51
|
Chmilewsky F, Jeanneau C, Laurent P, Kirschfink M, About I. Pulp progenitor cell recruitment is selectively guided by a C5a gradient. J Dent Res 2013; 92:532-9. [PMID: 23603337 DOI: 10.1177/0022034513487377] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
It recently became evident that activation of the complement system also contributes to tissue regeneration after infection/injury. The complement-derived fragment C5a induces vascular modifications and attracts cells expressing its receptor (C5aR/CD88) to the site of infection and tissue injury. Besides inflammatory cells, various tissue cells express this receptor. We hypothesized that pulp progenitor cells, being exposed to local complement activation in caries lesions, may respond to C5a via the C5aR. Our work aimed at evaluating the ability of C5a to induce pulp progenitor cell migration that may link complement activation to dentin regeneration. Immunofluorescence analysis of third molar pulp sections showed perivascular localization of the mesenchymal stem cell markers STRO-1 and C5aR. RT-PCR on STRO-1-sorted pulp progenitor cells, co-expressing both STRO-1 and C5aR, revealed high C5aR mRNA levels. Experiments with the C5aR antagonist W54011 revealed that C5a specifically bound to progenitor cells via C5aR, inducing their selective migration toward the C5a gradient. Since we could also demonstrate C5b-9 formation by immunohistochemistry in carious teeth, our findings suggest that, upon local complement activation, C5a induces pulp progenitor cell migration, which may be critical in initiating the regenerative process after dentin/pulp injury.
Collapse
Affiliation(s)
- F Chmilewsky
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288, Marseille cedex 09, France
| | | | | | | | | |
Collapse
|
52
|
Niwa T, Mizukoshi K, Azuma Y, Kashimata M, Shibutani T. Fundamental study of osteoclast chemotaxis toward chemoattractants expressed in periodontitis. J Periodontal Res 2013; 48:773-80. [PMID: 23586648 DOI: 10.1111/jre.12068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is a chronic inflammatory disease that leads to bone resorption by osteoclasts (OCs). Several factors contribute to the differentiation of OCs from hematopoietic precursors. Cellular chemotactic factors are expressed in periodontitis tissue, but the effects of these chemoattractants on OCs are not well understood. Here we examined the effects of chemoattractants produced in inflamed periodontal tissue on OC chemotaxis. MATERIAL AND METHODS Rat bone-marrow OCs were cultured in OC culture medium for 3 or 6 d. Using EZ-TAXIScan™, the chemotactic response of these OCs to several chemoattractants [monocyte chemotactic protein-1; macrophage inflammatory protein 1α; regulated on activation, normal T-cell expressed and secreted; stromal cell-derived factor-1α; and complement activation product 5a (C5a)] was measured. In addition, we measured the effect of C5a-specific inhibitors on chemotactic responses toward C5a. The recorded chemotactic responses were quantitatively analysed using ImageJ software. RESULTS Chemoattractants associated with periodontal disease significantly increased the chemotactic activity of differentiated rat OCs in a concentration-dependent manner, with C5a inducing the highest chemotactic activity of OCs cultured for 3 or 6 d. The C5a-specific inhibitor significantly inhibited chemotaxis toward C5a in a concentration-dependent manner. CONCLUSION We suggest that C5a plays an important role in pathologic bone resorption in periodontal disease by stimulating the chemotaxis of OCs. Therefore, C5a is a potential target for the treatment of periodontal disease.
Collapse
Affiliation(s)
- T Niwa
- Department of Periodontology, Division of Oral Infections and Health Sciences, Asahi University School of Dentistry, Mizuho, Japan
| | | | | | | | | |
Collapse
|
53
|
Neutrophils orchestrate their own recruitment in murine arthritis through C5aR and FcγR signaling. Proc Natl Acad Sci U S A 2012; 109:E3177-85. [PMID: 23112187 DOI: 10.1073/pnas.1213797109] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neutrophil recruitment into the joint is a hallmark of inflammatory arthritides, including rheumatoid arthritis (RA). In a mouse model of autoantibody-induced inflammatory arthritis, neutrophils infiltrate the joint via multiple chemoattractant receptors, including the leukotriene B(4) (LTB(4)) receptor BLT1 and the chemokine receptors CCR1 and CXCR2. Once in the joint, neutrophils perpetuate their own recruitment by releasing LTB(4) and IL-1β, presumably after activation by immune complexes deposited on joint structures. Two pathways by which immune complexes may activate neutrophils include complement fixation, resulting in the generation of C5a, and direct engagement of Fcγ receptors (FcγRs). Previous investigations showed that this model of autoantibody-induced arthritis requires the C5a receptor C5aR and FcγRs, but the simultaneous necessity for both pathways was not understood. Here we show that C5aR and FcγRs work in sequence to initiate and sustain neutrophil recruitment in vivo. Specifically, C5aR activation of neutrophils is required for LTB(4) release and early neutrophil recruitment into the joint, whereas FcγR engagement upon neutrophils induces IL-1β release and subsequent neutrophil-active chemokine production, ensuring continued inflammation. These findings support the concept that immune complex-mediated leukocyte activation is not composed of overlapping and redundant pathways, but that each element serves a distinct and critical function in vivo, culminating in tissue inflammation.
Collapse
|
54
|
Recknagel S, Bindl R, Kurz J, Wehner T, Schöngraf P, Ehrnthaller C, Qu H, Gebhard F, Huber-Lang M, Lambris JD, Claes L, Ignatius A. C5aR-antagonist significantly reduces the deleterious effect of a blunt chest trauma on fracture healing. J Orthop Res 2012; 30:581-6. [PMID: 21922535 PMCID: PMC3244519 DOI: 10.1002/jor.21561] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 08/30/2011] [Indexed: 02/04/2023]
Abstract
Confirming clinical evidence, we recently demonstrated that a blunt chest trauma considerably impaired fracture healing in rats, possibly via the interaction of posttraumatic systemic inflammation with local healing processes, the underlying mechanisms being unknown. An important trigger of systemic inflammation is the complement system, with the potent anaphylatoxin C5a. Therefore, we investigated whether the impairment of fracture healing by a severe trauma resulted from systemically activated complement. Rats received a blunt chest trauma and a femur osteotomy stabilized with an external fixator. To inhibit the C5a-dependent posttraumatic systemic inflammation, half of the rats received a C5aR-antagonist intravenously immediately and 12 h after the thoracic trauma. Compared to the controls (control peptide), the treatment with the C5aR-antagonist led to a significantly increased flexural rigidity (three-point-bending test), an improved bony bridging of the fracture gap, and a slightly larger and qualitatively improved callus (µCT, histomorphometry) after 35 days. In conclusion, immunomodulation by a C5aR-antagonist could abolish the deleterious effects of a thoracic trauma on fracture healing, possibly by influencing the function of inflammatory and bone cells locally at the fracture site. C5a could possibly represent a target to prevent delayed bone healing in patients with severe trauma.
Collapse
Affiliation(s)
- Stefan Recknagel
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Ronny Bindl
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Julian Kurz
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Tim Wehner
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Phillip Schöngraf
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Christian Ehrnthaller
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Hongchang Qu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - John D. Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Lutz Claes
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| |
Collapse
|
55
|
Nahles S, Nack C, Gratecap K, Lage H, Nelson JJ, Nelson K. Bone physiology in human grafted and non-grafted extraction sockets - an immunohistochemical study. Clin Oral Implants Res 2012; 24:812-9. [DOI: 10.1111/j.1600-0501.2012.02462.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2012] [Indexed: 01/08/2023]
Affiliation(s)
- Susanne Nahles
- Oral- and Maxillofacial Surgery; Charité Campus Virchow; Berlin; Germany
| | - Claudia Nack
- Oral- and Maxillofacial Surgery; Charité Campus Virchow; Berlin; Germany
| | - Kerrin Gratecap
- Oral- and Maxillofacial Surgery; Charité Campus Virchow; Berlin; Germany
| | - Hermann Lage
- Department of Pathology; Campus Mitte, Charite; Berlin; Germany
| | - John J. Nelson
- Department of Pathology; University of South Alabama; Mobile; Alabama; USA
| | - Katja Nelson
- Department of CMF-Surgery; University of Freiburg; Berlin; Germany
| |
Collapse
|
56
|
Schoengraf P, Lambris JD, Recknagel S, Kreja L, Liedert A, Brenner RE, Huber-Lang M, Ignatius A. Does complement play a role in bone development and regeneration? Immunobiology 2012; 218:1-9. [PMID: 22464814 DOI: 10.1016/j.imbio.2012.01.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 12/16/2022]
Abstract
The skeletal and the immune system are not two independent systems, rather, there are multifaceted and complex interactions between the different cell types of both systems and there are several shared cytokines. As a part of the innate immunity, the complement system was found to be an important link between bone and immunity. Complement proteins appear to be involved in bone development and homeostasis, and specifically influence osteoblast and osteoclast activity. This review describes the complex mutual regulation of the two systems, and indicates some of the negative side effects as a result of inappropriate or excessive complement activation.
Collapse
Affiliation(s)
- Philipp Schoengraf
- Institute of Orthopaedic Research and Biomechanics, Centre of Muskuloskelettal Research, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Neher MD, Weckbach S, Flierl MA, Huber-Lang MS, Stahel PF. Molecular mechanisms of inflammation and tissue injury after major trauma--is complement the "bad guy"? J Biomed Sci 2011; 18:90. [PMID: 22129197 PMCID: PMC3247859 DOI: 10.1186/1423-0127-18-90] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 11/30/2011] [Indexed: 02/07/2023] Open
Abstract
Trauma represents the leading cause of death among young people in industrialized countries. Recent clinical and experimental studies have brought increasing evidence for activation of the innate immune system in contributing to the pathogenesis of trauma-induced sequelae and adverse outcome. As the "first line of defense", the complement system represents a potent effector arm of innate immunity, and has been implicated in mediating the early posttraumatic inflammatory response. Despite its generic beneficial functions, including pathogen elimination and immediate response to danger signals, complement activation may exert detrimental effects after trauma, in terms of mounting an "innocent bystander" attack on host tissue. Posttraumatic ischemia/reperfusion injuries represent the classic entity of complement-mediated tissue damage, adding to the "antigenic load" by exacerbation of local and systemic inflammation and release of toxic mediators. These pathophysiological sequelae have been shown to sustain the systemic inflammatory response syndrome after major trauma, and can ultimately contribute to remote organ injury and death. Numerous experimental models have been designed in recent years with the aim of mimicking the inflammatory reaction after trauma and to allow the testing of new pharmacological approaches, including the emergent concept of site-targeted complement inhibition. The present review provides an overview on the current understanding of the cellular and molecular mechanisms of complement activation after major trauma, with an emphasis of emerging therapeutic concepts which may provide the rationale for a "bench-to-bedside" approach in the design of future pharmacological strategies.
Collapse
Affiliation(s)
- Miriam D Neher
- Department of Orthopaedic Surgery, University of Colorado Denver, School of Medicine, Denver Health Medical Center, 777 Bannock Street, Denver, CO 80204, USA
| | | | | | | | | |
Collapse
|
58
|
Ignatius A, Schoengraf P, Kreja L, Liedert A, Recknagel S, Kandert S, Brenner RE, Schneider M, Lambris JD, Huber-Lang M. Complement C3a and C5a modulate osteoclast formation and inflammatory response of osteoblasts in synergism with IL-1β. J Cell Biochem 2011; 112:2594-605. [PMID: 21598302 PMCID: PMC3158833 DOI: 10.1002/jcb.23186] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a tight interaction of the bone and the immune system. However, little is known about the relevance of the complement system, an important part of innate immunity and a crucial trigger for inflammation. The aim of this study was, therefore, to investigate the presence and function of complement in bone cells including osteoblasts, mesenchymal stem cells (MSC), and osteoclasts. qRT-PCR and immunostaining revealed that the central complement receptors C3aR and C5aR, complement C3 and C5, and membrane-bound regulatory proteins CD46, CD55, and CD59 were expressed in human MSC, osteoblasts, and osteoclasts. Furthermore, osteoblasts and particularly osteoclasts were able to activate complement by cleaving C5 to its active form C5a as measured by ELISA. Both C3a and C5a alone were unable to trigger the release of inflammatory cytokines interleukin (IL)-6 and IL-8 from osteoblasts. However, co-stimulation with the pro-inflammatory cytokine IL-1β significantly induced IL-6 and IL-8 expression as well as the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG) indicating that complement may modulate the inflammatory response of osteoblastic cells in a pro-inflammatory environment as well as osteoblast-osteoclast interaction. While C3a and C5a did not affect osteogenic differentiation, osteoclastogenesis was significantly induced even in the absence of RANKL and macrophage-colony stimulating factor (M-CSF) suggesting that complement could directly regulate osteoclast formation. It can therefore be proposed that complement may enhance the inflammatory response of osteoblasts and increase osteoclast formation, particularly in a pro-inflammatory environment, for example, during bone healing or in inflammatory bone disorders.
Collapse
Affiliation(s)
- Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University of Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|