51
|
Tao JJ, Cangemi NA, Makker V, Cadoo KA, Liu JF, Rasco DW, Navarro WH, Haqq CM, Hyman DM. First-in-Human Phase I Study of the Activin A Inhibitor, STM 434, in Patients with Granulosa Cell Ovarian Cancer and Other Advanced Solid Tumors. Clin Cancer Res 2019; 25:5458-5465. [PMID: 31068369 DOI: 10.1158/1078-0432.ccr-19-1065] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE STM 434 is a soluble receptor ligand trap targeting activin A, a protein in the TGFβ family that plays important roles in growth, differentiation, and cancer cachexia. This study evaluated the safety, antitumor activity, and metabolic effects of STM 434 in a first-in-human, multicenter, phase I clinical trial (NCT02262455). PATIENTS AND METHODS Patients with advanced solid tumors were enrolled in 8 dose cohorts ranging from 0.25 mg/kg every 4 weeks to 8 mg/kg every 2 weeks via a 3 + 3 dose-escalation design. The primary endpoint was maximum tolerated dose (MTD). Secondary endpoints included safety, pharmacokinetics, and response. As activin A is implicated in metabolism and muscle function, changes in key metabolic parameters, including lean body mass and 6-minute walk test, were serially measured. RESULTS Thirty-two patients were treated on study. The most common treatment-related adverse events were fatigue (41%) and mucocutaneous bleeding complications including epistaxis (34%) and gingival bleeding (22%), likely related to off-target inhibition of bone morphogenetic protein 9 (BMP9). STM 434 treatment resulted in the expected follicle-stimulating hormone level decreases in most patients and in metabolic parameter changes, including an increase in total lean body mass and 6-minute walk test distance. No responses were observed in the 30 evaluable patients, but the stable disease rate in patients with granulosa cell ovarian cancer was 10 of 12 (80%). CONCLUSIONS Although no direct antitumor efficacy was documented, potentially clinically meaningful dose-related metabolic effects, including treatment of cancer cachexia, were observed that support further exploration of activin A inhibitors that limit BMP9 blockade.See related commentary by Bonilla and Oza, p. 5432.
Collapse
Affiliation(s)
- Jessica J Tao
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicholas A Cangemi
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vicky Makker
- Gynecologic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Karen A Cadoo
- Gynecologic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joyce F Liu
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Drew W Rasco
- South Texas Accelerated Research Therapeutics, San Antonio, Texas
| | | | | | - David M Hyman
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
52
|
A sensitive antibody-free 2D-LC–MS/MS assay for the quantitation of myostatin in the serum of different species. Bioanalysis 2019; 11:957-970. [DOI: 10.4155/bio-2018-0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: Myostatin (MSTN) is an attractive therapeutic target for the treatment of muscle degeneration-related diseases and is being evaluated as a target engagement biomarker. Methods: A sensitive 2D-LC–MS/MS assay was developed to quantify MSTN in different animal species. Sample preparation involved SDS denaturation of serum proteins followed by tryptic digestion and peptide enrichment by SPE. Results: The assay was validated with LLOQ of 2.5 ng/ml in rat and monkey serum. The precision was within 13.7%, and the bias was within ±12.6% for all quality control samples in authentic matrices. Conclusion: This new assay was successfully applied to measure MSTN in mouse, rat, monkey and human serum. The total MSTN in rat and monkey serum was elevated following administration of an MSTN inhibitor.
Collapse
|
53
|
Freire PP, Fernandez GJ, Cury SS, de Moraes D, Oliveira JS, de Oliveira G, Dal-Pai-Silva M, Dos Reis PP, Carvalho RF. The Pathway to Cancer Cachexia: MicroRNA-Regulated Networks in Muscle Wasting Based on Integrative Meta-Analysis. Int J Mol Sci 2019; 20:E1962. [PMID: 31013615 PMCID: PMC6515458 DOI: 10.3390/ijms20081962] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer cachexia is a multifactorial syndrome that leads to significant weight loss. Cachexia affects 50%-80% of cancer patients, depending on the tumor type, and is associated with 20%-40% of cancer patient deaths. Besides the efforts to identify molecular mechanisms of skeletal muscle atrophy-a key feature in cancer cachexia-no effective therapy for the syndrome is currently available. MicroRNAs are regulators of gene expression, with therapeutic potential in several muscle wasting disorders. We performed a meta-analysis of previously published gene expression data to reveal new potential microRNA-mRNA networks associated with muscle atrophy in cancer cachexia. We retrieved 52 differentially expressed genes in nine studies of muscle tissue from patients and rodent models of cancer cachexia. Next, we predicted microRNAs targeting these differentially expressed genes. We also include global microRNA expression data surveyed in atrophying skeletal muscles from previous studies as background information. We identified deregulated genes involved in the regulation of apoptosis, muscle hypertrophy, catabolism, and acute phase response. We further predicted new microRNA-mRNA interactions, such as miR-27a/Foxo1, miR-27a/Mef2c, miR-27b/Cxcl12, miR-27b/Mef2c, miR-140/Cxcl12, miR-199a/Cav1, and miR-199a/Junb, which may contribute to muscle wasting in cancer cachexia. Finally, we found drugs targeting MSTN, CXCL12, and CAMK2B, which may be considered for the development of novel therapeutic strategies for cancer cachexia. Our study has broadened the knowledge of microRNA-regulated networks that are likely associated with muscle atrophy in cancer cachexia, pointing to their involvement as potential targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Paula Paccielli Freire
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Geysson Javier Fernandez
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Sarah Santiloni Cury
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Diogo de Moraes
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Jakeline Santos Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Grasieli de Oliveira
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| | - Patrícia Pintor Dos Reis
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-687, Brazil.
- Experimental Research Unity, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-687, Brazil.
| | - Robson Francisco Carvalho
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo 18.618-619, Brazil.
| |
Collapse
|
54
|
Kim JH, Kim JH, Sutikno LA, Lee SB, Jin DH, Hong YK, Kim YS, Jin HJ. Identification of the minimum region of flatfish myostatin propeptide (Pep45-65) for myostatin inhibition and its potential to enhance muscle growth and performance in animals. PLoS One 2019; 14:e0215298. [PMID: 30998775 PMCID: PMC6472743 DOI: 10.1371/journal.pone.0215298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/30/2019] [Indexed: 12/31/2022] Open
Abstract
Myostatin (MSTN) negatively regulates skeletal muscle growth, and its activity is inhibited by the binding of MSTN propeptide (MSTNpro), the N-terminal domain of proMSTN that is proteolytically cleaved from the proMSTN. Partial sequences from the N-terminal side of MSTNpro have shown to be sufficient to inhibit MSTN activity. In this study, to determine the minimum size of flatfish MSTNpro for MSTN inhibition, various truncated forms of flatfish MSTNpro with N-terminal maltose binding protein (MBP) fusion were expressed in E. coli and purified. MSTNpro regions consisting of residues 45–68, -69, and -70 with MBP fusion suppressed MSTN activity with a potency comparable to that of full-sequence flatfish MSTNpro in a pGL3-(CAGA)12-luciferase reporter assay. Even though the MSTN-inhibitory potency was about 1,000-fold lower, the flatfish MSTNpro region containing residues 45–65 (MBP-Pro45-65) showed MSTN-inhibitory capacity but not the MBP-Pro45-64, indicating that the region 45–65 is the minimum domain required for MSTN binding and suppression of its activity. To examine the in vivo effect of MBP-fused, truncated flatfish MSTNpro, MBP-Pro45-70-His6 (20 mg/kg body wt) was subcutaneously injected 5 times for 14 days in mice. Body wt gain and bone mass were not affected by the administration. Grip strength and swimming time were significantly enhanced at 7 d after the administration. At 14 d, the effect on grip strength disappeared, and the extent of the effect on swimming time significantly diminished. The presence of antibody against MBP-Pro45-70-His6 was observed at both 7 and 14 d after the administration with the titer value at 14 d being much greater than that at 7 d, suggesting that antibodies against MBP-Pro45-70-His6 neutralized the MSTN-inhibitory effect of MBP-Pro45-70-His6. We, thus, examined the MSTN-inhibitory capacity and in vivo effect of flatfish MSTNpro region 45–65 peptide (Pep45-65-NH2), which was predicted to have no immunogenicity in silico analysis. Pep45-65-NH2 suppressed MSTN activity with a potency similar to that of MBP-Pro45-65 but did not suppress GDF11, or activin A. Pep45-65-NH2 blocked MSTN-induced Smad2 phosphorylation in HepG2 cells. The administration of Pep45-65 (20 mg/kg body wt, 5 times for 2 weeks) increased the body wt gain with a greater gain at 14 d than at 7 d and muscle wt. Grip strength and swimming time were also significantly enhanced by the administration. Antibody titer against Pep45-65 was not detected. In conclusion, current results indicate that MSTN-inhibitory proteins with heterologous fusion partner may not be effective in suppressing MSTN activity in vivo due to an immune response against the proteins. Current results also show that the region of flatfish MSTNpro consisting of 45–65 (Pep45-65) can suppress mouse MSTN activity and increase muscle mass and function without invoking an immune response, implying that Pep45-65 would be a potential agent to enhance skeletal muscle growth and function in animals or to treat muscle atrophy caused by various clinical conditions.
Collapse
Affiliation(s)
- Jeong Hwan Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
| | - Jeong Han Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
| | | | - Sang Beum Lee
- Department of Human Nurtrition, Food and Animal Sciences, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Deuk-Hee Jin
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Namgu, Busan, Korea
| | - Yong Soo Kim
- Department of Human Nurtrition, Food and Animal Sciences, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail: (YK); (HJ)
| | - Hyung-Joo Jin
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
- * E-mail: (YK); (HJ)
| |
Collapse
|
55
|
Golshirazi G, Ciszewski L, Lu-Nguyen N, Popplewell L. Antisense Oligonucleotide Targeting of 3'-UTR of mRNA for Expression Knockdown. Methods Mol Biol 2019; 1828:91-124. [PMID: 30171537 DOI: 10.1007/978-1-4939-8651-4_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
With the recent conditional approval of an antisense oligonucleotide (AON) that restores the reading frame of DMD transcript in a subset of Duchenne muscular dystrophy patients, it has been established that AONs sharing similar chemistry have clear clinical potential. Genetic diseases, such as facioscapulohumeral dystrophy (FSHD), can be the result of gain-of-function mutations. Since mRNA processing in terms of termination of transcription, its transport from the nucleus to the cytoplasm, its stability and translation efficiency are dependent on key 3'UTR elements, it follows that targeting these elements with AONs have the potential to induce gene silencing. Aberrant expression of the Double homeobox 4 (DUX4) transcription factor and the downstream consequences of such expression is the hallmark of FSHD. Here we describe the bioinformatic strategies behind the design of AONs targeting polyadenylation signals and the methodologies relevant to their in vitro screening for efficacy and safety, including analysis of expression at the transcript and protein level of the specific target and downstream genes, and measurement of the effect on the fusion index of myotubes. The targeting of permissive DUX4 and MSTN are used as examples. MSTN encodes for myostatin, a negative regulator of myogenesis; the downregulation of MSTN expression has the potential to address the muscular atrophy associated with muscular dystrophies, sarcopenia, cancer and acquired immunodeficiency syndrome.
Collapse
Affiliation(s)
- Golnoush Golshirazi
- Centre of Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Lukasz Ciszewski
- Centre of Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Ngoc Lu-Nguyen
- Centre of Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Linda Popplewell
- Centre of Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK.
| |
Collapse
|
56
|
Liu D, Qiao X, Ge Z, Shang Y, Li Y, Wang W, Chen M, Si S, Chen SZ. IMB0901 inhibits muscle atrophy induced by cancer cachexia through MSTN signaling pathway. Skelet Muscle 2019; 9:8. [PMID: 30922397 PMCID: PMC6437903 DOI: 10.1186/s13395-019-0193-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 01/06/2023] Open
Abstract
Background Cancer cachexia as a metabolic syndrome can lead to at least 25% of cancer deaths. The inhibition of muscle atrophy is a main strategy to treat cancer cachexia. In this process, myostatin (MSTN) can exert a dual effect on protein metabolism, including inhibition of protein biosynthesis and enhancement of protein degradation. In this study, we will test the effect on muscle atrophy induced by cancer cachexia of IMB0901, a MSTN inhibitor. Methods Two high-throughput screening models against MSTN were developed. By screening, IMB0901, 2-((1-(3,4-dichlorophenyl)-1H-pyrazolo [3,4-d] pyrimidin-4-yl) amino) butan-1-ol, was picked out from the compound library. The in vitro cell model and the C26 animal model of muscle atrophy induced by cancer cachexia were used to determine the pharmacological activity of IMB0901. Whether IMB0901 could inhibit the aggravating effect of doxorubicin on muscle wasting was examined in vitro and in vivo. Results IMB0901 inhibited the MSTN promoter activity, the MSTN signaling pathway, and the MSTN positive feedback regulation. In atrophied C2C12 myotubes, IMB0901 had a potent efficiency of decreasing MSTN expression and modulating MSTN signaling pathway which was activated by C26-conditioned medium (CM). In C2C12 myotubes, the expressions of three common myotube markers, myosin heavy chain (MyHC), myogenic differentiation 1 (MyoD), and myogenin (MyoG), were downregulated by CM, which could be efficiently reversed by IMB0901 via reduction of ubiquitin-mediated proteolysis and enhancement of AKT/mTOR-mediated protein synthesis. In the C26 animal model, IMB0901 mitigated the weight loss of body, quadricep and liver, and protected the quadriceps cell morphology. Furthermore, IMB0901 decreased the expression of two E3 ligases Atrogin-1 and MuRF-1 in the quadriceps in vivo. At the cellular level, IMB0901 had no influence on anti-tumor effect of three chemotherapeutic agents (cisplatin, doxorubicin, and gemcitabine) and lowered doxorubicin-induced upregulation of MSTN in C2C12 myotubes. IMB0901 did not affect the inhibitory effect of doxorubicin on C26 tumor and delayed the weight loss of muscle and adipose tissue caused by C26 tumor and doxorubicin. Conclusions IMB0901 inhibits muscle atrophy induced by cancer cachexia by suppressing ubiquitin-mediated proteolysis and promoting protein synthesis. These findings collectively suggest that IMB0901 is a promising leading compound for the management of muscle atrophy induced by cancer cachexia. Electronic supplementary material The online version of this article (10.1186/s13395-019-0193-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dong Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Dongcheng District, Beijing, 100050, China
| | - Xinran Qiao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Dongcheng District, Beijing, 100050, China
| | - Zhijuan Ge
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Dongcheng District, Beijing, 100050, China
| | - Yue Shang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Dongcheng District, Beijing, 100050, China
| | - Yi Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Dongcheng District, Beijing, 100050, China
| | - Wendie Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Dongcheng District, Beijing, 100050, China
| | - Minghua Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Dongcheng District, Beijing, 100050, China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Dongcheng District, Beijing, 100050, China
| | - Shu-Zhen Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Tiantan Xili, Dongcheng District, Beijing, 100050, China.
| |
Collapse
|
57
|
Stern RA, Mozdziak PE. Differential ammonia metabolism and toxicity between avian and mammalian species, and effect of ammonia on skeletal muscle: A comparative review. J Anim Physiol Anim Nutr (Berl) 2019; 103:774-785. [PMID: 30860624 DOI: 10.1111/jpn.13080] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/30/2019] [Accepted: 02/15/2019] [Indexed: 12/11/2022]
Abstract
Comparative aspects of ammonia toxicity, specific to liver and skeletal muscle and skeletal muscle metabolism between avian and mammalian species are discussed in the context of models for liver disease and subsequent skeletal muscle wasting. The purpose of this review is to present species differences in ammonia metabolism and to specifically highlight observed differences in skeletal muscle response to excess ammonia in avian species. Ammonia, which is produced during protein catabolism and is an essential component of nucleic acid and protein biosynthesis, is detoxified mainly in the liver. While the liver is consistent as the main organ responsible for ammonia detoxification, there are evolutionary differences in ammonia metabolism and nitrogen excretory products between avian and mammalian species. In patients with liver disease and all mammalian models, inadequate ammonia detoxification and successive increased circulating ammonia concentration, termed hyperammonemia, leads to severe skeletal muscle atrophy, increased apoptosis and reduced protein synthesis, altogether having deleterious effects on muscle size and strength. Previously, an avian embryonic model, designed to determine the effects of increased circulating ammonia on muscle development, revealed that ammonia elicits a positive myogenic response. Specifically, induced hyperammonemia in avian embryos resulted in a reduction in myostatin, a well-known inhibitor of muscle growth, expression, whereas myostatin expression is significantly increased in mammalian models of hyperammonemia. These interesting findings imply that species differences in ammonia metabolism allow avians to utilize ammonia for growth. Understanding the intrinsic physiological mechanisms that allow for ammonia to be utilized for growth has potential to reveal novel approaches to muscle growth in avian species and will provide new targets for preventing muscle degeneration in mammalian species.
Collapse
Affiliation(s)
- Rachel A Stern
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina
| | - Paul E Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
58
|
Argilés JM, López-Soriano FJ, Stemmler B, Busquets S. Therapeutic strategies against cancer cachexia. Eur J Transl Myol 2019; 29:7960. [PMID: 31019661 PMCID: PMC6460215 DOI: 10.4081/ejtm.2019.7960] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/18/2018] [Indexed: 01/06/2023] Open
Abstract
Cancer cachexia has two main components: anorexia and metabolic alterations. The main changes associated with the development of this multi-organic syndrome are glucose intolerance, fat depletion and muscle protein hypercatabolism. The aim of this paper is to review the more recent therapeutic approaches designed to counteract the wasting suffered by the cancer patient with cachexia. Among the most promising approaches we can include the use of ghrelin agonists, beta-blockers, beta-adrenergic agonists, androgen receptor agonists and anti-myostatin peptides. The multi-targeted approach seems essential in these treatments, which should include the combination of both nutritional support, drugs and a suitable program of physical exercise, in order to ameliorate both anorexia and the metabolic changes associated with cachexia. In addition, another very important and crucial aspect to be taken into consideration in the design of clinical trials for the treatment of cancer cachexia is to staging cancer patients in relation with the degree of cachexia, in order to start as early as possible this triple approach in the course of the disease, even before the weight loss can be detected.
Collapse
Affiliation(s)
- Josep M Argilés
- Cancer Research Group, Department of Biochemistry and Molecular Biomedicine, Biology Faculty of the Barcelona University, Barcelona, Spain.,Biomedicine Institute, Barcelona University (IBUB), Barcelona, Spain
| | - Francisco Javier López-Soriano
- Cancer Research Group, Department of Biochemistry and Molecular Biomedicine, Biology Faculty of the Barcelona University, Barcelona, Spain.,Biomedicine Institute, Barcelona University (IBUB), Barcelona, Spain
| | | | - Sílvia Busquets
- Cancer Research Group, Department of Biochemistry and Molecular Biomedicine, Biology Faculty of the Barcelona University, Barcelona, Spain.,Biomedicine Institute, Barcelona University (IBUB), Barcelona, Spain
| |
Collapse
|
59
|
Yang Q, Yan C, Wang X, Gong Z. Leptin induces muscle wasting in a zebrafish kras-driven hepatocellular carcinoma (HCC) model. Dis Model Mech 2019; 12:dmm.038240. [PMID: 30718259 PMCID: PMC6398506 DOI: 10.1242/dmm.038240] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cachexia affects up to 80% of patients with advanced solid cancer and leads to excessive muscle wasting. Here, using an inducible zebrafish hepatocellular carcinoma (HCC) model driven by oncogenic krasG12V, we observed a progressive muscle-wasting phenotype in adult zebrafish, characterized by significant loss of body weight and muscle fibers. By differential feeding, we observed that overfeeding caused fatty liver, accelerated carcinogenesis and muscle wasting. Interestingly, leptin, an obesity hormone, was upregulated in oncogenic hepatocytes and overfeeding groups. We also found that leptin expression progressively increased during human liver disease progression. By using leptin receptor (lepr)-knockout fish, we found that tumor fish in the lepr mutant background had a higher survival rate and significantly lower muscle-wasting level after tumor induction than the tumor fish in the wild-type background. Chemical inhibitors targeting leptin signaling also alleviated the muscle-wasting phenotype, indicating that leptin signaling may be a new therapeutic target for cancer patients with muscle wasting. Summary: Through a zebrafish model, this study demonstrates that leptin plays an important role in cancer-induced muscle wasting and that the leptin pathway may be a therapeutic target in cancer cachexia.
Collapse
Affiliation(s)
- Qiqi Yang
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Chuan Yan
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 230002, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, 117558, Singapore
| |
Collapse
|
60
|
McCoy JC, Walker RG, Murray NH, Thompson TB. Crystal structure of the WFIKKN2 follistatin domain reveals insight into how it inhibits growth differentiation factor 8 (GDF8) and GDF11. J Biol Chem 2019; 294:6333-6343. [PMID: 30814254 DOI: 10.1074/jbc.ra118.005831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/26/2019] [Indexed: 11/06/2022] Open
Abstract
Growth differentiation factor 8 (GDF8; also known as myostatin) and GDF11 are closely related members of the transforming growth factor β (TGF-β) family. GDF8 strongly and negatively regulates skeletal muscle growth, and GDF11 has been implicated in various age-related pathologies such as cardiac hypertrophy. GDF8 and GDF11 signaling activities are controlled by the extracellular protein antagonists follistatin; follistatin-like 3 (FSTL3); and WAP, follistatin/kazal, immunoglobulin, Kunitz, and netrin domain-containing (WFIKKN). All of these proteins contain a follistatin domain (FSD) important for ligand binding and antagonism. Here, we investigated the structure and function of the FSD from murine WFIKKN2 and compared it with the FSDs of follistatin and FSTL3. Using native gel shift and surface plasmon resonance analyses, we determined that the WFIKKN2 FSD can interact with both GDF8 and GDF11 and block their interactions with the type II receptor activin A receptor type 2B (ActRIIB). Further, we solved the crystal structure of the WFIKKN2 FSD to 1.39 Å resolution and identified surface-exposed residues that, when substituted with alanine, reduce antagonism of GDF8 in full-length WFIKKN2. Comparison of the WFIKKN2 FSD with those of follistatin and FSTL3 revealed differences in both the FSD structure and position of residues within the domain that are important for ligand antagonism. Taken together, our results indicate that both WFIKKN and follistatin utilize their FSDs to block the type II receptor but do so via different binding interactions.
Collapse
Affiliation(s)
- Jason C McCoy
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Ryan G Walker
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Nathan H Murray
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| | - Thomas B Thompson
- From the Department of Molecular Genetics, Biochemistry, and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267
| |
Collapse
|
61
|
Rubio-Ruiz ME, Guarner-Lans V, Pérez-Torres I, Soto ME. Mechanisms Underlying Metabolic Syndrome-Related Sarcopenia and Possible Therapeutic Measures. Int J Mol Sci 2019; 20:ijms20030647. [PMID: 30717377 PMCID: PMC6387003 DOI: 10.3390/ijms20030647] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
Although there are several reviews that report the interrelationship between sarcopenia and obesity and insulin resistance, the relation between sarcopenia and the other signs that compose the metabolic syndrome (MetS) has not been extensively revised. Here, we review the mechanisms underlying MetS-related sarcopenia and discuss the possible therapeutic measures proposed. A vicious cycle between the loss of muscle and the accumulation of intramuscular fat might be associated with MetS via a complex interplay of factors including nutritional intake, physical activity, body fat, oxidative stress, proinflammatory cytokines, insulin resistance, hormonal changes, and mitochondrial dysfunction. The enormous differences in lipid storage capacities between the two genders and elevated amounts of endogenous fat having lipotoxic effects that lead to the loss of muscle mass are discussed. The important repercussions of MetS-related sarcopenia on other illnesses that lead to increased disability, morbidity, and mortality are also addressed. Additional research is needed to better understand the pathophysiology of MetS-related sarcopenia and its consequences. Although there is currently no consensus on the treatment, lifestyle changes including diet and power exercise seem to be the best options.
Collapse
Affiliation(s)
- María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - María Elena Soto
- Department of Immunology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| |
Collapse
|
62
|
Saul D, Geisberg LK, Gehle T, Hoffmann DB, Tezval M, Sehmisch S, Komrakova M. Changes in Musculoskeletal System and Metabolism in Osteoporotic Rats Treated With Urocortin. Front Endocrinol (Lausanne) 2019; 10:400. [PMID: 31293517 PMCID: PMC6601316 DOI: 10.3389/fendo.2019.00400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/06/2019] [Indexed: 01/30/2023] Open
Abstract
Objective: In aging population, postmenopausal osteoporosis and decline of musculoskeletal function, referred to as "frailty syndrome" lead to loss of bone and muscle, causing falls, and fall-related injuries. To limit the impact of this portentous duo, simultaneous treatment of both is needed. Urocortin (UCN) has been reported to improve osteoporotic bone properties while its effect on muscle has not been addressed yet. Design and Methods: We aimed to investigate the effect of urocortin in vivo on skeletal muscle structure in osteopenic rats. Sixty Sprague-Dawley rats were divided into five groups: four were ovariectomized (OVX) and one underwent sham operation (SHAM). One ovariectomized group was left untreated (OVX), while one was treated with urocortin s.c. in 3 μg/kg body weight (bw) (OVX+UCN low), one with 30 μg/kg (OVX+UCN high), while one group was treated with estradiol orally (OVX+E: 0.2 mg/kg bw), each for 35 days. Mm. gastrocnemius, longissimus, and soleus were isolated and capillary density as well as diameters of type I and II fibers were measured. In addition, we examined the effect of UCN on tibia using biomechanical, micro-CT and ashing analysis and investigated the blood serum. Results: We demonstrated a positive effect of UCN on M. soleus, in which fiber diameter was positively influenced. The biomechanical and structural parameters of bone were not changed in UCN treated rats. The higher cholesterol, glucose and triglyceride levels in the "UCN high" group raise concern about this treatment. Conclusions: Our results portray urocortin as a substance that can be assessed for future therapeutic treatments of estrogen deficiency. New and Noteworthy: Urocortin has a positive effect on M. soleus (diameter). Urocortin raises serum cholesterol and triglyceride levels. Bone tissue was not affected by UCN.
Collapse
Affiliation(s)
- Dominik Saul
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, Göttingen, Germany
| | - Laura Katharina Geisberg
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, Göttingen, Germany
| | - Torben Gehle
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, Göttingen, Germany
| | - Daniel Bernd Hoffmann
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, Göttingen, Germany
| | - Mohammad Tezval
- Klinik für Unfallchirurgie, Sporttraumatologie und Handchirurgie, Klinikum Vest, Recklinghausen, Germany
| | - Stephan Sehmisch
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, Göttingen, Germany
| | - Marina Komrakova
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Göttingen, Göttingen, Germany
- *Correspondence: Marina Komrakova ; orcid.org/0000-0002-6225-4378
| |
Collapse
|
63
|
Fokin A, Minderis P, Venckunas T, Lionikas A, Kvedaras M, Ratkevicius A. Myostatin dysfunction does not protect from fasting-induced loss of muscle mass in mice. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2019; 19:342-353. [PMID: 31475942 PMCID: PMC6737554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The aim of the study was to investigate if myostatin dysfunction can ameliorate fasting-induced muscle wasting. METHODS 18-week old males from Berlin high (BEH) strain with myostatin dysfunction and wild type myostatin (BEH+/+) strain were subjected to 48-h food deprivation (FD). Changes in body composition as well as contractile properties of soleus (SOL) and extensor digitorum longus (EDL) muscles were studied. RESULTS BEH mice were heavier than BEH+/+ mice (56.0±2.5 vs. 49.9±2.8 g, P<0.001, respectively). FD induced similar loss of body mass in BEH and BEH+/+ mice (16.6±2.4 vs. 17.4±2.2%, P>0.05), but only BEH mice experienced wasting of the gastrocnemius, tibialis anterior and plantaris muscles. FD induced a marked decrease in specific muscle force of SOL. EDL of BEH mice tended to be protected from this decline. CONCLUSION Myostatin dysfunction does not protect from loss of muscle mass during fasting.
Collapse
Affiliation(s)
- Andrej Fokin
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Petras Minderis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Tomas Venckunas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania,Department of Applied Biology and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania
| | - Arimantas Lionikas
- School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, Scotland, UK
| | - Mindaugas Kvedaras
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Aivaras Ratkevicius
- Department of Applied Biology and Rehabilitation, Lithuanian Sports University, Kaunas, Lithuania,Corresponding author: Dr. Aivaras Ratkevicius, Department of Applied Biology and Rehabilitation, Lithuanian Sports University, Sporto g. 6, LT-44221 Kaunas, Lithuania E-mail:
| |
Collapse
|
64
|
Yakovenko A, Cameron M, Trevino JG. Molecular therapeutic strategies targeting pancreatic cancer induced cachexia. World J Gastrointest Surg 2018; 10:95-106. [PMID: 30622678 PMCID: PMC6314860 DOI: 10.4240/wjgs.v10.i9.95] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/01/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) induced cachexia is a complex metabolic syndrome associated with significantly increased morbidity and mortality and reduced quality of life. The pathophysiology of cachexia is complex and poorly understood. Many molecular signaling pathways are involved in PC and cachexia. Though our understanding of cancer cachexia is growing, therapeutic options remain limited. Thus, further discovery and investigation of the molecular signaling pathways involved in the pathophysiology of cachexia can be applied to development of targeted therapies. This review focuses on three main pathophysiologic processes implicated in the development and progression of cachexia in PC, as well as their utility in the discovery of novel targeted therapies.
Skeletal muscle wasting is the most prominent pathophysiologic anomaly in cachectic patients and driven by multiple regulatory pathways. Several known molecular pathways that mediate muscle wasting and cachexia include transforming growth factor-beta (TGF-β), myostatin and activin, IGF-1/PI3K/AKT, and JAK-STAT signaling. TGF-β antagonism in cachectic mice reduces skeletal muscle catabolism and weight loss, while improving overall survival. Myostatin/activin inhibition has a great therapeutic potential since it plays an essential role in skeletal muscle regulation. Overexpression of insulin-like growth factor binding protein-3 (IGFBP-3) leads to increased ubiquitination associated proteolysis, inhibition of myogenesis, and decreased muscle mass in PC induced cachexia. IGFBP-3 antagonism alleviates muscle cell wasting.
Another component of cachexia is profound systemic inflammation driven by pro-cachectic cytokines such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and interferon gamma (INF-γ). IL-6 antagonism has been shown to reduce inflammation, reduce skeletal muscle loss, and ameliorate cachexia. While TNF-α inhibitors are clinically available, blocking TNF-α signaling is not effective in the treatment of cancer cachexia. Blocking the synthesis or action of acute phase reactants and cytokines is a feasible therapeutic strategy, but no anti-cytokine therapies are currently approved for use in PC. Metabolic alterations such as increased energy expenditure and gluconeogenesis, insulin resistance, fat tissue browning, excessive oxidative stress, and proteolysis with amino acid mobilization support tumor growth and the development of cachexia. Current innovative nutritional strategies for cachexia management include ketogenic diet, utilization of natural compounds such as silibinin, and supplementation with ω3-polyunsaturated fatty acids. Elevated ketone bodies exhibit an anticancer and anticachectic effect. Silibinin has been shown to inhibit growth of PC cells, induce metabolic alterations, and reduce myofiber degradation. Consumption of ω3-polyunsaturated fatty acids has been shown to significantly decrease resting energy expenditure and regulate metabolic dysfunction.
Collapse
Affiliation(s)
- Anastasiya Yakovenko
- University of Florida College of Medicine, Gainesville, Florida 32610, United States
| | - Miles Cameron
- University of Florida College of Medicine, Gainesville, Florida 32610, United States
| | - Jose Gilberto Trevino
- Department of Surgery, University of Florida Health Sciences Center, Gainesville, Florida 32610, United States
| |
Collapse
|
65
|
Schumann C, Nguyen DX, Norgard M, Bortnyak Y, Korzun T, Chan S, Lorenz AS, Moses AS, Albarqi HA, Wong L, Michaelis K, Zhu X, Alani AWG, Taratula OR, Krasnow S, Marks DL, Taratula O. Increasing lean muscle mass in mice via nanoparticle-mediated hepatic delivery of follistatin mRNA. Am J Cancer Res 2018; 8:5276-5288. [PMID: 30555546 PMCID: PMC6276093 DOI: 10.7150/thno.27847] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Muscle atrophy occurs during chronic diseases, resulting in diminished quality of life and compromised treatment outcomes. There is a high demand for therapeutics that increase muscle mass while abrogating the need for special dietary and exercise requirements. Therefore, we developed an efficient nanomedicine approach capable of increasing muscle mass. Methods: The therapy is based on nanoparticle-mediated delivery of follistatin messenger RNA (mRNA) to the liver after subcutaneous administration. The delivered mRNA directs hepatic cellular machinery to produce follistatin, a glycoprotein that increases lean mass through inhibition of negative regulators of muscle mass (myostatin and activin A). These factors are elevated in numerous disease states, thereby providing a target for therapeutic intervention. Results: Animal studies validated that mRNA-loaded nanoparticles enter systemic circulation following subcutaneous injection, accumulate and internalize in the liver, where the mRNA is translated into follistatin. Follistatin serum levels were elevated for 72 h post injection and efficiently reduced activin A and myostatin serum concentrations. After eight weeks of repeated injections, the lean mass of mice in the treatment group was ~10% higher when compared to that of the controls. Conclusion: Based on the obtained results demonstrating an increased muscle mass as well as restricted fat accumulation, this nanoplatform might be a milestone in the development of mRNA technologies and the treatment of muscle wasting disorders.
Collapse
|
66
|
Kerschan-Schindl K, Ebenbichler G, Gruther W, Föger-Samwald U, Kudlacek S, Patsch J, Gleiss A, Jaksch P, Klepetko W, Pietschmann P. Myostatin and other musculoskeletal markers in lung transplant recipients. Clin Exp Med 2018; 19:77-85. [PMID: 30317402 PMCID: PMC6394594 DOI: 10.1007/s10238-018-0532-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/08/2018] [Indexed: 02/07/2023]
Abstract
Recipients of lung transplantation (LuTx) may experience impaired muscle function and bone metabolism even after rehabilitation. We investigated the potential use of musculoskeletal markers in identifying the impairment of muscle function and bone function in these patients. Biochemical parameters, bodily functions, and lung function of 37 LuTx recipients were evaluated at the time of their discharge from the hospital stay and about 6 months later. The biomarkers were also assessed in 30 healthy age and gender distribution-matched controls. Compared to controls, the negative muscle regulator myostatin was elevated in LuTx recipients at baseline and follow-up, whereas its opponent follistatin only showed a group-specific difference at follow-up. LuTx recipients had reduced serum levels of sclerostin and increased levels of dickkopf 1 and periostin. Lung function and physical function were improved during follow-up. The change in lung function was correlated with the change in chair-rising time and the 6-min walking test. At follow-up, all musculoskeletal markers of LuTx recipients differed from those of controls, thus reflecting their still reduced lung function and bodily functions. Among the tested biomarkers, myostatin, sclerostin, dickkopf 1, and periostin were useful to detect impaired musculoskeletal function in LuTx recipients. Myostatin may serve as a target of treatment in the future.
Collapse
Affiliation(s)
- Katharina Kerschan-Schindl
- Department of Physical Medicine, Rehabilitation and Occupational Therapy, Medical University of Vienna, Vienna, Austria.
| | - Gerold Ebenbichler
- Department of Physical Medicine, Rehabilitation and Occupational Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Gruther
- Department of Physical Medicine, Rehabilitation and Occupational Therapy, Medical University of Vienna, Vienna, Austria.,healthPi, Vienna, Austria
| | - Ursula Föger-Samwald
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Janina Patsch
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Center of Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Peter Jaksch
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
67
|
Calore F, Londhe P, Fadda P, Nigita G, Casadei L, Marceca GP, Fassan M, Lovat F, Gasparini P, Rizzotto L, Zanesi N, Jackson D, Mehta S, Nana-Sinkam P, Sampath D, Pollock RE, Guttridge DC, Croce CM. The TLR7/8/9 Antagonist IMO-8503 Inhibits Cancer-Induced Cachexia. Cancer Res 2018; 78:6680-6690. [PMID: 30209066 DOI: 10.1158/0008-5472.can-17-3878] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/23/2018] [Accepted: 09/06/2018] [Indexed: 01/19/2023]
Abstract
: Muscle wasting is a feature of the cachexia syndrome, which contributes significantly to the mortality of patients with cancer. We have previously demonstrated that miR-21 is secreted through extracellular vesicles (EV) by lung and pancreatic cancer cells and promotes JNK-dependent cell death through its binding to the TLR7 receptor in murine myoblasts. Here, we evaluate the ability of IMO-8503, a TLR7, 8, and 9 antagonist, to inhibit cancer-induced cachexia. Using EVs isolated from lung and pancreatic cancer cells and from patient plasma samples, we demonstrate that IMO-8503 inhibits cell death induced by circulating miRNAs with no significant toxicity. Intraperitoneal administration of the antagonist in a murine model for Lewis lung carcinoma (LLC-induced cachexia) strongly impaired several cachexia-related features, such as the expression of Pax7 as well as caspase-3 and PARP cleavage in skeletal muscles, and significantly prevented the loss of lean mass in tumor-bearing mice. IMO-8503 also impaired circulating miRNA-induced cell death in human primary myoblasts. Taken together, our findings strongly indicate that IMO-8503 serves as a potential therapy for the treatment of cancer cachexia. SIGNIFICANCE: Cancer-associated cachexia is a significant problem for patients with cancer that remain poorly understood, understudied, and inadequately treated; these findings report a potential new therapeutic for the treatment of TLR7-mediated cancer cachexia.
Collapse
Affiliation(s)
- Federica Calore
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Priya Londhe
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Paolo Fadda
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Lucia Casadei
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Gioacchino Paolo Marceca
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Bioinformatics Unit, Department of Clinical and Experimental Medicine, University of Catania, c/o Dipartimento di Matematica e Informatica, Catania, Italy
| | - Matteo Fassan
- Surgical Pathology & Cytopathology Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Francesca Lovat
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Pierluigi Gasparini
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Lara Rizzotto
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Nicola Zanesi
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Devine Jackson
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Svasti Mehta
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Patrick Nana-Sinkam
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Virginia
| | - Deepa Sampath
- Division of Hematology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Raphael E Pollock
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.,Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Denis C Guttridge
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
68
|
March JT, Golshirazi G, Cernisova V, Carr H, Leong Y, Lu-Nguyen N, Popplewell LJ. Targeting TGFβ Signaling to Address Fibrosis Using Antisense Oligonucleotides. Biomedicines 2018; 6:biomedicines6030074. [PMID: 29941814 PMCID: PMC6164894 DOI: 10.3390/biomedicines6030074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022] Open
Abstract
Fibrosis results from the excessive accumulation of extracellular matrix in chronically injured tissue. The fibrotic process is governed by crosstalk between many signaling pathways. The search for an effective treatment is further complicated by the fact that there is a degree of tissue-specificity in the pathways involved, although the process is not completely understood for all tissues. A plethora of drugs have shown promise in pre-clinical models, which is not always borne out translationally in clinical trial. With the recent approvals of two antisense oligonucleotides for the treatment of the genetic diseases Duchenne muscular dystrophy and spinal muscular atrophy, we explore here the potential of antisense oligonucleotides to knockdown the expression of pro-fibrotic proteins. We give an overview of the generalized fibrotic process, concentrating on key players and highlight where antisense oligonucleotides have been used effectively in cellular and animal models of different fibrotic conditions. Consideration is given to the advantages antisense oligonucleotides would have as an anti-fibrotic therapy alongside factors that would need to be addressed to improve efficacy. A prospective outlook for the development of antisense oligonucleotides to target fibrosis is outlined.
Collapse
Affiliation(s)
- James T March
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Golnoush Golshirazi
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Viktorija Cernisova
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Heidi Carr
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Yee Leong
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Ngoc Lu-Nguyen
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| | - Linda J Popplewell
- Centre for Gene and Cell Therapy, School of Biological Sciences, Royal Holloway-University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
69
|
Endoplasmic Reticulum Stress Induces Myostatin High Molecular Weight Aggregates and Impairs Mature Myostatin Secretion. Mol Neurobiol 2018; 55:8355-8373. [PMID: 29546591 PMCID: PMC6153721 DOI: 10.1007/s12035-018-0997-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/07/2018] [Indexed: 01/08/2023]
Abstract
Sporadic inclusion body myositis (sIBM) is the most prevalent acquired muscle disorder in the elderly with no defined etiology or effective therapy. Endoplasmic reticulum stress and deposition of myostatin, a secreted negative regulator of muscle growth, have been implicated in disease pathology. The myostatin signaling pathway has emerged as a major target for symptomatic treatment of muscle atrophy. Here, we systematically analyzed the maturation and secretion of myostatin precursor MstnPP and its metabolites in a human muscle cell line. We find that increased MsntPP protein levels induce ER stress. MstnPP metabolites were predominantly retained within the endoplasmic reticulum (ER), also evident in sIBM histology. MstnPP cleavage products formed insoluble high molecular weight aggregates, a process that was aggravated by experimental ER stress. Importantly, ER stress also impaired secretion of mature myostatin. Reduced secretion and aggregation of MstnPP metabolites were not simply caused by overexpression, as both events were also observed in wildtype cells under ER stress. It is tempting to speculate that reduced circulating myostatin growth factor could be one explanation for the poor clinical efficacy of drugs targeting the myostatin pathway in sIBM.
Collapse
|
70
|
Walpurgis K, Thomas A, Dellanna F, Schänzer W, Thevis M. Detection of the Human Anti-ActRII Antibody Bimagrumab in Serum by Means of Affinity Purification, Tryptic Digestion, and LC-HRMS. Proteomics Clin Appl 2018; 12:e1700120. [DOI: 10.1002/prca.201700120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/08/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Katja Walpurgis
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
| | - Andreas Thomas
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
| | - Frank Dellanna
- Fresenius University of Applied Sciences; Cologne Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
| | - Mario Thevis
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne/Bonn Germany
| |
Collapse
|
71
|
Le VQ, Iacob RE, Tian Y, McConaughy W, Jackson J, Su Y, Zhao B, Engen JR, Pirruccello-Straub M, Springer TA. Tolloid cleavage activates latent GDF8 by priming the pro-complex for dissociation. EMBO J 2018; 37:384-397. [PMID: 29343545 DOI: 10.15252/embj.201797931] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/17/2022] Open
Abstract
Growth differentiation factor 8 (GDF8)/myostatin is a latent TGF-β family member that potently inhibits skeletal muscle growth. Here, we compared the conformation and dynamics of precursor, latent, and Tolloid-cleaved GDF8 pro-complexes to understand structural mechanisms underlying latency and activation of GDF8. Negative stain electron microscopy (EM) of precursor and latent pro-complexes reveals a V-shaped conformation that is unaltered by furin cleavage and sharply contrasts with the ring-like, cross-armed conformation of latent TGF-β1. Surprisingly, Tolloid-cleaved GDF8 does not immediately dissociate, but in EM exhibits structural heterogeneity consistent with partial dissociation. Hydrogen-deuterium exchange was not affected by furin cleavage. In contrast, Tolloid cleavage, in the absence of prodomain-growth factor dissociation, increased exchange in regions that correspond in pro-TGF-β1 to the α1-helix, latency lasso, and β1-strand in the prodomain and to the β6'- and β7'-strands in the growth factor. Thus, these regions are important in maintaining GDF8 latency. Our results show that Tolloid cleavage activates latent GDF8 by destabilizing specific prodomain-growth factor interfaces and primes the growth factor for release from the prodomain.
Collapse
Affiliation(s)
- Viet Q Le
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Roxana E Iacob
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA
| | - Yuan Tian
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | | - Yang Su
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bo Zhao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA
| | | | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
72
|
Cotton TR, Fischer G, Wang X, McCoy JC, Czepnik M, Thompson TB, Hyvönen M. Structure of the human myostatin precursor and determinants of growth factor latency. EMBO J 2018; 37:367-383. [PMID: 29330193 DOI: 10.15252/embj.201797883] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/09/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Myostatin, a key regulator of muscle mass in vertebrates, is biosynthesised as a latent precursor in muscle and is activated by sequential proteolysis of the pro-domain. To investigate the molecular mechanism by which pro-myostatin remains latent, we have determined the structure of unprocessed pro-myostatin and analysed the properties of the protein in its different forms. Crystal structures and SAXS analyses show that pro-myostatin adopts an open, V-shaped structure with a domain-swapped arrangement. The pro-mature complex, after cleavage of the furin site, has significantly reduced activity compared with the mature growth factor and persists as a stable complex that is resistant to the natural antagonist follistatin. The latency appears to be conferred by a number of distinct features that collectively stabilise the interaction of the pro-domains with the mature growth factor, enabling a regulated stepwise activation process, distinct from the prototypical pro-TGF-β1. These results provide a basis for understanding the effect of missense mutations in pro-myostatin and pave the way for the design of novel myostatin inhibitors.
Collapse
Affiliation(s)
- Thomas R Cotton
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Xuelu Wang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Magdalena Czepnik
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, USA
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
73
|
Disturbed Ca 2+ Homeostasis in Muscle-Wasting Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:307-326. [PMID: 30390258 DOI: 10.1007/978-981-13-1435-3_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ca2+ is essential for proper structure and function of skeletal muscle. It not only activates contraction and force development but also participates in multiple signaling pathways. Low levels of Ca2+ restrain muscle regeneration by limiting the fusion of satellite cells. Ironically, sustained elevations of Ca2+ also result in muscle degeneration as this ion promotes high rates of protein breakdown. Moreover, transforming growth factors (TGFs) which are well known for controlling muscle growth also regulate Ca2+ channels. Thus, therapies focused on changing levels of Ca2+ and TGFs are promising for treating muscle-wasting disorders. Three principal systems govern the homeostasis of Ca2+, namely, excitation-contraction (EC) coupling, excitation-coupled Ca2+ entry (ECCE), and store-operated Ca2+ entry (SOCE). Accordingly, alterations in these systems can lead to weakness and atrophy in many hereditary diseases, such as Brody disease, central core disease (CCD), tubular aggregate myopathy (TAM), myotonic dystrophy type 1 (MD1), oculopharyngeal muscular dystrophy (OPMD), and Duchenne muscular dystrophy (DMD). Here, the interrelationship between all these molecules and processes is reviewed.
Collapse
|
74
|
Kristina Parr M, Müller-Schöll A. Pharmacology of doping agents—mechanisms promoting muscle hypertrophy. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.2.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
75
|
Winbanks CE, Murphy KT, Bernardo BC, Qian H, Liu Y, Sepulveda PV, Beyer C, Hagg A, Thomson RE, Chen JL, Walton KL, Loveland KL, McMullen JR, Rodgers BD, Harrison CA, Lynch GS, Gregorevic P. Smad7 gene delivery prevents muscle wasting associated with cancer cachexia in mice. Sci Transl Med 2017; 8:348ra98. [PMID: 27440729 DOI: 10.1126/scitranslmed.aac4976] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/22/2016] [Indexed: 12/12/2022]
Abstract
Patients with advanced cancer often succumb to complications arising from striated muscle wasting associated with cachexia. Excessive activation of the type IIB activin receptor (ActRIIB) is considered an important mechanism underlying this wasting, where circulating procachectic factors bind ActRIIB and ultimately lead to the phosphorylation of SMAD2/3. Therapeutics that antagonize the binding of ActRIIB ligands are in clinical development, but concerns exist about achieving efficacy without off-target effects. To protect striated muscle from harmful ActRIIB signaling, and to reduce the risk of off-target effects, we developed an intervention using recombinant adeno-associated viral vectors (rAAV vectors) that increase expression of Smad7 in skeletal and cardiac muscles. SMAD7 acts as an intracellular negative regulator that prevents SMAD2/3 activation and promotes degradation of ActRIIB complexes. In mouse models of cachexia, rAAV:Smad7 prevented wasting of skeletal muscles and the heart independent of tumor burden and serum levels of procachectic ligands. Mechanistically, rAAV:Smad7 administration abolished SMAD2/3 signaling downstream of ActRIIB and inhibited expression of the atrophy-related ubiquitin ligases MuRF1 and MAFbx. These findings identify muscle-directed Smad7 gene delivery as a potential approach for preventing muscle wasting under conditions where excessive ActRIIB signaling occurs, such as cancer cachexia.
Collapse
Affiliation(s)
| | - Kate T Murphy
- Department of Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Bianca C Bernardo
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Hongwei Qian
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Yingying Liu
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | | | - Claudia Beyer
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Adam Hagg
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Rachel E Thomson
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Justin L Chen
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia. Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Kelly L Walton
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Kate L Loveland
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Julie R McMullen
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia. Department of Medicine, Monash University, Clayton, Victoria 3800, Australia. Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Buel D Rodgers
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Craig A Harrison
- Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia. Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia. Department of Physiology, Monash University, Clayton, Victoria 3800, Australia
| | - Gordon S Lynch
- Department of Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul Gregorevic
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia. Department of Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia. Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia. Department of Neurology, The University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
76
|
Abstract
As the cirrhosis progresses, development of complication like ascites, hepatic encephalopathy, variceal bleeding, kidney dysfunction, and hepatocellular carcinoma signify increasing risk of short term mortality. Malnutrition and muscle wasting (sarcopenia) is yet other complications that negatively impact survival, quality of life, and response to stressors, such as infection and surgery in patients with cirrhosis. Conventionally, these are not routinely looked for, because nutritional assessment can be a difficult especially if there is associated fluid retention and/or obesity. Patients with cirrhosis may have a combination of loss of skeletal muscle and gain of adipose tissue, culminating in the condition of "sarcopenic obesity." Sarcopenia in cirrhotic patients has been associated with increased mortality, sepsis complications, hyperammonemia, overt hepatic encephalopathy, and increased length of stay after liver transplantation. Assessment of muscles with cross-sectional imaging studies has become an attractive index of nutritional status evaluation in cirrhosis, as sarcopenia, the major component of malnutrition, is primarily responsible for the adverse clinical consequences seen in patients with liver disease. Cirrhosis is a state of accelerated starvation, with increased gluconeogenesis that requires amino acid diversion from other metabolic functions. Protein homeostasis is disturbed in cirrhosis due to several factors such as hyperammonemia, hormonal, and cytokine abnormalities, physical inactivity and direct effects of ethanol and its metabolites. New approaches to manage sarcopenia are being evolved. Branched chain amino acid supplementation, Myostatin inhibitors, and mitochondrial protective agents are currently in various stages of evaluation in preclinical studies to prevent and reverse sarcopenia, in cirrhosis.
Collapse
Key Words
- (PG) SGA, patient-generated SGA
- AMPK, 5′ adenosine monophosphate-activated protein kinase
- ASPEN, American Society of Parenteral and Enteral Nutrition
- ATP, adenosine triphosphate
- Akt/PKB, serine/threonine-specific protein kinase B
- BIA, bio-electric impedance analysis
- BMC, bone mineral content
- BMI, body mass index
- CT, computed tomography
- DDLT, deceased donor liver transplantation
- DRM, disease-related malnutrition
- DXA, dual X-ray absorptiometry
- ESPEN, European Society of Parenteral and Enteral Nutrition
- FFI, Fried Frailty Index
- FFM, fat free mass
- FFMI, fat free mass index
- FM, fat mass
- HE, hepatic encephalopathy
- LDLT, living donor liver transplant
- LST, lean soft tissue
- MAC, mid arm circumference
- MAMC, mid arm muscle circumference
- MELD, model for end-stage liver disease
- MNA, Mini Nutritional Assessment
- MRI, magnetic resonance imaging
- NASH, non-alcoholic steatohepatitis
- PCM, protein-calorie nalnutrition
- REE, resting energy expenditure
- RQ, respiratory quotient (or RQ or respiratory coefficient)
- SGA, Subjective Global Assessment
- SMI, Skeletal Muscle Index
- SPPB, Short Physical Performance Battery
- TIPS, trans jugular intrahepatic portocaval shunts
- TNF, tumour necrosis factor
- TSF, triceps skin fild thickness
- WHO, World Health Organisation
- YPA, total psoas area
- aKG, alfa keto glutarate
- cirrhosis
- mTORC1, mammalian target of rapamycin complex 1
- nutrition
Collapse
|
77
|
St Andre M, Johnson M, Bansal PN, Wellen J, Robertson A, Opsahl A, Burch PM, Bialek P, Morris C, Owens J. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys. Skelet Muscle 2017; 7:25. [PMID: 29121992 PMCID: PMC5679155 DOI: 10.1186/s13395-017-0141-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background The treatments currently approved for Duchenne muscular dystrophy (DMD), a progressive skeletal muscle wasting disease, address the needs of only a small proportion of patients resulting in an urgent need for therapies that benefit all patients regardless of the underlying mutation. Myostatin is a member of the transforming growth factor-β (TGF-β) family of ligands and is a negative regulator of skeletal muscle mass. Loss of myostatin has been shown to increase muscle mass and improve muscle function in both normal and dystrophic mice. Therefore, myostatin blockade via a specific antibody could ameliorate the muscle weakness in DMD patients by increasing skeletal muscle mass and function, thereby reducing patients’ functional decline. Methods A murine anti-myostatin antibody, mRK35, and its humanized analog, domagrozumab, were developed and their ability to inhibit several TGB-β ligands was measured using a cell-based Smad-activity reporter system. Normal and mdx mice were treated with mRK35 to examine the antibody’s effect on body weight, lean mass, muscle weights, grip strength, ex vivo force production, and fiber size. The humanized analog (domagrozumab) was tested in non-human primates (NHPs) for changes in skeletal muscle mass and volume as well as target engagement via modulation of circulating myostatin. Results Both the murine and human antibodies are specific and potent inhibitors of myostatin and GDF11. mRK35 is able to increase body weight, lean mass, and muscle weights in normal mice. In mdx mice, mRK35 significantly increased body weight, muscle weights, grip strength, and ex vivo force production in the extensor digitorum longus (EDL) muscle. Further, tibialis anterior (TA) fiber size was significantly increased. NHPs treated with domagrozumab demonstrated a dose-dependent increase in lean mass and muscle volume and exhibited increased circulating levels of myostatin demonstrating target engagement. Conclusions We demonstrated that the potent anti-myostatin antibody mRK35 and its clinical analog, domagrozumab, were able to induce muscle anabolic activity in both rodents, including the mdx mouse model of DMD, and non-human primates. A Phase 2, potentially registrational, clinical study with domagrozumab in DMD patients is currently underway.
Collapse
Affiliation(s)
- Michael St Andre
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA. .,NIGMS Training Program in Biomolecular Pharmacology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Mark Johnson
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA
| | - Prashant N Bansal
- Early Clinical Development, Pfizer Inc., Cambridge, MA, USA.,Present Address: PAREXEL Informatics, Billerica, MA, USA
| | - Jeremy Wellen
- Early Clinical Development, Pfizer Inc., Cambridge, MA, USA
| | | | - Alan Opsahl
- Investigative Pathology, Pfizer Inc., Groton, CT, USA
| | - Peter M Burch
- Research and Development Drug Safety, Pfizer Inc., Groton, CT, USA.,Present Address: Summit Therapeutics, Cambridge, MA, USA
| | - Peter Bialek
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA.,Present Address: Proteostasis Therapeutics, Cambridge, MA, USA
| | - Carl Morris
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA.,Present Address: Solid Biosciences, Cambridge, MA, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA
| |
Collapse
|
78
|
Bondulich MK, Jolinon N, Osborne GF, Smith EJ, Rattray I, Neueder A, Sathasivam K, Ahmed M, Ali N, Benjamin AC, Chang X, Dick JRT, Ellis M, Franklin SA, Goodwin D, Inuabasi L, Lazell H, Lehar A, Richard-Londt A, Rosinski J, Smith DL, Wood T, Tabrizi SJ, Brandner S, Greensmith L, Howland D, Munoz-Sanjuan I, Lee SJ, Bates GP. Myostatin inhibition prevents skeletal muscle pathophysiology in Huntington's disease mice. Sci Rep 2017; 7:14275. [PMID: 29079832 PMCID: PMC5660167 DOI: 10.1038/s41598-017-14290-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/06/2017] [Indexed: 11/09/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder of which skeletal muscle atrophy is a common feature, and multiple lines of evidence support a muscle-based pathophysiology in HD mouse models. Inhibition of myostatin signaling increases muscle mass, and therapeutic approaches based on this are in clinical development. We have used a soluble ActRIIB decoy receptor (ACVR2B/Fc) to test the effects of myostatin/activin A inhibition in the R6/2 mouse model of HD. Weekly administration from 5 to 11 weeks of age prevented body weight loss, skeletal muscle atrophy, muscle weakness, contractile abnormalities, the loss of functional motor units in EDL muscles and delayed end-stage disease. Inhibition of myostatin/activin A signaling activated transcriptional profiles to increase muscle mass in wild type and R6/2 mice but did little to modulate the extensive Huntington's disease-associated transcriptional dysregulation, consistent with treatment having little impact on HTT aggregation levels. Modalities that inhibit myostatin signaling are currently in clinical trials for a variety of indications, the outcomes of which will present the opportunity to assess the potential benefits of targeting this pathway in HD patients.
Collapse
Affiliation(s)
- Marie K Bondulich
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, WC1N 3BG, UK
- Department Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Huntington's Disease Centre, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Nelly Jolinon
- Department Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Georgina F Osborne
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, WC1N 3BG, UK
- Department Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Huntington's Disease Centre, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Edward J Smith
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, WC1N 3BG, UK
- Department Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Huntington's Disease Centre, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Ivan Rattray
- Department Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Andreas Neueder
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, WC1N 3BG, UK
- Department Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Huntington's Disease Centre, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Kirupa Sathasivam
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, WC1N 3BG, UK
- Department Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Huntington's Disease Centre, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Mhoriam Ahmed
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Nadira Ali
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, WC1N 3BG, UK
- Department Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Huntington's Disease Centre, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Agnesska C Benjamin
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, WC1N 3BG, UK
- Department Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Huntington's Disease Centre, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Xiaoli Chang
- Department Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - James R T Dick
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Matthew Ellis
- Division of Neuropathology, UCL Institute of Neurology, London, WC1N 3BG, UK
- Department of Neurodegenerative disease, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Sophie A Franklin
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, WC1N 3BG, UK
- Department Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Huntington's Disease Centre, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Daniel Goodwin
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, WC1N 3BG, UK
- Department Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Huntington's Disease Centre, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Linda Inuabasi
- Department Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Hayley Lazell
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, WC1N 3BG, UK
- Department Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
- Huntington's Disease Centre, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Adam Lehar
- Department Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Angela Richard-Londt
- Division of Neuropathology, UCL Institute of Neurology, London, WC1N 3BG, UK
- Department of Neurodegenerative disease, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Jim Rosinski
- CHDI Management/CHDI Foundation Inc, New York, NY, 10001, USA
| | - Donna L Smith
- Department Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK
| | - Tobias Wood
- Department of Neuroimaging, King's College London, Institute of Psychiatry, London, SE5 8AF, UK
| | - Sarah J Tabrizi
- Huntington's Disease Centre, UCL Institute of Neurology, London, WC1N 3BG, UK
- Department of Neurodegenerative disease, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Sebastian Brandner
- Division of Neuropathology, UCL Institute of Neurology, London, WC1N 3BG, UK
- Department of Neurodegenerative disease, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Linda Greensmith
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, WC1N 3BG, UK
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - David Howland
- CHDI Management/CHDI Foundation Inc, New York, NY, 10001, USA
| | | | - Se-Jin Lee
- Department Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gillian P Bates
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London Institute of Neurology, London, WC1N 3BG, UK.
- Department Medical and Molecular Genetics, King's College London, London, SE1 9RT, UK.
- Huntington's Disease Centre, UCL Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
79
|
Follistatin N terminus differentially regulates muscle size and fat in vivo. Exp Mol Med 2017; 49:e377. [PMID: 28912572 PMCID: PMC5628274 DOI: 10.1038/emm.2017.135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/10/2017] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Delivery of follistatin (FST) represents a promising strategy for both muscular dystrophies and diabetes, as FST is a robust antagonist of myostatin and activin, which are critical regulators of skeletal muscle and adipose tissues. FST is a multi-domain protein, and deciphering the function of different domains will facilitate novel designs for FST-based therapy. Our study aims to investigate the role of the N-terminal domain (ND) of FST in regulating muscle and fat mass in vivo. Different FST constructs were created and packaged into the adeno-associated viral vector (AAV). Overexpression of wild-type FST in normal mice greatly increased muscle mass while decreasing fat accumulation, whereas overexpression of an N terminus mutant or N terminus-deleted FST had no effect on muscle mass but moderately decreased fat mass. In contrast, FST-I-I containing the complete N terminus and double domain I without domain II and III had no effect on fat but increased skeletal muscle mass. The effects of different constructs on differentiated C2C12 myotubes were consistent with the in vivo finding. We hypothesized that ND was critical for myostatin blockade, mediating the increase in muscle mass, and was less pivotal for activin binding, which accounts for the decrease in the fat tissue. An in vitro TGF-beta1-responsive reporter assay revealed that FST-I-I and N terminus-mutated or -deleted FST showed differential responses to blockade of activin and myostatin. Our study provided direct in vivo evidence for a role of the ND of FST, shedding light on future potential molecular designs for FST-based gene therapy.
Collapse
|
80
|
Pepinsky B, Gong BJ, Gao Y, Lehmann A, Ferrant J, Amatucci J, Sun Y, Bush M, Walz T, Pederson N, Cameron T, Wen D. A Prodomain Fragment from the Proteolytic Activation of Growth Differentiation Factor 11 Remains Associated with the Mature Growth Factor and Keeps It Soluble. Biochemistry 2017; 56:4405-4418. [DOI: 10.1021/acs.biochem.7b00302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Blake Pepinsky
- Department
of Biotherapeutics and Medicinal Sciences, Biogen, 115 Broadway, Cambridge, Massachusetts 02142, United States
| | - Bang-Jian Gong
- Department
of Biotherapeutics and Medicinal Sciences, Biogen, 115 Broadway, Cambridge, Massachusetts 02142, United States
| | - Yan Gao
- Department
of Biotherapeutics and Medicinal Sciences, Biogen, 115 Broadway, Cambridge, Massachusetts 02142, United States
| | - Andreas Lehmann
- Department
of Biotherapeutics and Medicinal Sciences, Biogen, 115 Broadway, Cambridge, Massachusetts 02142, United States
| | - Janine Ferrant
- Department
of Biotherapeutics and Medicinal Sciences, Biogen, 115 Broadway, Cambridge, Massachusetts 02142, United States
| | - Joseph Amatucci
- Department
of Biotherapeutics and Medicinal Sciences, Biogen, 115 Broadway, Cambridge, Massachusetts 02142, United States
| | - Yaping Sun
- Department
of Biotherapeutics and Medicinal Sciences, Biogen, 115 Broadway, Cambridge, Massachusetts 02142, United States
| | - Martin Bush
- Laboratory
of Molecular Electron Microscopy, Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Walz
- Laboratory
of Molecular Electron Microscopy, Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Nels Pederson
- Department
of Biotherapeutics and Medicinal Sciences, Biogen, 115 Broadway, Cambridge, Massachusetts 02142, United States
| | - Thomas Cameron
- Department
of Biotherapeutics and Medicinal Sciences, Biogen, 115 Broadway, Cambridge, Massachusetts 02142, United States
| | - Dingyi Wen
- Department
of Biotherapeutics and Medicinal Sciences, Biogen, 115 Broadway, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
81
|
Sakamoto K, Kanematsu-Yamaki Y, Kamada Y, Oka M, Ohnishi T, Miwa M, Asami T, Inooka H. Identification of ligand-selective peptidic ActRIIB-antagonists using phage display technology. Biochem Biophys Rep 2017; 11:33-39. [PMID: 28955765 PMCID: PMC5614685 DOI: 10.1016/j.bbrep.2017.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 01/02/2023] Open
Abstract
ActRIIB (activin receptor type-2B) is an activin receptor subtype constitutively expressed in the whole body, playing a role in cellular proliferation, differentiation, and metabolism. For its various physiological activities, ActRIIB interacts with activin and multiple other ligands including myostatin (MSTN), growth differentiation factor 11 (GDF11), and bone morphogenetic protein 9 (BMP9). Notably, the protein-protein interaction (PPI) between ActRIIB and MSTN negatively controls muscular development. Therefore, this PPI has been targeted for effective treatment of muscle degenerative diseases such as muscular dystrophy and sarcopenia. Here, we report the identification of ligand-selective peptidic ActRIIB-antagonists by phage display technology. Our peptides bound to the extracellular domain of ActRIIB, inhibited PPIs between ActRIIB expressed on the cell surface and its ligands, and subsequently suppressed activation of Smad that serves as the downstream signal of the ActRIIB pathway. Interestingly, these peptidic antagonists displayed different ligand selectivities; the AR2mini peptide inhibited multiple ligands (activin A, MSTN, GDF11, and BMP9), AR9 inhibited MSTN and GDF11, while AR8 selectively inhibited MSTN. This is the first report of artificial peptidic ActRIIB-antagonists possessing ligand-selectivity. Artificial ActRIIB-antagonist peptides were discovered by phage display. These peptides selectively bound to the extracellular domain of ActRIIB. They antagonized ActRIIB expressed on the cell surface. They presented multiple ligand selectivities.
Collapse
Affiliation(s)
- Kotaro Sakamoto
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yoko Kanematsu-Yamaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yusuke Kamada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masahiro Oka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshiyuki Ohnishi
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masanori Miwa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Taiji Asami
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroshi Inooka
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
82
|
Tsao J, Kovanecz I, Awadalla N, Gelfand R, Sinha-Hikim I, White RA, Gonzalez-Cadavid NF. Muscle Derived Stem Cells Stimulate Muscle Myofiber Repair and Counteract Fat Infiltration in a Diabetic Mouse Model of Critical Limb Ischemia. ACTA ACUST UNITED AC 2016; 6. [PMID: 28217409 PMCID: PMC5313052 DOI: 10.4172/2157-7633.1000370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Critical Limb Ischemia (CLI) affects patients with Type 2 Diabetes (T2D) and obesity, with high risk of amputation and post-surgical mortality, and no effective medical treatment. Stem cell therapy, mainly with bone marrow mesenchymal, adipose derived, endothelial, hematopoietic, and umbilical cord stem cells, is promising in CLI mouse and rat models and is in clinical trials. Their general focus is on angiogenic repair, with no reports on the alleviation of necrosis, lipofibrosis, and myofiber regeneration in the ischemic muscle, or the use of Muscle Derived Stem Cells (MDSC) alone or in combination with pharmacological adjuvants, in the context of CLI in T2D. Methods Using a T2D mouse model of CLI induced by severe unilateral femoral artery ligation, we tested: a) the repair efficacy of MDSC implanted into the ischemic muscle and the effects of concurrent intraperitoneal administration of a nitric oxide generator, molsidomine; and b) whether MDSC may partially counteract their own repair effects by stimulating the expression of myostatin, the main lipofibrotic agent in the muscle and inhibitor of muscle mass. Results MDSC: a) reduced mortality, and b) in the ischemic muscle, increased stem cell number and myofiber central nuclei, reduced fat infiltration, myofibroblast number, and myofiber apoptosis, and increased smooth muscle and endothelial cells, as well as neurotrophic factors. The content of myosin heavy chain 2 (MHC-2) myofibers was not restored and collagen was increased, in association with myostatin overexpression. Supplementation of MDSC with molsidomine failed to stimulate the beneficial effects of MDSC, except for some reduction in myostatin overexpression. Molsidomine given alone was rather ineffective, except for inhibiting apoptosis and myostatin overexpression. Conclusions MDSC improved CLI muscle repair, but molsidomine did not stimulate this process. The combination of MDSC with anti-myostatin approaches should be explored to restore myofiber MHC composition.
Collapse
Affiliation(s)
- J Tsao
- Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - I Kovanecz
- Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - N Awadalla
- Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - R Gelfand
- Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA; Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - I Sinha-Hikim
- Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - R A White
- Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - N F Gonzalez-Cadavid
- Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA; Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA; Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
83
|
Pan C, Singh S, Sahasrabudhe DM, Chakkalakal JV, Krolewski JJ, Nastiuk KL. TGFβ Superfamily Members Mediate Androgen Deprivation Therapy-Induced Obese Frailty in Male Mice. Endocrinology 2016; 157:4461-4472. [PMID: 27611336 PMCID: PMC5414572 DOI: 10.1210/en.2016-1580] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
First line treatment for recurrent and metastatic prostate cancer is androgen deprivation therapy (ADT). Use of ADT has been increasing in frequency and duration, such that side effects increasingly impact patient quality of life. One of the most significant side effects of ADT is sarcopenia, which leads to a loss of skeletal muscle mass and function, resulting in a clinical disability syndrome known as obese frailty. Using aged mice, we developed a mouse model of ADT-induced sarcopenia that closely resembles the phenotype seen in patients, including loss of skeletal muscle strength, reduced lean muscle mass, and increased adipose tissue. Sarcopenia onset occurred about 6 weeks after castration and was blocked by a soluble receptor (ActRIIB-Fc) that binds multiple TGFβ superfamily members, including myostatin, growth differentiation factor 11, activin A, activin B, and activin AB. Analysis of ligand expression in both gastrocnemius and triceps brachii muscles demonstrates that each of these proteins is induced in response to ADT, in 1 of 3 temporal patterns. Specifically, activin A and activin AB levels increase and decline before onset of strength loss at 6 weeks after castration, and myostatin levels increase coincident with the onset of strength loss and then decline. In contrast, activin B and growth differentiation factor 11 levels increase after the onset of strength loss, 8-10 weeks after castration. The observed patterns of ligand induction may represent differential contributions to the development and/or maintenance of sarcopenia. We hypothesize that some or all of these ligands are targets for therapy to ameliorate ADT-induced sarcopenia in prostate cancer patients.
Collapse
Affiliation(s)
- Chunliu Pan
- Department of Cancer Genetics (C.P., S.S., J.J.K., K.L.N.) and Center for Personalized Medicine (J.J.K.), Roswell Park Cancer Institute; Buffalo, New York 14263; and James P. Wilmot Cancer Center and Department of Medicine (D.M.S.), Department of Orthopedics and Center for Musculoskeletal Research (J.V.C.), and Department of Pathology and Laboratory Medicine (K.L.N.), University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642
| | - Shalini Singh
- Department of Cancer Genetics (C.P., S.S., J.J.K., K.L.N.) and Center for Personalized Medicine (J.J.K.), Roswell Park Cancer Institute; Buffalo, New York 14263; and James P. Wilmot Cancer Center and Department of Medicine (D.M.S.), Department of Orthopedics and Center for Musculoskeletal Research (J.V.C.), and Department of Pathology and Laboratory Medicine (K.L.N.), University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642
| | - Deepak M Sahasrabudhe
- Department of Cancer Genetics (C.P., S.S., J.J.K., K.L.N.) and Center for Personalized Medicine (J.J.K.), Roswell Park Cancer Institute; Buffalo, New York 14263; and James P. Wilmot Cancer Center and Department of Medicine (D.M.S.), Department of Orthopedics and Center for Musculoskeletal Research (J.V.C.), and Department of Pathology and Laboratory Medicine (K.L.N.), University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642
| | - Joe V Chakkalakal
- Department of Cancer Genetics (C.P., S.S., J.J.K., K.L.N.) and Center for Personalized Medicine (J.J.K.), Roswell Park Cancer Institute; Buffalo, New York 14263; and James P. Wilmot Cancer Center and Department of Medicine (D.M.S.), Department of Orthopedics and Center for Musculoskeletal Research (J.V.C.), and Department of Pathology and Laboratory Medicine (K.L.N.), University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642
| | - John J Krolewski
- Department of Cancer Genetics (C.P., S.S., J.J.K., K.L.N.) and Center for Personalized Medicine (J.J.K.), Roswell Park Cancer Institute; Buffalo, New York 14263; and James P. Wilmot Cancer Center and Department of Medicine (D.M.S.), Department of Orthopedics and Center for Musculoskeletal Research (J.V.C.), and Department of Pathology and Laboratory Medicine (K.L.N.), University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642
| | - Kent L Nastiuk
- Department of Cancer Genetics (C.P., S.S., J.J.K., K.L.N.) and Center for Personalized Medicine (J.J.K.), Roswell Park Cancer Institute; Buffalo, New York 14263; and James P. Wilmot Cancer Center and Department of Medicine (D.M.S.), Department of Orthopedics and Center for Musculoskeletal Research (J.V.C.), and Department of Pathology and Laboratory Medicine (K.L.N.), University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
84
|
Abstract
BACKGROUND: Skeletal muscle atrophy during aging, a process known as sarcopenia, is associated with muscle weakness, frailty, and the loss of independence in older adults. The mechanisms contributing to sarcopenia are not totally understood, but muscle fiber loss due to apoptosis, reduced stimulation of anabolic pathways, activation of catabolic pathways, denervation, and altered metabolism have been observed in muscle from old rodents and humans. OBJECTIVE: Recently, histone deacetylases (HDACs) have been implicated in muscle atrophy and dysfunction due to denervation, muscular dystrophy, and disuse, and HDACs play key roles in regulating metabolism in skeletal muscle. In this review, we will discuss the role of HDACs in muscle atrophy and the potential of HDAC inhibitors for the treatment of sarcopenia. CONCLUSIONS: Several HDAC isoforms are potential targets for intervention in sarcopenia. Inhibition of HDAC1 prevents muscle atrophy due to nutrient deprivation. HDAC3 regulates metabolism in skeletal muscle and may inhibit oxidative metabolism during aging. HDAC4 and HDAC5 have been implicated in muscle atrophy due to denervation, a process implicated in sarcopenia. HDAC inhibitors are already in use in the clinic, and there is promise in targeting HDACs for the treatment of sarcopenia.
Collapse
Affiliation(s)
- Michael E Walsh
- Energy Metabolism Laboratory, Swiss Federal Institute of Technology (ETH) Zurich , Zurich, Switzerland
| | | |
Collapse
|
85
|
Chang HM, Qiao J, Leung PCK. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update 2016; 23:1-18. [PMID: 27797914 PMCID: PMC5155571 DOI: 10.1093/humupd/dmw039] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Initially identified for their capability to induce heterotopic bone formation,
bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong
to the transforming growth factor β superfamily. Using cellular and
molecular genetic approaches, recent studies have implicated intra-ovarian BMPs as
potent regulators of ovarian follicular function. The bi-directional communication
of oocytes and the surrounding somatic cells is mandatory for normal follicle
development and oocyte maturation. This review summarizes the current knowledge on
the physiological role and molecular determinants of these ovarian regulatory
factors within the human germline-somatic regulatory loop. OBJECTIVE AND RATIONALE The regulation of ovarian function remains poorly characterized in humans because,
while the fundamental process of follicular development and oocyte maturation is
highly similar across species, most information on the regulation of ovarian
function is obtained from studies using rodent models. Thus, this review focuses
on the studies that used human biological materials to gain knowledge about human
ovarian biology and disorders and to develop strategies for preventing, diagnosing
and treating these abnormalities. SEARCH METHODS Relevant English-language publications describing the roles of BMPs or growth
differentiation factors (GDFs) in human ovarian biology and phenotypes were
comprehensively searched using PubMed and the Google Scholar database. The
publications included those published since the initial identification of BMPs in
the mammalian ovary in 1999 through July 2016. OUTCOMES Studies using human biological materials have revealed the expression of BMPs,
GDFs and their putative receptors as well as their molecular signaling in the
fundamental cells (oocyte, cumulus/granulosa cells (GCs) and theca/stroma cells)
of the ovarian follicles throughout follicle development. With the availability of
recombinant human BMPs/GDFs and the development of immortalized human cell lines,
functional studies have demonstrated the physiological role of intra-ovarian
BMPs/GDFs in all aspects of ovarian functions, from follicle development to
steroidogenesis, cell–cell communication, oocyte maturation, ovulation and
luteal function. Furthermore, there is crosstalk between these potent ovarian
regulators and the endocrine signaling system. Dysregulation or naturally
occurring mutations within the BMP system may lead to several female reproductive
diseases. The latest development of recombinant BMPs, synthetic BMP inhibitors,
gene therapy and tools for BMP-ligand sequestration has made the BMP pathway a
potential therapeutic target in certain human fertility disorders; however,
further clinical trials are needed. Recent studies have indicated that GDF8 is an
intra-ovarian factor that may play a novel role in regulating ovarian functions in
the human ovary. WIDER IMPLICATIONS Intra-ovarian BMPs/GDFs are critical regulators of folliculogenesis and human
ovarian functions. Any dysregulation or variations in these ligands or their
receptors may affect the related intracellular signaling and influence ovarian
functions, which accounts for several reproductive pathologies and infertility.
Understanding the normal and pathological roles of intra-ovarian BMPs/GDFs,
especially as related to GC functions and follicular fluid levels, will inform
innovative approaches to fertility regulation and improve the diagnosis and
treatment of ovarian disorders.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing 100191, P.R. China.,Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Room 317, 950 West 28 Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| | - Jie Qiao
- Department of Obstetrics and Gynaecology, Center for Reproductive Medicine, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing 100191, P.R. China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Room 317, 950 West 28 Avenue, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
86
|
Tankó LB, Goldhahn J, Varela A, Lesage E, Smith SY, Pilling A, Chivers S. Does Activin Receptor Blockade by Bimagrumab (BYM338) Pose Detrimental Effects on Bone Healing in a Rat Fibula Osteotomy Model? Calcif Tissue Int 2016; 99:310-21. [PMID: 27167138 DOI: 10.1007/s00223-016-0148-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/25/2016] [Indexed: 10/21/2022]
Abstract
Bimagrumab (BYM338) is a novel fully human monoclonal antibody that exerts strong promyogenic effects on skeletal muscle by blocking activin type II receptors (ActRII). We investigated whether such blockade of ActRII by bimagrumab manifests any detrimental effect on outcomes of bone healing in a rat fibula osteotomy model. Animals (n = 150) were divided into 11 groups and received weekly treatment with either bimagrumab (10 or 100 mg/kg) or vehicle. Progression and outcomes of bone healing were assessed by lateral radiographs in vivo as well as by peripheral quantitative computed tomography (pQCT), 4-point bending test, and microscopic examination of the excised fibula at Day 29 or later. The radiographic progression of bone healing showed no significant differences between treatment groups in any comparative setting. In 3-month-old animals, pQCT revealed slightly reduced immature callus size and bone mineral content in bimagrumab-treated animals compared with vehicle-treated animals at Day 29 (p < 0.05). There were, however, no differences in mature callus size, bone mineral density, or biomechanical competency. The aforementioned effects on immature callus size were not present when the treatment was initiated 4 weeks post osteotomy or when treating 6-month-old animals. In summary, these findings suggest that there is no major impact of ActRII blockade on overall fracture healing, and delayed treatment initiation can bypass the small and transient effect of the therapy on immature callus formation observed in younger animals. Verification of these findings in humans is the subject of an ongoing clinical trial on elderly hip fracture patients.
Collapse
Affiliation(s)
- László B Tankó
- Novartis Pharma AG, Fabrikstrasse 12-3.03.23, Postfach, 4002, Basel, Switzerland.
| | - Jörg Goldhahn
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Aurore Varela
- Musculoskeletal Research, Charles River, Montreal, Canada
| | | | - Susan Y Smith
- Musculoskeletal Research, Charles River, Montreal, Canada
| | - Andrew Pilling
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | - Simon Chivers
- Novartis Institute for Biomedical Research, Basel, Switzerland
- ADC Therapeutics, London, UK
| |
Collapse
|
87
|
Tawil R, Mah JK, Baker S, Wagner KR, Ryan MM, Baker S, Corbett A, van Engelen B, McNamara S, Mah JK, Ryan MM, Rasko J, Raykar V, Sacconi S, Tapscott SJ, Tawil R, Wagner KR, Watts A. Clinical practice considerations in facioscapulohumeral muscular dystrophy Sydney, Australia, 21 September 2015. Neuromuscul Disord 2016; 26:462-71. [DOI: 10.1016/j.nmd.2016.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 03/30/2016] [Indexed: 12/22/2022]
|
88
|
Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ. PLoS Genet 2016; 12:e1006019. [PMID: 27148972 PMCID: PMC4858180 DOI: 10.1371/journal.pgen.1006019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/08/2016] [Indexed: 01/06/2023] Open
Abstract
Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression. Muscular dystrophy is a genetic disease with muscle weakness, replacement of muscle tissue with fibrosis, and premature death. The gene for latent TGFβ binding protein 4 (LTBP4) was previously found to modify muscular dystrophy in both mice and humans with variants that confer protection from disease. In order to better understand this modifier gene, the protective version of LTBP4 was overexpressed specifically in the skeletal muscles of mice. Increased levels of LTBP4 protein resulted in increased muscle mass. Overexpression of LTBP4 in a mouse model of Duchenne muscular dystrophy alleviated many disease-associated features producing larger muscles, increased strength, and reduced fibrosis in muscle. LTBP4 formed a complex with myostatin, a protein that when inhibited leads to muscle growth. In LTBP4-overexpressing mice, active myostatin protein was decreased. This study shows that LTBP4 modifies muscular dystrophy based on its ability to scaffold and regulate multiple TGFβ family members including myostatin.
Collapse
|
89
|
Postsurgical Acute Phase Reaction is Associated with Decreased Levels of Circulating Myostatin. Inflammation 2016; 38:1727-30. [PMID: 25749570 DOI: 10.1007/s10753-015-0149-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Muscle strength is of importance for postsurgical rehabilitation. Myostatin is a growth factor that regulates the size of muscles and could thus influence muscle mass and function in the postsurgical period. The aim of the present study was to study the changes in myostatin levels during the postsurgical inflammatory period. Myostatin was analysed in serum samples from two elective surgery groups, orthopaedic surgery (n = 24) and coronary bypass patients (n = 21). The samples were collected prior to surgery and 4 and 30 days after surgery. In the orthopaedic group, the median myostatin levels decreased from 3582 ng/L prior to surgery to 774 ng/L at day 4 (p < 0.001) and to 2016 ng/L at day 30 (p < 0.001). Median CRP increased from 2.35 mg/L preoperatively to 117 mg/L at day 4 and decreased to 5.5 mg/L at day 30 in the same group. The coronary bypass group showed a similar pattern with a decrease in myostatin from 4212 ng/L to 2574 ng/L at day 4 (p < 0.001) and to 2808 ng/L at day 30 (p = 0.002). Median CRP increased from 1.80 mg/L preoperatively to 136 mg/L at day 4 and returned to 6.12 mg/L at day 30 in the coronary bypass group. There was a significant decrease in myostatin concentrations both in the early and late postsurgical period. The lowest myostatin concentration time point coincided with the highest CRP concentration time point.
Collapse
|
90
|
Tando T, Hirayama A, Furukawa M, Sato Y, Kobayashi T, Funayama A, Kanaji A, Hao W, Watanabe R, Morita M, Oike T, Miyamoto K, Soga T, Nomura M, Yoshimura A, Tomita M, Matsumoto M, Nakamura M, Toyama Y, Miyamoto T. Smad2/3 Proteins Are Required for Immobilization-induced Skeletal Muscle Atrophy. J Biol Chem 2016; 291:12184-94. [PMID: 27129272 DOI: 10.1074/jbc.m115.680579] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 01/23/2023] Open
Abstract
Skeletal muscle atrophy promotes muscle weakness, limiting activities of daily living. However, mechanisms underlying atrophy remain unclear. Here, we show that skeletal muscle immobilization elevates Smad2/3 protein but not mRNA levels in muscle, promoting atrophy. Furthermore, we demonstrate that myostatin, which negatively regulates muscle hypertrophy, is dispensable for denervation-induced muscle atrophy and Smad2/3 protein accumulation. Moreover, muscle-specific Smad2/3-deficient mice exhibited significant resistance to denervation-induced muscle atrophy. In addition, expression of the atrogenes Atrogin-1 and MuRF1, which underlie muscle atrophy, did not increase in muscles of Smad2/3-deficient mice following denervation. We also demonstrate that serum starvation promotes Smad2/3 protein accumulation in C2C12 myogenic cells, an in vitro muscle atrophy model, an effect inhibited by IGF1 treatment. In vivo, we observed IGF1 receptor deactivation in immobilized muscle, even in the presence of normal levels of circulating IGF1. Denervation-induced muscle atrophy was accompanied by reduced glucose intake and elevated levels of branched-chain amino acids, effects that were Smad2/3-dependent. Thus, muscle immobilization attenuates IGF1 signals at the receptor rather than the ligand level, leading to Smad2/3 protein accumulation, muscle atrophy, and accompanying metabolic changes.
Collapse
Affiliation(s)
| | - Akiyoshi Hirayama
- the Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, and
| | | | - Yuiko Sato
- From the Departments of Orthopedic Surgery, Musculoskeletal Reconstruction and Regeneration Surgery
| | - Tami Kobayashi
- From the Departments of Orthopedic Surgery, Musculoskeletal Reconstruction and Regeneration Surgery
| | | | | | - Wu Hao
- From the Departments of Orthopedic Surgery
| | | | - Mayu Morita
- Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582
| | | | | | - Tomoyoshi Soga
- the Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, and
| | - Masatoshi Nomura
- the Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi Ward, Fukuoka 812-8582, Japan
| | | | - Masaru Tomita
- the Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, and
| | | | | | | | | |
Collapse
|
91
|
Palandra J, Quazi A, Fitz L, Rong H, Morris C, Neubert H. Quantitative measurements of GDF-8 using immunoaffinity LC-MS/MS. Proteomics Clin Appl 2016; 10:597-604. [DOI: 10.1002/prca.201500112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 01/08/2016] [Accepted: 01/29/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Joe Palandra
- Pfizer Worldwide Research & Development; Andover MA USA
| | - Amira Quazi
- Pfizer Worldwide Research & Development; Cambridge MA USA
| | - Lori Fitz
- Pfizer Worldwide Research & Development; Cambridge MA USA
| | - Haojing Rong
- Pfizer Worldwide Research & Development; Cambridge MA USA
| | - Carl Morris
- Pfizer Worldwide Research & Development; Cambridge MA USA
| | | |
Collapse
|
92
|
Thevis M, Schänzer W. Emerging drugs affecting skeletal muscle function and mitochondrial biogenesis - Potential implications for sports drug testing programs. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:635-651. [PMID: 26842585 DOI: 10.1002/rcm.7470] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE A plethora of compounds potentially leading to drug candidates that affect skeletal muscle function and, more specifically, mitochondrial biogenesis, has been under (pre)clinical investigation for rare as well as more common diseases. Some of these compounds could be the object of misuse by athletes aiming at artificial and/or illicit and drug-facilitated performance enhancement, necessitating preventive and proactive anti-doping measures. METHODS Early warnings and the continuous retrieval and dissemination of information are crucial for sports drug testing laboratories as well as anti-doping authorities, as they assist in preparation of efficient doping control analytical strategies for potential future threats arising from new therapeutic developments. Scientific literature represents the main source of information, which yielded the herein discussed substances and therapeutic targets, which might become relevant for doping controls in the future. Where available, mass spectrometric data are presented, supporting the development of analytical strategies and characterization of compounds possibly identified in human sports drug testing samples. RESULTS & CONCLUSIONS Focusing on skeletal muscle and mitochondrial biogenesis, numerous substances exhibiting agonistic or antagonistic actions on different cellular 'control centers' resulting in increased skeletal muscle mass, enhanced performance (as determined with laboratory animal models), and/or elevated amounts of mitochondria have been described. Substances of interest include agonists for REV-ERBα (e.g. SR9009, SR9011, SR10067, GSK4112), sirtuin 1 (e.g. SRT1720, SRT2104), adenosine monophosphate-activated protein kinase (AMPK, e.g. AICAR), peroxisome proliferator-activated receptor (PPAR)δ (e.g. GW1516, GW0742, L165041), and inhibitory/antagonistic agents targeting the methionine-folate cycle (MOTS-c), the general control non-derepressible 5 (GCN5) acetyl transferase (e.g. CPTH2, MB-3), myostatin (e.g. MYO-029), the myostatin receptor (bimagrumab), and myostatin receptor ligands (e.g. sotatercept, ACE-031). In addition, potentially relevant drug targets were identified, e.g. with the sarcoplasmic transmembrane peptide myoregulin and the nuclear receptor corepressor 1 (NCOR-1). The antagonism of these has shown to result in substantially enhanced physical performance in animals, necessitating the monitoring of strategies such as RNA interference regarding these substances. Most drug candidates are of lower molecular mass and comprise non-natural compositions, facts which suggest approaches for their qualitative identification in doping control samples by mass spectrometry. Electrospray ionization/collision-induced dissociation mass spectra of representatives of the aforementioned substances and selected in vitro derived phase-I metabolites support this assumption, and test methods for a subset of these have been recently established. Expanding the knowledge on analytical data will further facilitate the identification of such analytes and related compounds in confiscated material as well as sports drug testing specimens.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research/Institute of Biochemistry, German Sport University Cologne, Am Sportpark Muengersdorf 6, 50933, Cologne, Germany
- European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany
| |
Collapse
|
93
|
Treating the whole body in Huntington's disease. Lancet Neurol 2016; 14:1135-42. [PMID: 26466780 DOI: 10.1016/s1474-4422(15)00177-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 06/15/2015] [Accepted: 07/03/2015] [Indexed: 12/13/2022]
Abstract
Huntington's disease is a genetic neurodegenerative disorder with symptoms that are linked to the progressive dysfunction and neuronal death in corticostriatal circuits. The causative gene (mutated HTT) is widely expressed outside the CNS and several peripheral signs of disease, including weight loss and increased proinflammatory signalling, are often seen; however, their importance in the pathophysiology of Huntington's disease is not clear. Studies in animals have shown that features of the disease involving the CNS, including synapse loss and behavioural alterations, are susceptible to modulation by treatments that target tissues and organs outside the CNS. Links between peripheral biology and neurodegeneration have also been shown in other chronic neurodegenerative diseases, suggesting that modulation of these peripheral targets can offer new approaches to therapeutic development. Treatments targeted to tissues and organs outside the CNS might therefore substantially improve the quality of life of patients with Huntington's disease, even in the absence of disease-modifying effects.
Collapse
|
94
|
Han DS, Chang KV, Li CM, Lin YH, Kao TW, Tsai KS, Wang TG, Yang WS. Skeletal muscle mass adjusted by height correlated better with muscular functions than that adjusted by body weight in defining sarcopenia. Sci Rep 2016; 6:19457. [PMID: 26785759 PMCID: PMC4726295 DOI: 10.1038/srep19457] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/09/2015] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia, characterized by low muscle mass and function, results in frailty, comorbidities and mortality. However, its prevalence varies according to the different criteria used in its diagnosis. This cross-sectional study investigated the difference in the number of sarcopenia cases recorded by two different measurement methods of low muscle mass to determine which measurement was better. We recruited 878 (54.2% female) individuals aged over 65 years and obtained their body composition and functional parameters. Low muscle mass was defined as two standard deviations below either the mean height-adjusted (hSMI) or weight-adjusted (wSMI) muscle mass of a young reference group. The prevalence of sarcopenia was 6.7% vs. 0.4% (male/female) by hSMI, and 4.0% vs. 10.7% (male/female) by wSMI. The κ coefficients for these two criteria were 0.39 vs. 0.03 (male/female), and 0.17 in all subjects. Serum myostatin levels correlated positively with gait speed (r = 0.142, p = 0.007) after adjustment for gender. hSMI correlated with grip strength, cardiopulmonary endurance, leg endurance, gait speed, and flexibility. wSMI correlated with grip strength, leg endurance, gait speed, and flexibility. Since hSMI correlated more closely with grip strength and more muscular functions, we recommend hSMI in the diagnosis of low muscle mass.
Collapse
Affiliation(s)
- Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital BeiHu Branch, Taipei
| | - Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital BeiHu Branch, Taipei
| | - Chia-Ming Li
- Department of Family Medicine, National Taiwan University Hospital BeiHu Branch, Taipei
| | - Yu-Hong Lin
- Department of Social Work, National Taiwan University Hospital BeiHu Branch, Taipei
| | - Tung-Wei Kao
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Keh-Sung Tsai
- Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei.,Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Tyng-Grey Wang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei
| | - Wei-Shiung Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
95
|
Berstein LM. Insulinemia, heterogeneity of obesity and the risk of different types of endometrial cancer: existing evidence. Expert Rev Endocrinol Metab 2016; 11:51-64. [PMID: 30063451 DOI: 10.1586/17446651.2016.1128325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Due to a number of reasons, endometrial cancer is a point of interest not only for oncologists, but also for a variety of specialists - especially endocrinologists. The endocrinology of endometrial cancer can be firmly divided into two categories - steroid and non-steroid. The steroid approach dominated during several decades due to hyperestrogenization signs observed in some patients. The balance was only regained in the last 15 years, when the role of diabetes and insulin resistance began to draw attention. This review aims to provide an update on connections between insulinemia (insulin resistance) and different obesity phenotypes as well to discuss their relation to development of endometrial cancer, its clinical-morphological features and the increasing number of its molecular-biological subtypes.
Collapse
Affiliation(s)
- Lev M Berstein
- a Laboratory of Oncoendocrinology, NN Petrov Research Institute of Oncology , St. Petersburg , Russian Federation
| |
Collapse
|
96
|
Malavaki CJ, Sakkas GK, Mitrou GI, Kalyva A, Stefanidis I, Myburgh KH, Karatzaferi C. Skeletal muscle atrophy: disease-induced mechanisms may mask disuse atrophy. J Muscle Res Cell Motil 2016; 36:405-21. [DOI: 10.1007/s10974-015-9439-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/08/2015] [Indexed: 01/07/2023]
|
97
|
Coleman SK, Rebalka IA, D’Souza DM, Hawke TJ. Skeletal muscle as a therapeutic target for delaying type 1 diabetic complications. World J Diabetes 2015; 6:1323-1336. [PMID: 26674848 PMCID: PMC4673386 DOI: 10.4239/wjd.v6.i17.1323] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/01/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease targeting the pancreatic beta-cells and rendering the person hypoinsulinemic and hyperglycemic. Despite exogenous insulin therapy, individuals with T1DM will invariably develop long-term complications such as blindness, kidney failure and cardiovascular disease. Though often overlooked, skeletal muscle is also adversely affected in T1DM, with both physical and metabolic derangements reported. As the largest metabolic organ in the body, impairments to skeletal muscle health in T1DM would impact insulin sensitivity, glucose/lipid disposal and basal metabolic rate and thus affect the ability of persons with T1DM to manage their disease. In this review, we discuss the impact of T1DM on skeletal muscle health with a particular focus on the proposed mechanisms involved. We then identify and discuss established and potential adjuvant therapies which, in association with insulin therapy, would improve the health of skeletal muscle in those with T1DM and thereby improve disease management- ultimately delaying the onset and severity of other long-term diabetic complications.
Collapse
|
98
|
Hackney KJ, Scott JM, Hanson AM, English KL, Downs ME, Ploutz-Snyder LL. The Astronaut-Athlete. J Strength Cond Res 2015; 29:3531-45. [DOI: 10.1519/jsc.0000000000001191] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
99
|
Rodgers BD, Eldridge JA. Reduced Circulating GDF11 Is Unlikely Responsible for Age-Dependent Changes in Mouse Heart, Muscle, and Brain. Endocrinology 2015; 156:3885-8. [PMID: 26372181 DOI: 10.1210/en.2015-1628] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent high-profile studies report conflicting data on the age-related change in circulating growth/differentiation factor 11 (GDF11) and myostatin as well as the former's influence on muscle regeneration. Both ligands bind and activate ActRIIB receptors with similar affinities and should therefore have similar actions, yet these studies suggest that GDF11 activates muscle regeneration whereas myostatin is well known to inhibit it. They also suggest that circulating GDF11 levels, but not those of myostatin, decline with age. We performed a careful assessment of the ELISA used to quantify circulating myostatin in these studies and determined that assay reagents significantly cross react with each protein, each of which is highly homologous. Circulating myostatin levels decreased with age and estimates of GDF11 levels using myostatin null mice indicate that they were almost 500 times lower than those for myostatin. This suggests that circulating GDF11 has little physiological relevance as it could not outcompete myostatin for ActRIIB binding sites. Together, these results further suggest that the previously reported aging muscle, heart, and brain phenotypes attributed to reduced circulating GDF11 should be reconsidered.
Collapse
Affiliation(s)
- Buel D Rodgers
- Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, Washington 99164
| | - Jennifer A Eldridge
- Department of Animal Sciences, Washington Center for Muscle Biology, Washington State University, Pullman, Washington 99164
| |
Collapse
|
100
|
Walpurgis K, Thomas A, Schänzer W, Thevis M. Myostatin inhibitors in sports drug testing: Detection of myostatin-neutralizing antibodies in plasma/serum by affinity purification and Western blotting. Proteomics Clin Appl 2015. [DOI: 10.1002/prca.201500043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Katja Walpurgis
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
| | - Andreas Thomas
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
| | - Mario Thevis
- Center for Preventive Doping Research/Institute of Biochemistry; German Sport University Cologne; Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne/Bonn Germany
| |
Collapse
|