinking water, provided that the mice were housed in the same room as intentionally colonized mice. The fungal strain in unintentionally colonized mice appeared identical to the strain used for intentional GI-tract colonization. This is the first report of horizontal transmission and spontaneous C. albicans colonization in mice. Importantly, many Candida-colonized mice developed serum fungal-specific antibodies. Despite the GI-tract colonization and presence of serum antibodies, the animals made antibodies in response to the Fba immunogen. This mouse model has potential for elucidating C. albicans horizontal transmission and for exploring factors that induce host defense against disseminated candidiasis. Furthermore, a combined protracted GI-tract colonization with Candida and the possibility of serum antibody responses to the presence of the fungus makes this an attractive mouse model for testing the efficacy of vaccines designed to prevent human disseminated candidiasis.
Collapse
Affiliation(s)
- Jim E Cutler
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America.
| | | | | | | | | |
Collapse
|
58
|
Ganguly S, Mitchell AP. Mucosal biofilms of Candida albicans. Curr Opin Microbiol 2011; 14:380-5. [PMID: 21741878 DOI: 10.1016/j.mib.2011.06.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/08/2011] [Indexed: 12/17/2022]
Abstract
Biofilms are microbial communities that form on surfaces and are embedded in an extracellular matrix. C. albicans forms pathogenic mucosal biofilms that are evoked by changes in host immunity or mucosal ecology. Mucosal surfaces are inhabited by many microbial species; hence these biofilms are polymicrobial. Several recent studies have applied paradigms of biofilm analysis to study mucosal C. albicans infections. These studies reveal that the Bcr1 transcription factor is a master regulator of C. albicans biofilm formation under diverse conditions, though the most relevant Bcr1 target genes can vary with the biofilm niche. An important determinant of mucosal biofilm formation is the interaction with host defenses. Finally, studies of interactions between bacterial species and C. albicans provide insight into the communication mechanisms that endow polymicrobial biofilms with unique properties.
Collapse
Affiliation(s)
- Shantanu Ganguly
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
59
|
Villena J, Salva S, Agüero G, Alvarez S. Immunomodulatory and protective effect of probiotic Lactobacillus casei against Candida albicans infection in malnourished mice. Microbiol Immunol 2011; 55:434-45. [DOI: 10.1111/j.1348-0421.2011.00334.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
60
|
Hnisz D, Tscherner M, Kuchler K. Targeting chromatin in fungal pathogens as a novel therapeutic strategy: histone modification gets infectious. Epigenomics 2011; 3:129-32. [DOI: 10.2217/epi.11.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Denes Hnisz
- Medical University Vienna, Christian Doppler Laboratory for Infection Biology, Max F Perutz Laboratories, A-1030 Vienna, Austria
| | - Michael Tscherner
- Medical University Vienna, Christian Doppler Laboratory for Infection Biology, Max F Perutz Laboratories, A-1030 Vienna, Austria
| | - Karl Kuchler
- Medical University Vienna, Christian Doppler Laboratory for Infection Biology, Max F Perutz Laboratories, A-1030 Vienna, Austria
| |
Collapse
|
61
|
Dos Santos ALS. Protease expression by microorganisms and its relevance to crucial physiological/pathological events. World J Biol Chem 2011; 2:48-58. [PMID: 21537490 PMCID: PMC3083995 DOI: 10.4331/wjbc.v2.i3.48] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 02/21/2011] [Accepted: 02/28/2011] [Indexed: 02/05/2023] Open
Abstract
The treatment of infections caused by fungi and trypanosomatids is difficult due to the eukaryotic nature of these microbial cells, which are similar in several biochemical and genetic aspects to host cells. Aggravating this scenario, very few antifungal and anti-trypanosomatidal agents are in clinical use and, therefore, therapy is limited by drug safety considerations and their narrow spectrum of activity, efficacy and resistance. The search for new bioactive agents against fungi and trypanosomatids has been expanded because progress in biochemistry and molecular biology has led to a better understanding of important and essential pathways in these microorganisms including nutrition, growth, proliferation, signaling, differentiation and death. In this context, proteolytic enzymes produced by these eukaryotic microorganisms are appointed and, in some cases, proven to be excellent targets for searching novel natural and/or synthetic pharmacological compounds, in order to cure or prevent invasive fungal/trypanosomatid diseases. With this task in mind, our research group and others have focused on aspartic-type proteases, since the activity of this class of hydrolytic enzymes is directly implicated in several facets of basic biological processes of both fungal and trypanosomatid cells as well as due to the participation in numerous events of interaction between these microorganisms and host structures. In the present paper, a concise revision of the beneficial effects of aspartic protease inhibitors, with emphasis on the aspartic protease inhibitors used in the anti-human immunodeficiency virus therapy, will be presented and discussed using our experience with the following microbial models: the yeast Candida albicans, the filamentous fungus Fonsecaea pedrosoi and the protozoan trypanosomatid Leishmania amazonensis.
Collapse
Affiliation(s)
- André Luis Souza Dos Santos
- André Luis Souza dos Santos, Laboratory of Multidisciplinary Studies on Microbial Biochemistry, Department of General Microbiology, Institute of Microbiology Prof. Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|