51
|
The Regulatory Role of α-Ketoglutarate Metabolism in Macrophages. Mediators Inflamm 2021; 2021:5577577. [PMID: 33859536 PMCID: PMC8024083 DOI: 10.1155/2021/5577577] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/17/2022] Open
Abstract
Macrophages are multifunctional immune cells whose functions depend on polarizable phenotypes and the microenvironment. Macrophages have two phenotypes, including the M1 proinflammatory phenotype and the M2 anti-inflammatory phenotype, which play important roles in many inflammatory responses and diseases. α-Ketoglutarate is a key metabolite of the TCA cycle and can regulate the phenotype of macrophage polarization to exert anti-inflammatory effects in many inflammation-related diseases. In this review, we primarily elucidate the metabolism, regulatory mechanism, and perspectives of α-ketoglutarate on macrophages. The regulation of macrophage polarization by α-ketoglutarate may provide a promising target for the prevention and therapy of inflammatory diseases and is beneficial to animal health.
Collapse
|
52
|
Deng H, Wu L, Liu M, Zhu L, Chen Y, Zhou H, Shi X, Wei J, Zheng L, Hu X, Wang M, He Z, Lv X, Yang H. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Attenuate LPS-Induced ARDS by Modulating Macrophage Polarization Through Inhibiting Glycolysis in Macrophages. Shock 2020; 54:828-843. [PMID: 32433208 DOI: 10.1097/shk.0000000000001549] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages play a key role in the development of sepsis-induced acute respiratory distress syndrome (ARDS). Recent evidence has proved that glycolysis plays an important role in regulating macrophage polarization through metabolic reprogramming. Bone marrow mesenchymal stem cells (BMSCs) can alleviate sepsis-induced lung injury and possess potent immunomodulatory and immunosuppressive properties via secreting exosomes. However, it is unknown whether BMSCs-derived exosomes exert their therapeutic effect against sepsis-induced lung injury by inhibiting glycolysis in macrophages. Therefore, the present study aimed to evaluate the anti-inflammatory effects of exosomes released from BMSCs on acute lung injury induced by lipopolysaccharide (LPS) in mice and explored the possible underlying mechanisms in vitro and in vivo. We found that BMSCs inhibited M1 polarization and promoted M2 polarization in MH-S cells (a murine alveolar macrophage cell line) by releasing exosomes. Further experiments showed that exosomes secreted by BMSCs modulated LPS-treated MH-S cells polarization by inhibiting cellular glycolysis. Moreover, our results showed that BMSCs-derived exosomes down-regulated the expression of several essential proteins of glycolysis via inhibition of hypoxia-inducible factor 1 (HIF-1)α. Finally, a model of LPS-induced ARDS in mice was established, we found that BMSCs-derived exosomes ameliorated the LPS-induced inflammation and lung pathological damage. Meanwhile, we found that intratracheal delivery of BMSCs-derived exosomes effectively down-regulated LPS-induced glycolysis in mice lung tissue. These findings reveal new mechanisms of BMSCs-derived exosomes in regulating macrophage polarization which may provide novel strategies for the prevention and treatment of LPS-induced ARDS.
Collapse
Affiliation(s)
- Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingmin Wu
- Department of Anesthesiology, The First Hospital of Anhui Medical University, Hefei, China
| | - Meiyun Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuan Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juan Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Xiaoting Hu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mansi Wang
- Department of Pathology, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengyu He
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
53
|
Tian LX, Tang X, Ma W, Wang J, Zhang W, Liu K, Chen T, Zhu JY, Liang HP. Knockout of cytochrome P450 1A1 enhances lipopolysaccharide-induced acute lung injury in mice by targeting NF-κB activation. FEBS Open Bio 2020; 10:2316-2328. [PMID: 32935470 PMCID: PMC7609787 DOI: 10.1002/2211-5463.12977] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/19/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Acute lung injury (ALI) is accompanied by overactivation of multiple pro-inflammatory factors. Cytochrome P450 1A1 (CYP1A1) has been shown to aggravate lung injury in response to hyperoxia. However, the relationship between CYP1A1 and lipopolysaccharide (LPS)-induced ALI is unknown. In this study, CYP1A1 was shown to be upregulated in mouse lung in response to LPS. Using CYP1A1-deficient (CYP1A1-/-) mice, we found that CYP1A1 knockout enhanced LPS-induced ALI, as evidenced by increased TNF-α, IL-1β, IL-6, and nitric oxide in lung; these effects were mediated by overactivation of NF-κB and iNOS. Furthermore, we found that aspartate aminotransferase, lactate dehydrogenase, creatine kinase, and creatinine levels were elevated in serum of LPS-induced CYP1A1-/- mice. Altogether, these data provide novel insights into the involvement of CYP1A1 in LPS-induced lung injury.
Collapse
Affiliation(s)
- Li-Xing Tian
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Xin Tang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China.,Department of Intensive Care Unit, the Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei Ma
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China.,Department of Emergency, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhang
- Emergency and Trauma College, Hainan Medical University, Haikou, China
| | - Kuan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China.,Department of Intensive Care Unit, the Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tao Chen
- Department of Intensive Care Unit, the Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun-Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| | - Hua-Ping Liang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
54
|
Electroacupuncture Pretreatment Alleviates LPS-Induced Acute Respiratory Distress Syndrome via Regulating the PPAR Gamma/NF-Kappa B Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4594631. [PMID: 32774418 PMCID: PMC7396021 DOI: 10.1155/2020/4594631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022]
Abstract
Electroacupuncture (EA) is reported to possess anti-inflammatory properties and has beneficial effects on acute respiratory distress syndrome (ARDS). However, the underlying mechanisms of the effects of EA on ARDS remain unclear. This study aims to investigate the protective effect of EA on LPS-induced ARDS. In this study, Sprague-Dawley male rats were treated with EA at Hegu (LI4) for 45 minutes before LPS instillation (0.4 mg/kg, 100 ul). H&E staining, wet-to-dry weight (W/D) ratio, PaO2, and protein content in BALF were employed to determine the function of lung tissues. Inflammatory cytokines in serum and BALF were detected by enzyme-linked immunoassay assay (ELISA). The levels of oxidative stress markers were detected to determine the oxidative stress status. Cell apoptosis was observed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining and western blot. Here, we found that EA pretreatment effectively alleviated lung pathological damage. Moreover, EA suppressed the oxidative stress damage by upregulating glutathione and superoxide dismutase and downregulating malondialdehyde. EA pretreatment also regulated apoptosis-related proteins, such as Bax and Bcl-2. We found that peroxisome proliferators-activated receptors γ (PPARγ) play a critical role during ARDS, EA up-regulated the expression of PPARγ, which inhibited the activation of nuclear factor-kappa B (NF-κB) and decreased the inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α). When rats were treated with GW9662, a selective PPARγ antagonist, these effects of EA were reversed. Our study demonstrated that EA pretreatment had a beneficial effect on LPS-induced ARDS in rats by anti-inflammatory, antioxidative, and antiapoptotic properties which was regulated via PPARγ/NF-κB signaling pathway.
Collapse
|