51
|
Peckova K, Vanecek T, Martinek P, Spagnolo D, Kuroda N, Brunelli M, Vranic S, Djuricic S, Rotterova P, Daum O, Kokoskova B, Vesela P, Pivovarcikova K, Bauleth K, Dubova M, Kalusova K, Hora M, Michal M, Hes O. Aggressive and nonaggressive translocation t(6;11) renal cell carcinoma: comparative study of 6 cases and review of the literature. Ann Diagn Pathol 2014; 18:351-7. [DOI: 10.1016/j.anndiagpath.2014.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/06/2014] [Indexed: 11/25/2022]
|
52
|
Abstract
Renal cell carcinoma (RCC) occurs in 2% to 4% of patients with tuberous sclerosis complex (TSC). Previous reports have noted a variety of histologic appearances in these cancers, but the full spectrum of morphologic and molecular features has not been fully elucidated. We encountered 46 renal epithelial neoplasms from 19 TSC patients and analyzed their clinical, pathologic, and molecular features, enabling separation of these 46 tumors into 3 groups. The largest subset of tumors (n=24) had a distinct morphologic, immunologic, and molecular profile, including prominent papillary architecture and uniformly deficient succinate dehydrogenase subunit B (SDHB) expression prompting the novel term "TSC-associated papillary RCC (PRCC)." The second group (n=15) were morphologically similar to a hybrid oncocytic/chromophobe tumor (HOCT), whereas the last 7 renal epithelial neoplasms of group 3 remained unclassifiable. The TSC-associated PRCCs had prominent papillary architecture lined by clear cells with delicate eosinophilic cytoplasmic thread-like strands that occasionally appeared more prominent and aggregated to form eosinophilic globules. All 24 (100%) of these tumors were International Society of Urological Pathology (ISUP) nucleolar grade 2 or 3 with mostly basally located nuclei. Tumor cells from 17 of 24 TSC-associated PRCCs showed strong, diffuse labeling for carbonic anhydrase IX (100%), CK7 (94%), vimentin (88%), and CD10 (83%) and were uniformly negative for SDHB, TFE3, and AMACR. Gains of chromosomes 7 and 17 were found in 2 tumors, whereas chromosome 3p deletion and TFE3 translocations were not detected. In this study, we reported a sizable cohort of renal tumors seen in TSC and were able to identify them as different morphotypes, which may help to expand the morphologic spectrum of TSC-associated RCC.
Collapse
|
53
|
t(6;11) renal cell carcinoma (RCC): expanded immunohistochemical profile emphasizing novel RCC markers and report of 10 new genetically confirmed cases. Am J Surg Pathol 2014; 38:604-14. [PMID: 24618616 DOI: 10.1097/pas.0000000000000203] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renal cell carcinomas (RCCs) harboring the t(6;11)(p21;q12) translocation were first described in 2001 and recently recognized by the 2013 International Society of Urological Pathology Vancouver Classification of Renal Neoplasia. Although these RCCs are known to label for melanocytic markers HMB45 and Melan A and the cysteine protease cathepsin K by immunohistochemistry (IHC), a comprehensive IHC profile has not been reported. We report 10 new t(6;11) RCCs, all confirmed by break-apart TFEB fluorescence in situ hybridization. A tissue microarray containing 6 of these cases and 7 other previously reported t(6;11) RCCs was constructed and immunolabeled for 21 different antigens. Additional whole sections of t(6;11) RCC were labeled with selected IHC markers. t(6;11) RCC labeled diffusely and consistently for cathepsin K and Melan A (13 of 13 cases) and almost always at least focally for HMB45 (12 of 13 cases). They labeled frequently for PAX8 (14 of 23 cases), CD117 (10 of 14 cases), and vimentin (9 of 13 cases). A majority of cases labeled at least focally for cytokeratin Cam5.2 (8 of 13 cases) and CD10 and RCC marker antigen (10 of 14 cases each). In contrast to a prior study's findings, only a minority of cases labeled for Ksp-cadherin (3 of 19 cases). The median H score (product of intensity score and percentage labeling) for phosphorylated S6, a marker of mTOR pathway activation, was 101, which is high relative to most other RCC subtypes. In summary, IHC labeling for PAX8, Cam5.2, CD10, and RCC marker antigen supports classification of the t(6;11) RCC as carcinomas despite frequent negativity for broad-spectrum cytokeratins and EMA. Labeling for PAX8 distinguishes the t(6;11) RCC from epithelioid angiomyolipoma, which otherwise shares a similar immunoprofile. CD117 labeling is more frequent in the t(6;11) RCC compared with the related Xp11 translocation RCC. Increased pS6 expression suggests a possible molecular target for the uncommon t(6;11) RCCs that metastasize.
Collapse
|
54
|
Hora M, Urge T, Trávníček I, Ferda J, Chudáček Z, Vaněček T, Michal M, Petersson F, Kuroda N, Hes O. MiT translocation renal cell carcinomas: two subgroups of tumours with translocations involving 6p21 [t (6; 11)] and Xp11.2 [t (X;1 or X or 17)]. SPRINGERPLUS 2014; 3:245. [PMID: 24877033 PMCID: PMC4032393 DOI: 10.1186/2193-1801-3-245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/30/2014] [Indexed: 02/03/2023]
Abstract
INTRODUCTION MiT translocation renal cell carcinomas (TRCC) predominantly occur in younger patients with only 25% of patients being over 40 years. TRCC contains two main subgroups with translocations involving 6p21 or Xp11.2. Herein we present 10 cases. MATERIALS Eight cases were treated at main author's institution (identified among 1653 (0.48%) cases of kidney tumours in adults). Two cases were retrieved from the Pilsen (CZ) Tumour Registry. RESULTS Six cases were type Xp11.2 and four 6p21; 7 female, 3 male patients; Xp11.2 4:2, 6p21 3:1. The mean age 49 years (range: 21-80), 5 patients (50%) over 40 years. The mean age of the group with Xp11.2 TRCCs was 55 (median 51) and 6p21 41 (32) years. One female with a 6p21 tumour (24 years) underwent nephrectomy at 4 months of pregnancy. Stage (UICC, 7th ed. 2009) was 5xI, 3xIII, 2xIV. The mean size of tumour was 80 (40-165) mm. The mean follow-up was 33.2 (1-92) months. In patients with 6p21 tumours, one (25%) died after 3 months due to widely metastatic disease. In patients with Xp11.2 tumours, 3 (50%) succumbed due to metastatic disease (range 1-8 months). Three patients with Xp11.2 are alive at 7, 52 and 92 months of follow-up, were diagnosed at early stage (T1a). CONCLUSION TRCCs were more common in females. Patient with 6p21 tumours were younger than those with Xp11.2. Both types have definitive malignant potential Type Xp11.2 seems to be a more aggressive neoplasm than 6p21. The case with metastatic 6p21 tumour is the 4th case described in the English literature.
Collapse
Affiliation(s)
- Milan Hora
- Department of Urology Faculty Hospital, E. Beneše 13, Pilsen, 305 99 Czech Republic ; Faculty of Medicine in Pilsen, Charles University in Prague, Prague, Czech Republic
| | - Tomáš Urge
- Department of Urology Faculty Hospital, E. Beneše 13, Pilsen, 305 99 Czech Republic ; Faculty of Medicine in Pilsen, Charles University in Prague, Prague, Czech Republic
| | - Ivan Trávníček
- Department of Urology Faculty Hospital, E. Beneše 13, Pilsen, 305 99 Czech Republic ; Faculty of Medicine in Pilsen, Charles University in Prague, Prague, Czech Republic
| | - Jiří Ferda
- Department of Radiology, Pilsen, Czech Republic ; Faculty of Medicine in Pilsen, Charles University in Prague, Prague, Czech Republic
| | | | - Tomáš Vaněček
- Department of Pathology, Faculty Hospital in Pilsen, Pilsen, Czech Republic
| | - Michal Michal
- Department of Pathology, Faculty Hospital in Pilsen, Pilsen, Czech Republic ; Faculty of Medicine in Pilsen, Charles University in Prague, Prague, Czech Republic
| | - Fredrik Petersson
- Department of Pathology, National University Health System, Singapore, Singapore
| | - Naoto Kuroda
- Department of Diagnostic Pathology, Kochi Red Cross Hospital, Kochi, Japan
| | - Ondřej Hes
- Department of Pathology, Faculty Hospital in Pilsen, Pilsen, Czech Republic ; Faculty of Medicine in Pilsen, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
55
|
Wang L, Williamson SR, Wang M, Davidson DD, Zhang S, Baldridge LA, Du X, Cheng L. Molecular subtyping of metastatic renal cell carcinoma: implications for targeted therapy. Mol Cancer 2014; 13:39. [PMID: 24568263 PMCID: PMC3945615 DOI: 10.1186/1476-4598-13-39] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/19/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is known for its ability to metastasize synchronously or metachronously to various anatomic sites. Distinguishing histologic subtypes of metastatic RCC has become increasingly important, as prognosis and therapy can differ dramatically between subtypes. We propose a combination of immunohistochemistry (IHC) and molecular cytogenetics for subtyping metastatic RCC in light of these potential therapeutic implications. RESULTS Specimens from 103 cases of metastatic RCC were retrieved, including 32 cases originally diagnosed as metastatic clear cell renal cell carcinoma (CCRCC), 8 as metastatic papillary renal cell carcinoma (PRCC), and 63 metastatic RCC without a specific subtype. Immunohistochemistry was performed with antibodies against cytokeratin 7 (CK7) and alpha-methylacyl-CoA racemase (AMACR). Dual color interphase fluorescence in situ hybridization was utilized to assess for deletion of chromosome 3p and trisomy of chromosomes 7 and 17 in all tumors. Chromosome 3p deletion was detected in 41% of all metastatic RCC specimens, and trisomy of chromosomes 7 and/or 17 was detected in 16%. Of metastatic CCRCC, chromosome 3p deletion was detected in 63%. Of metastatic PRCC, 75% showed trisomy of chromosomes 7 and/or 17. Of the tumors not previously classified, 6% were positive for CK7, and 64% were positive for AMACR; 35% showed chromosome 3p deletion, and 16% showed trisomy of chromosomes 7 and/or 17. Combined analysis of immunohistochemistry and cytogenetics enabled reclassification of 52% of these metastatic tumors not previously classified. CONCLUSION Our findings support the utility of immunohistochemistry and cytogenetics for subtyping metastatic RCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | | |
Collapse
|
56
|
Xia QY, Rao Q, Cheng L, Shen Q, Shi SS, Li L, Liu B, Zhang J, Wang YF, Shi QL, Wang JD, Ma HH, Lu ZF, Yu B, Zhang RS, Zhou XJ. Loss of BRM expression is a frequently observed event in poorly differentiated clear cell renal cell carcinoma. Histopathology 2014; 64:847-62. [PMID: 24471421 DOI: 10.1111/his.12334] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 11/19/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Qiu-yuan Xia
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Qiu Rao
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Liang Cheng
- Department of Pathology and Laboratory; Indiana University School of Medicine; Indianapolis IN USA
| | - Qin Shen
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Shan-shan Shi
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Li Li
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Biao Liu
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Jin Zhang
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Yan-fen Wang
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Qun-li Shi
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Jian-dong Wang
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Heng-hui Ma
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Zhen-feng Lu
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Bo Yu
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Ru-song Zhang
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Xiao-jun Zhou
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| |
Collapse
|
57
|
Crumley SM, Divatia M, Truong L, Shen S, Ayala AG, Ro JY. Renal cell carcinoma: Evolving and emerging subtypes. World J Clin Cases 2013; 1:262-275. [PMID: 24364021 PMCID: PMC3868710 DOI: 10.12998/wjcc.v1.i9.262] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 12/11/2013] [Indexed: 02/05/2023] Open
Abstract
Our knowledge of renal cell carcinoma (RCC) is rapidly expanding. For those who diagnose and treat RCC, it is important to understand the new developments. In recent years, many new renal tumors have been described and defined, and our understanding of the biology and clinical correlates of these tumors is changing. Evolving concepts in Xp11 translocation carcinoma, mucinous tubular and spindle cell carcinoma, multilocular cystic clear cell RCC, and carcinoma associated with neuroblastoma are addressed within this review. Tubulocystic carcinoma, thyroid-like follicular carcinoma of kidney, acquired cystic disease-associated RCC, and clear cell papillary RCC are also described. Finally, candidate entities, including RCC with t(6;11) translocation, hybrid oncocytoma/chromophobe RCC, hereditary leiomyomatosis and RCC syndrome, and renal angiomyoadenomatous tumor are reviewed. Knowledge of these new entities is important for diagnosis, treatment and subsequent prognosis. This review provides a targeted summary of new developments in RCC.
Collapse
|
58
|
Bambury RM, Battley JE, McCarthy A, Brady C, O'Reilly S, Kelly PJ, O'Brien F, Sweeney P, Fleming S, Mayer NJ, Power DG. Translocation Renal Cell Carcinomas: An Evolving Entity and a Member of the Microphthalmia Transcription Factor-Associated Family of Tumors. Clin Genitourin Cancer 2013; 11:357-61. [DOI: 10.1016/j.clgc.2012.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 11/27/2012] [Accepted: 12/08/2012] [Indexed: 11/26/2022]
|
59
|
TFE3 break-apart FISH has a higher sensitivity for Xp11.2 translocation-associated renal cell carcinoma compared with TFE3 or cathepsin K immunohistochemical staining alone: expanding the morphologic spectrum. Am J Surg Pathol 2013; 37:804-15. [PMID: 23598965 DOI: 10.1097/pas.0b013e31827e17cb] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Renal cell carcinoma (RCC) associated with Xp11.2 translocation is uncommon, characterized by several different translocations involving the TFE3 gene. We assessed the utility of break-apart fluorescence in situ hybridization (FISH) in establishing the diagnosis for suspected or unclassified cases with negative or equivocal TFE3 immunostaining by analyzing 24 renal cancers with break-apart TFE3 FISH and comparing the molecular findings with the results of TFE3 and cathepsin K immunostaining in the same tumors. Ten tumors were originally diagnosed as Xp11.2 RCC on the basis of positive TFE3 immunostaining, and 14 were originally considered unclassified RCCs with negative or equivocal TFE3 staining, but with a range of features suspicious for Xp11.2 RCC. Seventeen cases showed TFE3 rearrangement associated with Xp11.2 translocation by FISH, including all 13 tumors with moderate or strong TFE3 (n=10) or cathepsin K (n=7) immunoreactivity. FISH-positive cases showed negative or equivocal immunoreactivity for TFE3 or cathepsin K in 7 and 10 tumors, respectively (both=3). None had positive immunohistochemistry but negative FISH. Morphologic features were typical for Xp11.2 RCC in 10/17 tumors. Unusual features included 1 melanotic Xp11.2 renal cancer, 1 tumor with mixed features of Xp11.2 RCC and clear cell RCC, and other tumors mimicking clear cell RCC, multilocular cystic RCC, or high-grade urothelial carcinoma. Morphology mimicking high-grade urothelial carcinoma has not been previously reported in these tumors. Psammoma bodies, hyalinized stroma, and intracellular pigment were preferentially identified in FISH-positive cases compared with FISH-negative cases. Our results support the clinical application of a TFE3 break-apart FISH assay for diagnosis and confirmation of Xp11.2 RCC and further expand the histopathologic spectrum of these neoplasms to include tumors with unusual features. A renal tumor with pathologic or clinical features highly suggestive of translocation-associated RCC but exhibiting negative or equivocal TFE3 immunostaining should be evaluated by TFE3 FISH assay to fully assess this possibility.
Collapse
|
60
|
Rao Q, Cheng L, Xia QY, Liu B, Li L, Shi QL, Shi SS, Yu B, Zhang RS, Ma HH, Lu ZF, Tu P, Zhou XJ. Cathepsin K expression in a wide spectrum of perivascular epithelioid cell neoplasms (PEComas): a clinicopathological study emphasizing extrarenal PEComas. Histopathology 2013; 62:642-50. [PMID: 23379905 DOI: 10.1111/his.12059] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 10/31/2012] [Indexed: 12/17/2022]
Abstract
AIMS Recent studies have demonstrated that cathepsin K seems to be a powerful marker in identifying renal perivascular epithelioid cell neoplasms (PEComas). However, the expression in extrarenal PEComas has not been well characterized due to their rare incidence. Our aim was to investigate the expression of cathepsin K in a wide spectrum of extrarenal PEComas and evaluate its potential diagnostic usefulness in comparison with other commonly used markers. METHODS AND RESULTS Twenty-three cases of PEComa (liver, n = 9; lung, n = 1; broad ligament of uterus, n = 1; vertex subcutaneous soft tissue, n = 1; abdominal wall, n = 1; and kidney, n = 10) were selected for study. All displayed a high percentage of cells with moderately to strongly positive reactions for cathepsin K (mean 91%; range 80-100%). HMB45, Melan-A and smooth muscle actin (SMA) were expressed in 78, 87 and 87% of cases, respectively, with various percentages of positive cells (mean, 34, 40 and 38%; range 0-80, 0-90 and 0-90%). Transcription factor E3 (TFE3) was expressed strongly in only three cases; none exhibited evidence of TFE3 gene fusion or amplification. CONCLUSIONS Cathepsin K appears to be more powerful than other commonly used markers in diagnosing a wide spectrum of PEComas and distinguishing them from the majority of human cancers.
Collapse
Affiliation(s)
- Qiu Rao
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|