51
|
Jutfelt F, Norin T, Åsheim ER, Rowsey LE, Andreassen AH, Morgan R, Clark TD, Speers‐Roesch B. ‘Aerobic scope protection’ reduces ectotherm growth under warming. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13811] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fredrik Jutfelt
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Tommy Norin
- DTU Aqua: National Institute of Aquatic Resources Technical University of Denmark Kgs. Lyngby Denmark
| | - Eirik R. Åsheim
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
- Organismal and Evolutionary Biology Research Programme Institute of Biotechnology University of Helsinki Helsinki Finland
| | - Lauren E. Rowsey
- Department of Biological Sciences University of New Brunswick Saint John NB Canada
| | - Anna H. Andreassen
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Rachael Morgan
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| | - Timothy D. Clark
- School of Life and Environmental Sciences Deakin University Geelong Vic. Australia
| | - Ben Speers‐Roesch
- Department of Biological Sciences University of New Brunswick Saint John NB Canada
| |
Collapse
|
52
|
McKenzie DJ, Zhang Y, Eliason EJ, Schulte PM, Claireaux G, Blasco FR, Nati JJH, Farrell AP. Intraspecific variation in tolerance of warming in fishes. JOURNAL OF FISH BIOLOGY 2021; 98:1536-1555. [PMID: 33216368 DOI: 10.1111/jfb.14620] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Accepted: 11/17/2020] [Indexed: 05/12/2023]
Abstract
Intraspecific variation in key traits such as tolerance of warming can have profound effects on ecological and evolutionary processes, notably responses to climate change. The empirical evidence for three primary elements of intraspecific variation in tolerance of warming in fishes is reviewed. The first is purely mechanistic that tolerance varies across life stages and as fishes become mature. The limited evidence indicates strongly that this is the case, possibly because of universal physiological principles. The second is intraspecific variation that is because of phenotypic plasticity, also a mechanistic phenomenon that buffers individuals' sensitivity to negative impacts of global warming in their lifetime, or to some extent through epigenetic effects over successive generations. Although the evidence for plasticity in tolerance to warming is extensive, more work is required to understand underlying mechanisms and to reveal whether there are general patterns. The third element is intraspecific variation based on heritable genetic differences in tolerance, which underlies local adaptation and may define long-term adaptability of a species in the face of ongoing global change. There is clear evidence of local adaptation and some evidence of heritability of tolerance to warming, but the knowledge base is limited with detailed information for only a few model or emblematic species. There is also strong evidence of structured variation in tolerance of warming within species, which may have ecological and evolutionary significance irrespective of whether it reflects plasticity or adaptation. Although the overwhelming consensus is that having broader intraspecific variation in tolerance should reduce species vulnerability to impacts of global warming, there are no sufficient data on fishes to provide insights into particular mechanisms by which this may occur.
Collapse
Affiliation(s)
- David J McKenzie
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Yangfan Zhang
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Centre Ifremer de Bretagne, Plouzané, France
| | - Felipe R Blasco
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, Brazil
- Joint Graduate Program in Physiological Sciences, Federal University of São Carlos - UFSCar/São Paulo State University, UNESP Campus Araraquara, Araraquara, Brazil
| | - Julie J H Nati
- MARBEC, University of Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
53
|
Ackerly KL, Esbaugh AJ. The effects of temperature on oil-induced respiratory impairment in red drum (Sciaenops ocellatus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105773. [PMID: 33610857 DOI: 10.1016/j.aquatox.2021.105773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The 2010 Deepwater Horizon (DWH) crude oil spill, among the largest environmental disasters in U.S. history, affected numerous economically important fishes. Exposure to crude oil can lead to reduced cardiac function, limiting oxygen transport, ATP production, and aerobic performance. However, crude oil exposure is not the only stressor that affects aerobic performance, and increasing environmental temperatures are known to significantly increase metabolic demands in fishes. As the DWH spill was active during warm summer months in the Gulf of Mexico, it is important to understand the combined effects of oil and temperature on a suite of metabolic parameters. Therefore, we investigated the effects of 24h crude oil exposure on the aerobic metabolism and hypoxia tolerance of red drum (Sciaenops ocellatus) following 3 week chronic exposure to four ecologically relevant temperatures (18 °C, 22 °C, 25 °C, 28 °C). Our results show that individuals acclimated to higher temperatures had significantly higher standard metabolic rate than individuals at lower temperatures, which resulted in significantly decreased critical oxygen threshold and reduced recovery from exercise. As predicted, crude oil exposure resulted in lower maximum metabolic rates (MMR) across the temperature range, and a significantly reduced ability to recover from exercise. The lowest temperature acclimation showed the smallest effect of oil on MMR, while the highest temperature showed the smallest effect on exercise recovery. Reduced respiratory performance and hypoxia tolerance are likely to have meaningful impacts on the fitness of red drum, especially with climate-induced temperature increases and continued oil exploration in the Gulf of Mexico.
Collapse
Affiliation(s)
- Kerri Lynn Ackerly
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, United States.
| | - Andrew J Esbaugh
- The University of Texas at Austin Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, United States.
| |
Collapse
|
54
|
Lefevre S, Wang T, McKenzie DJ. The role of mechanistic physiology in investigating impacts of global warming on fishes. J Exp Biol 2021; 224:224/Suppl_1/jeb238840. [PMID: 33627469 DOI: 10.1242/jeb.238840] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Warming of aquatic environments as a result of climate change is already having measurable impacts on fishes, manifested as changes in phenology, range shifts and reductions in body size. Understanding the physiological mechanisms underlying these seemingly universal patterns is crucial if we are to reliably predict the fate of fish populations with future warming. This includes an understanding of mechanisms for acute thermal tolerance, as extreme heatwaves may be a major driver of observed effects. The hypothesis of gill oxygen limitation (GOL) is claimed to explain asymptotic fish growth, and why some fish species are decreasing in size with warming; but its underlying assumptions conflict with established knowledge and direct mechanistic evidence is lacking. The hypothesis of oxygen- and capacity-limited thermal tolerance (OCLTT) has stimulated a wave of research into the role of oxygen supply capacity and thermal performance curves for aerobic scope, but results vary greatly between species, indicating that it is unlikely to be a universal mechanism. As thermal performance curves remain important for incorporating physiological tolerance into models, we discuss potentially fruitful alternatives to aerobic scope, notably specific dynamic action and growth rate. We consider the limitations of estimating acute thermal tolerance by a single rapid measure whose mechanism of action is not known. We emphasise the continued importance of experimental physiology, particularly in advancing our understanding of underlying mechanisms, but also the challenge of making this knowledge relevant to the more complex reality.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tobias Wang
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - David J McKenzie
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université de Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| |
Collapse
|
55
|
Sundell E, Morgenroth D, Ekström A, Brijs J, Axelsson M, Gräns A, Sandblom E. Energetic savings and cardiovascular dynamics of a marine euryhaline fish (Myoxocephalus scorpius) in reduced salinity. J Comp Physiol B 2021; 191:301-311. [PMID: 33537851 PMCID: PMC7895773 DOI: 10.1007/s00360-020-01336-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 12/12/2020] [Indexed: 11/29/2022]
Abstract
Few studies have addressed how reduced water salinity affects cardiovascular and metabolic function in marine euryhaline fishes, despite its relevance for predicting impacts of natural salinity variations and ongoing climate change on marine fish populations. Here, shorthorn sculpin (Myoxocephalus scorpius) were subjected to different durations of reduced water salinity from 33 to 15 ppt. Routine metabolic rate decreased after short-term acclimation (4–9 days) to 15 ppt, which corresponded with similar reductions in cardiac output. Likewise, standard metabolic rate decreased after acute transition (3 h) from 33 to 15 ppt, suggesting a reduced energetic cost of osmoregulation at 15 ppt. Interestingly, gut blood flow remained unchanged across salinities, which contrasts with previous findings in freshwater euryhaline teleosts (e.g., rainbow trout) exposed to different salinities. Although plasma osmolality, [Na+], [Cl−] and [Ca2+] decreased in 15 ppt, there were no signs of cellular osmotic stress as plasma [K+], [hemoglobin] and hematocrit remained unchanged. Taken together, our data suggest that shorthorn sculpin are relatively weak plasma osmoregulators that apply a strategy whereby epithelial ion transport mechanisms are partially maintained across salinities, while plasma composition is allowed to fluctuate within certain ranges. This may have energetic benefits in environments where salinity naturally fluctuates, and could provide shorthorn sculpin with competitive advantages if salinity fluctuations intensify with climate change in the future.
Collapse
Affiliation(s)
- Erika Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| | - Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jeroen Brijs
- Institute of Marine Biology, University of Hawai'i at Mānoa, Honolulu, USA
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
56
|
Yin L, Chen L, Wang M, Li H, Yu X. An acute increase in water temperature can decrease the swimming performance and energy utilization efficiency in rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:109-120. [PMID: 33211244 DOI: 10.1007/s10695-020-00897-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
In order to evaluate the effects of acute temperature exposure on the swimming performance of rainbow trout (Oncorhynchus mykiss), the critical swimming speed (Ucrit) and oxygen consumption rates (MO2) were determined at different temperatures (13.2, 18.4, and 22.5 °C). The Ucrit and MO2 of different body mass (109.44, 175.74, and 249.42 g) fish were also obtained at 13.4 °C. The Ucrit first increased as the temperature increased from 13.2 to 15.2 °C, which was calculated to be the optimal temperature for the Ucrit, and then decreased with increasing temperature. The optimal swimming speed (Uopt) showed a similar trend to the Ucrit. At a given swimming speed, the MO2 and cost of transport (COT) were significantly higher at 22.5 than at 13.2 °C, suggesting the energy utilization efficiency decreased with increasing temperature. The absolute values of Ucrit and Uopt increased as the body mass increased from 109.44 to 249.42 g, whereas the relative values decreased. Although not statistically significant, the maximum metabolic rate (MMR) tended to increase with temperature but decrease with body mass. Results can be of value in understanding the behavioral and physiological response of rainbow trout to acute temperature change.
Collapse
Affiliation(s)
- Leiming Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Lei Chen
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Maolin Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Hongquan Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoming Yu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
57
|
Christensen EAF, Norin T, Tabak I, van Deurs M, Behrens JW. Effects of temperature on physiological performance and behavioral thermoregulation in an invasive fish, the round goby. J Exp Biol 2021; 224:jeb237669. [PMID: 33257434 PMCID: PMC7823162 DOI: 10.1242/jeb.237669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022]
Abstract
Invasive species exert negative impacts on biodiversity and ecosystems on a global scale, which may be enhanced in the future by climate change. Knowledge of how invasive species respond physiologically and behaviorally to novel and changing environments can improve our understanding of which traits enable the ecological success of these species, and potentially facilitate mitigation efforts. We examined the effects of acclimation to temperatures ranging from 5 to 28°C on aerobic metabolic rates, upper temperature tolerance (critical thermal maximum, CTmax), as well as temperature preference (Tpref) and avoidance (Tavoid) of the round goby (Neogobius melanostomus), one of the most impactful invasive species in the world. We show that round goby maintained a high aerobic scope from 15 to 28°C; that is, the capacity to increase its aerobic metabolic rate above that of its maintenance metabolism remained high across a broad thermal range. Although CTmax increased relatively little with acclimation temperature compared with other species, Tpref and Tavoid were not affected by acclimation temperature at all, meaning that round goby maintained a large thermal safety margin (CTmax-Tavoid) across acclimation temperatures, indicating a high level of thermal resilience in this species. The unperturbed physiological performance and high thermal resilience were probably facilitated by high levels of phenotypic buffering, which can make species readily adaptable and ecologically competitive in novel and changing environments. We suggest that these physiological and behavioral traits could be common for invasive species, which would only increase their success under continued climate change.
Collapse
Affiliation(s)
- Emil A F Christensen
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Tommy Norin
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Iren Tabak
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Mikael van Deurs
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| | - Jane W Behrens
- Section for Marine Living Resources, DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet, Building 202, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
58
|
Christensen EAF, Norin T, Tabak I, van Deurs M, Behrens JW. Effects of temperature on physiological performance and behavioral thermoregulation in an invasive fish, the round goby. J Exp Biol 2021. [PMID: 33257434 PMCID: PMC7823162 DOI: 10.1242/jeb.237669 10.1242/jeb.237669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Invasive species exert negative impacts on biodiversity and ecosystems on a global scale, which may be enhanced in the future by climate change. Knowledge of how invasive species respond physiologically and behaviorally to novel and changing environments can improve our understanding of which traits enable the ecological success of these species, and potentially facilitate mitigation efforts. We examined the effects of acclimation to temperatures ranging from 5 to 28°C on aerobic metabolic rates, upper temperature tolerance (critical thermal maximum, CTmax), as well as temperature preference (T pref) and avoidance (T avoid) of the round goby (Neogobius melanostomus), one of the most impactful invasive species in the world. We show that round goby maintained a high aerobic scope from 15 to 28°C; that is, the capacity to increase its aerobic metabolic rate above that of its maintenance metabolism remained high across a broad thermal range. Although CTmax increased relatively little with acclimation temperature compared with other species, T pref and T avoid were not affected by acclimation temperature at all, meaning that round goby maintained a large thermal safety margin (CTmax-T avoid) across acclimation temperatures, indicating a high level of thermal resilience in this species. The unperturbed physiological performance and high thermal resilience were probably facilitated by high levels of phenotypic buffering, which can make species readily adaptable and ecologically competitive in novel and changing environments. We suggest that these physiological and behavioral traits could be common for invasive species, which would only increase their success under continued climate change.
Collapse
|
59
|
Cortese D, Norin T, Beldade R, Crespel A, Killen SS, Mills SC. Physiological and behavioural effects of anemone bleaching on symbiont anemonefish in the wild. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daphne Cortese
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR 3278 CRIOBE Papetoai Moorea French Polynesia
| | - Tommy Norin
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
- DTU Aqua: National Institute of Aquatic Resources Technical University of Denmark Lyngby Denmark
| | - Ricardo Beldade
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR 3278 CRIOBE Papetoai Moorea French Polynesia
- Estación Costera de Investigaciones Marinas Departamento de Ecología, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago Chile
| | - Amélie Crespel
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Shaun S. Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Suzanne C. Mills
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR 3278 CRIOBE Papetoai Moorea French Polynesia
- Laboratoire d'Excellence “CORAIL” France
| |
Collapse
|
60
|
Sakurai G, Takahashi S, Yoshida Y, Yoshida H, Shoji J, Tomiyama T. Importance of experienced thermal history: Effect of acclimation temperatures on the high-temperature tolerance and growth performance of juvenile marbled flounder. J Therm Biol 2021; 97:102831. [PMID: 33863425 DOI: 10.1016/j.jtherbio.2020.102831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/24/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022]
Abstract
Experienced thermal history often affects the temperature tolerance of fish; however, the effect of thermal history on growth performance is unclear. To contribute to effective stocking (release of hatchery-reared juveniles in the field), we conducted four laboratory experiments using juvenile marbled flounder (Pseudopleuronectes yokohamae, around 30 mm standard length and 0.3 g body wet weight) acclimated at 12 °C and 24 °C for approximately 2 weeks to investigate the effects of acclimation temperature on high-temperature tolerance, food consumption, and growth performance. The acclimation to 24 °C increased tolerance to high temperatures, as shown in a 24-h exposure experiment and in a temperature elevation experiment. The 50% lethal temperature (upper incipient lethal temperature) was estimated to be 25.9 °C and 29.0 °C for the 12 °C and 24 °C acclimation groups, respectively. In subsequent experiments, we tested the effects of high and low temperature acclimation on the food consumption and growth performance of two size groups of juveniles (28.7 ± 2.0 and 34.5 ± 2.9 mm, mean ± SD), that were reared at temperatures ranging from 14 °C to 23 °C. The optimal temperature for growth was 20 °C and did not differ between the acclimation temperatures or between the size groups. However, food consumption and growth performance were suppressed by acute temperature changes. Specifically, feeding and growth were lower in the 24 °C-acclimated group than in the 12 °C-acclimated group when exposed to 14 °C, which is close to the natural water temperature at release in the field. These results suggest that experienced thermal history does not affect the optimal temperature but can affect the growth performance of juveniles. To maximize the post-release growth of hatchery-reared juveniles, the influence of thermal history should be taken into consideration and acute thermal changes before release should be avoided.
Collapse
Affiliation(s)
- Gento Sakurai
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Satoshi Takahashi
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Yusei Yoshida
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Hiroshi Yoshida
- Hiroshima City Fisheries Promotion Center, Hiroshima, Hiroshima 733-0833, Japan
| | - Jun Shoji
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Takeshi Tomiyama
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan.
| |
Collapse
|
61
|
Vargas-Chacoff L, Martínez D, Oyarzún-Salazar R, Paschke K, Navarro JM. The osmotic response capacity of the Antarctic fish Harpagifer antarcticus is insufficient to cope with projected temperature and salinity under climate change. J Therm Biol 2021; 96:102835. [PMID: 33627273 DOI: 10.1016/j.jtherbio.2021.102835] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/04/2020] [Accepted: 01/02/2021] [Indexed: 11/27/2022]
Abstract
Over the last decades, climate change has intensified. Temperatures have increased and seawater has become "fresher" in Antarctica, affecting fish such as Harpagifer antarcticus. Thus, this study aimed to evaluate changes in the osmoregulatory response of the Antarctic notothenioid fish Harpagifer antarcticus and evaluate how it will cope with the future climate change and environmental conditions in the Antarctic, and in the hypothetical case that its geographical distribution will be extended to the Magellanes region. The present study was undertaken to determine the interaction between temperature and salinity tolerance (2 °C and 33 psu as the control group, the experimental groups were 5, 8, and 11 °C and 28 and 23 psu) and their effect on the osmoregulatory status of H. antarcticus. We evaluated changes in gill-kidney-intestine NKA activity, gene expression of NKAα, NKCC, CFTR, Aquaporins 1 and 8 in the same tissues, muscle water percentage, and plasma osmolality to evaluate osmoregulatory responses. Plasma osmolality decreased with high temperature, also the gill-kidney-intestine NKA activity, gene expression of NKA α, NKCC, CFTR, Aquaporins 1, and 8 were modified by temperature and salinity. We demonstrated that H. antarcticus can not live in the Magallanes region, due to its incapacity to put up with temperatures over 5 °C and with over 8 °C being catastrophic.
Collapse
Affiliation(s)
- L Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile.
| | - D Martínez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - R Oyarzún-Salazar
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados Programa de Doctorado en Ciencias de la Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - K Paschke
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile; Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile
| | - J M Navarro
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
62
|
Rodgers EM, Franklin CE. Aerobic scope and climate warming: Testing the “
plastic floors and concrete ceilings
” hypothesis in the estuarine crocodile (
Crocodylus porosus
). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:108-117. [DOI: 10.1002/jez.2412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Essie M. Rodgers
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - Craig E. Franklin
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
63
|
Shuert CR, Halsey LG, Pomeroy PP, Twiss SD. Energetic limits: Defining the bounds and trade-offs of successful energy management in a capital breeder. J Anim Ecol 2020; 89:2461-2472. [PMID: 32895978 PMCID: PMC7693042 DOI: 10.1111/1365-2656.13312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/24/2020] [Indexed: 12/26/2022]
Abstract
Judicious management of energy can be invaluable for animal survival and reproductive success. Capital breeding mammals typically transfer energy to their young at extremely high rates while undergoing prolonged fasting, making lactation a tremendously energy demanding period. Effective management of the competing demands of the mother's energy needs and those of her offspring is presumably fundamental to maximizing lifetime reproductive success. How does the mother maximize her chances of successfully rearing her pup, by ensuring that both her pup and herself have sufficient energy during this 'energetic fast'? While energy management models were first discussed in the 1990s, application of this analytical technique is still very much in its infancy. Recent work suggests that a broad range of species exhibits 'energy compensation'; during periods when they expend more energy on activity, their bodies partially compensate by reducing background (basal) metabolic rate as an adaptation to limit overall energy expenditure. However, the value of energy management models in understanding animal ecology is presently unclear. We investigate whether energy management models provide insights into the breeding strategy of phocid seals. Not only do we expect lactating seals to display energy compensation because of their breeding strategy of high energy transfer while fasting, but we anticipate that mothers exhibiting a lack of energy compensation are less likely to rear offspring successfully. On the Isle of May in Scotland, we collected heart rate data as a proxy for energy expenditure in 52 known individual grey seal (Halichoerus grypus) mothers, repeatedly across 3 years of breeding. We provide evidence that grey seal mothers typically exhibit energy compensation during lactation by downregulating their background metabolic rate to limit daily energy expenditure during periods when other energy costs are relatively high. However, individuals that fail to energy compensate during the lactation period are more likely to end lactation earlier than expected. Our study is the first to demonstrate the importance of energy compensation to an animal's reproductive expenditure. Moreover, our multi-seasonal data indicate that environmental stressors may reduce the capacity of some individuals to follow the energy compensation strategy.
Collapse
Affiliation(s)
| | - Lewis G Halsey
- Department of Life Sciences, University of Roehampton, London, UK
| | - Patrick P Pomeroy
- Scottish Oceans Institute, University of St. Andrews, St. Andrews, UK
| | - Sean D Twiss
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
64
|
Opinion AGR, De Boeck G, Rodgers EM. Synergism between elevated temperature and nitrate: Impact on aerobic capacity of European grayling, Thymallus thymallus in warm, eutrophic waters. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105563. [PMID: 32673887 DOI: 10.1016/j.aquatox.2020.105563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/08/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Climate warming and nitrate pollution are pervasive aquatic stressors that endanger the persistence of fishes prevailing in anthropogenically disturbed habitats. Individually, elevated nitrate and temperature can influence fish energy homeostasis by increasing maintenance costs and impairing oxygen transport capacity. However, it remains unknown how fish respond to simultaneous exposure to elevated temperature and nitrate pollution. Hence, we examined the combined effects of nitrate and elevated temperatures on aerobic scope (AS, maximum-standard metabolic rates) and cardiorespiratory attributes (haemoglobin HB, haematocrit HCT, relative ventricle mass RVM, and somatic spleen index SSI) in a freshwater salmonid, Thymallus thymallus. A 3 × 2 factorial design was used, where fish were exposed to one of three ecologically relevant levels of nitrate (0, 50, or 200 mg NO3- l-1) and one of two temperatures (18 °C or 22 °C) for 6 weeks. Elevated temperature increased AS by 36 % and the improvement was stronger when coupled with nitrate exposure, indicating a positive synergistic interaction. HB was reduced by nitrate exposure, while HCT was independent of nitrate pollution and temperature. Stressor exposure induced remodeling of key elements of the cardiorespiratory system. RVM was 39 % higher in fish exposed to 22 °C compared to 18 °C but was independent of nitrate exposure. SSI was independent of temperature but was 85 % and 57 % higher in fish exposed to 50 and 200 mg NO3- l-1, respectively. Taken together, these results highlight that simultaneous exposure to elevated temperatures and nitrate pollution offers cross-tolerance benefits, which may be underscored by cardiorespiratory remodeling.
Collapse
Affiliation(s)
- April Grace R Opinion
- University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Gudrun De Boeck
- University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Essie M Rodgers
- University of Antwerp, Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), Groenenborgerlaan 171, 2020, Antwerp, Belgium; School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| |
Collapse
|
65
|
Mameri D, Branco P, Ferreira MT, Santos JM. Heatwave effects on the swimming behaviour of a Mediterranean freshwater fish, the Iberian barbel Luciobarbus bocagei. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:139152. [PMID: 32402977 DOI: 10.1016/j.scitotenv.2020.139152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 05/12/2023]
Abstract
Heatwaves, which can be defined as increases of at least 5 °C in air temperature for more than five consecutive days for a specified reference period, are expected to become more frequent under the ongoing climate change, with freshwater organisms being particularly vulnerable to high temperature fluctuations. In Mediterranean-climate areas, depending on the extent of summer droughts and loss of longitudinal connectivity, river segments may become isolated, maintaining fish populations confined to a series of disconnected pools, with no possibility to move to thermal refugia and thus becoming more prone to thermal stress. In this study, we evaluated the effect of a simulated heatwave on the swimming behaviour of juvenile stages of a potamodromous native cyprinid fish, the Iberian barbel Luciobarbus bocagei, under experimental mesocosm conditions. Behavioural traits included fish activity, boldness and shoal cohesion and were continuously measured at a constant flow velocity of 18 cm s-1, which is typical of riffle habitats. Overall, results show that the behaviour of juvenile Iberian barbel is likely to be affected by heatwaves, with fish displaying lower activity and boldness, while no clear difference was observed in shoal cohesion. This study highlights the importance of managing thermal refugia that are crucial for fish to persist in intermittent rivers. Future studies should focus on the interaction of heatwaves with other stressors, such as oxygen depletion, for a broader understanding of the perturbation affecting freshwater fishes under a changing climate.
Collapse
Affiliation(s)
- Daniel Mameri
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| | - Paulo Branco
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Maria Teresa Ferreira
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José Maria Santos
- Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
66
|
Little AG, Loughland I, Seebacher F. What do warming waters mean for fish physiology and fisheries? JOURNAL OF FISH BIOLOGY 2020; 97:328-340. [PMID: 32441327 DOI: 10.1111/jfb.14402] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Environmental signals act primarily on physiological systems, which then influence higher-level functions such as movement patterns and population dynamics. Increases in average temperature and temperature variability associated with global climate change are likely to have strong effects on fish physiology and thereby on populations and fisheries. Here we review the principal mechanisms that transduce temperature signals and the physiological responses to those signals in fish. Temperature has a direct, thermodynamic effect on biochemical reaction rates. Nonetheless, plastic responses to longer-term thermal signals mean that fishes can modulate their acute thermal responses to compensate at least partially for thermodynamic effects. Energetics are particularly relevant for growth and movement, and therefore for fisheries, and temperature can have pronounced effects on energy metabolism. All energy (ATP) production is ultimately linked to mitochondria, and temperature has pronounced effects on mitochondrial efficiency and maximal capacities. Mitochondria are dependent on oxygen as the ultimate electron acceptor so that cardiovascular function and oxygen delivery link environmental inputs with energy metabolism. Growth efficiency, that is the conversion of food into tissue, changes with temperature, and there are indications that warmer water leads to decreased conversion efficiencies. Moreover, movement and migration of fish relies on muscle function, which is partially dependent on ATP production but also on intracellular calcium cycling within the myocyte. Neuroendocrine processes link environmental signals to regulated responses at the level of different tissues, including muscle. These physiological processes within individuals can scale up to population responses to climate change. A mechanistic understanding of thermal responses is essential to predict the vulnerability of species and populations to climate change.
Collapse
Affiliation(s)
| | - Isabella Loughland
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, Australia
| |
Collapse
|
67
|
Lim LS, Tan SY, Tuzan AD, Kawamura G, Mustafa S, Rahmah S, Liew HJ. Diel osmorespiration rhythms of juvenile marble goby (Oxyeleotris marmorata). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1621-1629. [PMID: 32430644 DOI: 10.1007/s10695-020-00817-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Oxyeleotris marmorata is an ambush predator. It is known for slow growth rate and high market demand. Farming of O. marmorata still remains a challenge. In order to establish a proper feeding practice to stimulate growth, knowledge of its metabolic processes and cost should be examined. Therefore, this study was designed to investigate the diel osmorespiration rhythms of O. marmorata in response to feeding challenge by using an osmorespirometry assay. The results have shown that oxygen consumption rate of the fed fish was approximately 3 times higher than that of the unfed fish in early evening to support specific dynamic action. Digestion and ingestion processes were likely to be completed within 18-20 h in parallel with the ammonia excretion noticeable in early morning. Under resting metabolism, metabolic oxygen consumption was influenced by diel phase, but no effect was noted in ammonia excretion. As a nocturnal species, O. marmorata exhibited standard aerobic metabolic mode under dark phase followed by light phase, with high oxygen consumption rate found in either fed or unfed fish. It can be confirmed that both the diel phase and feeding have a significant interactive impact on oxygen consumption rate, whereas ammonia metabolism is impacted by feeding state. High metabolic rate of O. marmorata supports the nocturnal foraging activity in this fish. This finding suggested that feeding of O. marmorata should be performed during nighttime and water renewal should be conducted during daytime.
Collapse
Affiliation(s)
- Leong-Seng Lim
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Sin-Ying Tan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Audrey Daning Tuzan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Gunzo Kawamura
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Saleem Mustafa
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Sharifah Rahmah
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Hon Jung Liew
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
68
|
Bouyoucos IA, Morrison PR, Weideli OC, Jacquesson E, Planes S, Simpfendorfer CA, Brauner CJ, Rummer JL. Thermal tolerance and hypoxia tolerance are associated in blacktip reef shark (Carcharhinus melanopterus) neonates. J Exp Biol 2020; 223:223/14/jeb221937. [DOI: 10.1242/jeb.221937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
ABSTRACT
Thermal dependence of growth and metabolism can influence thermal preference and tolerance in marine ectotherms, including threatened and data-deficient species. Here, we quantified the thermal dependence of physiological performance in neonates of a tropical shark species (blacktip reef shark, Carcharhinus melanopterus) from shallow, nearshore habitats. We measured minimum and maximum oxygen uptake rates (ṀO2), calculated aerobic scope, excess post-exercise oxygen consumption and recovery from exercise, and measured critical thermal maxima (CTmax), thermal safety margins, hypoxia tolerance, specific growth rates, body condition and food conversion efficiencies at two ecologically relevant acclimation temperatures (28 and 31°C). Owing to high post-exercise mortality, a third acclimation temperature (33°C) was not investigated further. Acclimation temperature did not affect ṀO2 or growth, but CTmax and hypoxia tolerance were greatest at 31°C and positively associated. We also quantified in vitro temperature (25, 30 and 35°C) and pH effects on haemoglobin–oxygen (Hb–O2) affinity of wild-caught, non-acclimated sharks. As expected, Hb–O2 affinity decreased with increasing temperatures, but pH effects observed at 30°C were absent at 25 and 35°C. Finally, we logged body temperatures of free-ranging sharks and determined that C. melanopterus neonates avoided 31°C in situ. We conclude that C. melanopterus neonates demonstrate minimal thermal dependence of whole-organism physiological performance across a seasonal temperature range and may use behaviour to avoid unfavourable environmental temperatures. The association between thermal tolerance and hypoxia tolerance suggests a common mechanism warranting further investigation. Future research should explore the consequences of ocean warming, especially in nearshore, tropical species.
Collapse
Affiliation(s)
- Ian A. Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Phillip R. Morrison
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Ornella C. Weideli
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Eva Jacquesson
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France
- Laboratoire d'Excellence ‘CORAIL’, EPHE, PSL Research University, UPVD, CNRS, USR 3278 CRIOBE, Papetoai, Moorea, French Polynesia
| | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Colin J. Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jodie L. Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
69
|
The metabolism and swimming performance of sheepshead minnows (Cyprinodon variegatus) following thermal acclimation or acute thermal exposure. J Comp Physiol B 2020; 190:557-568. [PMID: 32671461 DOI: 10.1007/s00360-020-01293-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 10/23/2022]
Abstract
Ectothermic animals are especially susceptible to temperature change, considering that their metabolism and core temperature are linked to the environmental temperature. As global water temperatures continue to increase, so does the need to understand the capacity of organisms to tolerate change. Sheepshead minnows (Cyprinodon variegatus) are the most eurythermic fish species known to date and can tolerate a wide range of environmental temperatures from - 1.9 to 43.0 °C. But little is known about the physiological adjustments that occur when these fish are subjected to acute thermal challenges and long-term thermal acclimation. Minnows were acclimated to 10, 21, or 32 °C for 4 weeks or acutely exposed to 10 and 32 °C and then assessed for swimming performance [maximum sustained swimming velocity (Ucrit), optimum swimming velocity (Uopt)] and metabolic endpoints (extrapolated standard and maximum metabolic rate [SMR, MMR), absolute aerobic scope (AS), and cost of transport (COT)]. Our findings show that the duration of thermal exposure (acute vs. acclimation) did not influence swimming performance. Rather, swimming performance was influenced by the exposure temperature. Swimming performance was statistically similar in fish exposed to 21 or 32 °C (approximately 7.0 BL s-1), but was drastically reduced in fish exposed to 10 °C (approximately 2.0 BL s-1), resulting in a left-skewed performance curve. There was no difference in metabolic end points between fish acutely exposed or acclimated to 10 °C. However, a different pattern was observed in fish exposed to 32 °C. MMR was similar between acutely exposed or acclimated fish, but acclimated fish had a 50% reduction in extrapolated SMR, which increased AS by 25%. However, this enhanced AS was not associated with changes in swimming performance, which opposes the oxygen-capacity limited thermal tolerance concept. Our findings suggest that sheepshead minnows may utilize two distinct acclimation strategies, resulting in different swimming performance and metabolic patterns observed between 10 and 32 °C exposures.
Collapse
|
70
|
White DP, Nannini MA, Wahl DH. Examining the effects of chronic, lake-wide elevated temperatures on behavioural expression in largemouth bass, Micropterus salmoides. JOURNAL OF FISH BIOLOGY 2020; 97:39-50. [PMID: 32154914 DOI: 10.1111/jfb.14313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Many behaviours have differential fitness consequences across thermal and ecological contexts, indicating that both ecological shifts and warming temperatures induced by climatic change may alter how organisms behave. However, empirical evidence of temperature-driven behavioural selection in natural systems is lacking. We compared behaviours and behavioural syndromes related to activity, exploration, boldness and aggression in populations of largemouth bass (Micropterus salmoides) from ambient lakes to the those from artificially warmed, power plant cooling lakes to investigate changes in behaviours associated with warmer environments. Activity, exploration, boldness and aggression of juvenile largemouth bass were assessed in laboratory conditions using a novel environment assay and a risky situation assay. We found that activity and exploratory behaviours were higher and decreased through first year ontogeny in populations from heated lakes, whereas these behaviours were lower and showed no relationship through ontogeny in populations from ambient lakes. We attribute these differences to the changes in food source availability in heated lakes associated with temperature-driven ecological effects. Bold and aggressive behaviours tended to differ between populations, as did correlations between behaviours, but did not differ between ambient and heated lakes. The findings of this work identify that large ecological changes associated with warming environments, such as food availability, may drive changes in some aspects of behavioural expression in largemouth bass but that other aspects of behavioural expression may be driven by lake-specific factors not related to warming.
Collapse
Affiliation(s)
- Dalon P White
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Sam Parr Biological Station, Illinois Natural History Survey, Kinmundy, Illinois, USA
| | - Michael A Nannini
- Sam Parr Biological Station, Illinois Natural History Survey, Kinmundy, Illinois, USA
| | - David H Wahl
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
- Sam Parr Biological Station, Illinois Natural History Survey, Kinmundy, Illinois, USA
| |
Collapse
|
71
|
Nyboer EA, Chrétien E, Chapman LJ. Divergence in aerobic scope and thermal tolerance is related to local thermal regime in two populations of introduced Nile perch (Lates niloticus). JOURNAL OF FISH BIOLOGY 2020; 97:231-245. [PMID: 32333608 DOI: 10.1111/jfb.14355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/22/2020] [Indexed: 05/21/2023]
Abstract
We tested whether thermal tolerance and aerobic performance differed between two populations of Nile perch (Lates niloticus) originating from the same source population six decades after their introduction into two lakes in the Lake Victoria basin in East Africa. We used short-term acclimation of juvenile fish to a range of temperatures from ambient to +6°C, and performed critical thermal maximum (CTmax ) and respirometry tests to measure upper thermal tolerance, resting and maximum metabolic rates, and aerobic scope (AS). Across acclimation temperatures, Nile perch from the cooler lake (Lake Nabugabo, Uganda) tended to have lower thermal tolerance (i.e., CTmax ) and lower aerobic performance (i.e., AS) than Nile perch from the warmer waters of Lake Victoria (Bugonga region, Uganda). Effects of temperature acclimation were more pronounced in the Lake Victoria population, with the Lake Nabugabo fish showing less thermal plasticity in most metabolic traits. Our results suggest phenotypic divergence in thermal tolerance between these two introduced populations in a direction consistent with an adaptive response to local thermal regimes.
Collapse
Affiliation(s)
- Elizabeth A Nyboer
- Department of Biology, McGill University, Montreal, Canada
- Department of Biology, Carleton Univeristy, Ottawa, Canada
| | - Emmanuelle Chrétien
- Département de sciences biologiques, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
72
|
Affiliation(s)
- Fredrik Jutfelt
- Department of Biology Norwegian University of Science and Technology Trondheim Norway
| |
Collapse
|
73
|
Závorka L, Koeck B, Armstrong TA, Soğanci M, Crespel A, Killen SS. Reduced exploration capacity despite brain volume increase in warm-acclimated common minnow. J Exp Biol 2020; 223:jeb223453. [PMID: 32414873 PMCID: PMC7286289 DOI: 10.1242/jeb.223453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/29/2020] [Indexed: 01/04/2023]
Abstract
While evidence suggests that warming may impact cognition of ectotherms, the underlying mechanisms remain poorly understood. A possible but rarely considered mechanism is that the metabolic response of ectotherms to warming is associated with changes in brain morphology and function. Here, we compared aerobic metabolism, brain volume, boldness and accuracy of maze solving of common minnows (Phoxinus phoxinus) acclimated for 8 months to either their current optimal natural (14°C) or warm (20°C) water temperature. Metabolic rates indicated increased energy expenditure in warm-acclimated fish, but also at least partial thermal compensation as warm-acclimated fish maintained high aerobic scope. Warm-acclimated fish had larger brains than cool-acclimated fish. The volume of the dorsal medulla relative to the overall brain size was larger in warm- than in cool-acclimated fish, but the proportion of other brain regions did not differ between the temperature treatments. Warm-acclimated fish did not differ in boldness but made more errors than cool-acclimated fish in exploring the maze across four trials. Inter-individual differences in the number of exploration errors were repeatable across the four trials of the maze test. Our findings suggest that in warm environments, maintaining a high aerobic scope, which is important for the performance of physically demanding tasks, can come at the cost of changes in brain morphology and impairment of the capacity to explore novel environments. This trade-off could have strong fitness implications for wild ectotherms.
Collapse
Affiliation(s)
- Libor Závorka
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- WasserCluster Lunz-Inter-University Centre for Aquatic Ecosystem Research, A-3293 Lunz am See, Austria
| | - Barbara Koeck
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Tiffany A Armstrong
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mustafa Soğanci
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amélie Crespel
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health & Comparative Medicine, Graham Kerr Building, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
74
|
Wolfe BW, Fitzgibbon QP, Semmens JM, Tracey SR, Pecl GT. Physiological mechanisms linking cold acclimation and the poleward distribution limit of a range-extending marine fish. CONSERVATION PHYSIOLOGY 2020; 8:coaa045. [PMID: 32494362 PMCID: PMC7248536 DOI: 10.1093/conphys/coaa045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/18/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Extensions of species' geographical distributions, or range extensions, are among the primary ecological responses to climate change in the oceans. Considerable variation across the rates at which species' ranges change with temperature hinders our ability to forecast range extensions based on climate data alone. To better manage the consequences of ongoing and future range extensions for global marine biodiversity, more information is needed on the biological mechanisms that link temperatures to range limits. This is especially important at understudied, low relative temperatures relevant to poleward range extensions, which appear to outpace warm range edge contractions four times over. Here, we capitalized on the ongoing range extension of a teleost predator, the Australasian snapper Chrysophrys auratus, to examine multiple measures of ecologically relevant physiological performance at the population's poleward range extension front. Swim tunnel respirometry was used to determine how mid-range and poleward range edge winter acclimation temperatures affect metabolic rate, aerobic scope, swimming performance and efficiency and recovery from exercise. Relative to 'optimal' mid-range temperature acclimation, subsequent range edge minimum temperature acclimation resulted in absolute aerobic scope decreasing while factorial aerobic scope increased; efficiency of swimming increased while maximum sustainable swimming speed decreased; and recovery from exercise required a longer duration despite lower oxygen payback. Cold-acclimated swimming faster than 0.9 body lengths sec-1 required a greater proportion of aerobic scope despite decreased cost of transport. Reduced aerobic scope did not account for declines in recovery and lower maximum sustainable swimming speed. These results suggest that while performances decline at range edge minimum temperatures, cold-acclimated snapper are optimized for energy savings and range edge limitation may arise from suboptimal temperature exposure throughout the year rather than acute minimum temperature exposure. We propose incorporating performance data with in situ behaviour and environmental data in bioenergetic models to better understand how thermal tolerance determines range limits.
Collapse
Affiliation(s)
- Barrett W Wolfe
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Quinn P Fitzgibbon
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Jayson M Semmens
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Sean R Tracey
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Gretta T Pecl
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
75
|
Yan J, Li H, Bu H, Jiao K, Zhang AX, Le T, Cao H, Li Y, Ding Y, Xu X. Aging-associated sinus arrest and sick sinus syndrome in adult zebrafish. PLoS One 2020; 15:e0232457. [PMID: 32401822 PMCID: PMC7219707 DOI: 10.1371/journal.pone.0232457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/15/2020] [Indexed: 12/24/2022] Open
Abstract
Because of its powerful genetics, the adult zebrafish has been increasingly used for studying cardiovascular diseases. Considering its heart rate of ~100 beats per minute at ambient temperature, which is very close to human, we assessed the use of this vertebrate animal for modeling heart rhythm disorders such as sinus arrest (SA) and sick sinus syndrome (SSS). We firstly optimized a protocol to measure electrocardiogram in adult zebrafish. We determined the location of the probes, implemented an open-chest microsurgery procedure, measured the effects of temperature, and determined appropriate anesthesia dose and time. We then proposed an PP interval of more than 1.5 seconds as an arbitrary criterion to define an SA episode in an adult fish at ambient temperature, based on comparison between the current definition of an SA episode in humans and our studies of candidate SA episodes in aged wild-type fish and Tg(SCN5A-D1275N) fish (a fish model for inherited SSS). With this criterion, a subpopulation of about 5% wild-type fish can be considered to have SA episodes, and this percentage significantly increases to about 25% in 3-year-old fish. In response to atropine, this subpopulation has both common SSS phenotypic traits that are shared with the Tg(SCN5A-D1275N) model, such as bradycardia; and unique SSS phenotypic traits, such as increased QRS/P ratio and chronotropic incompetence. In summary, this study defined baseline SA and SSS in adult zebrafish and underscored use of the zebrafish as an alternative model to study aging-associated SSS.
Collapse
Affiliation(s)
- Jianhua Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Cardiology, Xinhua Hospital Affiliated To Shanghai Jiaotong University School Of Medicine, Shanghai, China
| | - Hongsong Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kunli Jiao
- Division of Cardiology, Xinhua Hospital Affiliated To Shanghai Jiaotong University School Of Medicine, Shanghai, China
| | - Alex X. Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Tai Le
- Department of Electrical Engineering and Computer Science, UC Irvine, Irvine, California
| | - Hung Cao
- Department of Electrical Engineering and Computer Science, UC Irvine, Irvine, California
- Department of Biomedical Engineering, UC Irvine, Irvine, California
| | - Yigang Li
- Division of Cardiology, Xinhua Hospital Affiliated To Shanghai Jiaotong University School Of Medicine, Shanghai, China
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|
76
|
Burton T, Lakka HK, Einum S. Acclimation capacity and rate change through life in the zooplankton Daphnia. Proc Biol Sci 2020; 287:20200189. [PMID: 32228409 PMCID: PMC7209067 DOI: 10.1098/rspb.2020.0189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
When a change in the environment occurs, organisms can maintain an optimal phenotypic state via plastic, reversible changes to their phenotypes. These adjustments, when occurring within a generation, are described as the process of acclimation. While acclimation has been studied for more than half a century, global environmental change has stimulated renewed interest in quantifying variation in the rate and capacity with which this process occurs, particularly among ectothermic organisms. Yet, despite the likely ecological importance of acclimation capacity and rate, how these traits change throughout life among members of the same species is largely unstudied. Here we investigate these relationships by measuring the acute heat tolerance of the clonally reproducing zooplankter Daphnia magna of different size/age and acclimation status. The heat tolerance of individuals completely acclimated to relatively warm (28°C) or cool (17°C) temperatures diverged during development, indicating that older, larger individuals had a greater capacity to increase heat tolerance. However, when cool acclimated individuals were briefly exposed to the warm temperature (i.e. were 'heat-hardened'), it was younger, smaller animals with less capacity to acclimate that were able to do so more rapidly because they obtained or came closer to obtaining complete acclimation of heat tolerance. Our results illustrate that within a species, individuals can differ substantially in how rapidly and by how much they can respond to environmental change. We urge greater investigation of the intraspecific relationship between acclimation and development along with further consideration of the factors that might contribute to these enigmatic patterns of phenotypic variation.
Collapse
Affiliation(s)
- Tim Burton
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway
| | - Hanna-Kaisa Lakka
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Sigurd Einum
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway
| |
Collapse
|
77
|
Morato T, González‐Irusta J, Dominguez‐Carrió C, Wei C, Davies A, Sweetman AK, Taranto GH, Beazley L, García‐Alegre A, Grehan A, Laffargue P, Murillo FJ, Sacau M, Vaz S, Kenchington E, Arnaud‐Haond S, Callery O, Chimienti G, Cordes E, Egilsdottir H, Freiwald A, Gasbarro R, Gutiérrez‐Zárate C, Gianni M, Gilkinson K, Wareham Hayes VE, Hebbeln D, Hedges K, Henry L, Johnson D, Koen‐Alonso M, Lirette C, Mastrototaro F, Menot L, Molodtsova T, Durán Muñoz P, Orejas C, Pennino MG, Puerta P, Ragnarsson SÁ, Ramiro‐Sánchez B, Rice J, Rivera J, Roberts JM, Ross SW, Rueda JL, Sampaio Í, Snelgrove P, Stirling D, Treble MA, Urra J, Vad J, van Oevelen D, Watling L, Walkusz W, Wienberg C, Woillez M, Levin LA, Carreiro‐Silva M. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. GLOBAL CHANGE BIOLOGY 2020; 26:2181-2202. [PMID: 32077217 PMCID: PMC7154791 DOI: 10.1111/gcb.14996] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 05/16/2023]
Abstract
The deep sea plays a critical role in global climate regulation through uptake and storage of heat and carbon dioxide. However, this regulating service causes warming, acidification and deoxygenation of deep waters, leading to decreased food availability at the seafloor. These changes and their projections are likely to affect productivity, biodiversity and distributions of deep-sea fauna, thereby compromising key ecosystem services. Understanding how climate change can lead to shifts in deep-sea species distributions is critically important in developing management measures. We used environmental niche modelling along with the best available species occurrence data and environmental parameters to model habitat suitability for key cold-water coral and commercially important deep-sea fish species under present-day (1951-2000) environmental conditions and to project changes under severe, high emissions future (2081-2100) climate projections (RCP8.5 scenario) for the North Atlantic Ocean. Our models projected a decrease of 28%-100% in suitable habitat for cold-water corals and a shift in suitable habitat for deep-sea fishes of 2.0°-9.9° towards higher latitudes. The largest reductions in suitable habitat were projected for the scleractinian coral Lophelia pertusa and the octocoral Paragorgia arborea, with declines of at least 79% and 99% respectively. We projected the expansion of suitable habitat by 2100 only for the fishes Helicolenus dactylopterus and Sebastes mentella (20%-30%), mostly through northern latitudinal range expansion. Our results projected limited climate refugia locations in the North Atlantic by 2100 for scleractinian corals (30%-42% of present-day suitable habitat), even smaller refugia locations for the octocorals Acanella arbuscula and Acanthogorgia armata (6%-14%), and almost no refugia for P. arborea. Our results emphasize the need to understand how anticipated climate change will affect the distribution of deep-sea species including commercially important fishes and foundation species, and highlight the importance of identifying and preserving climate refugia for a range of area-based planning and management tools.
Collapse
|
78
|
Hasenei A, Kerstetter DW, Horodysky AZ, Brill RW. Physiological limits to inshore invasion of Indo-Pacific lionfish (Pterois spp.): insights from the functional characteristics of their visual system and hypoxia tolerance. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02241-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
79
|
Norin T, Metcalfe NB. Ecological and evolutionary consequences of metabolic rate plasticity in response to environmental change. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180180. [PMID: 30966964 DOI: 10.1098/rstb.2018.0180] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Basal or standard metabolic rate reflects the minimum amount of energy required to maintain body processes, while the maximum metabolic rate sets the ceiling for aerobic work. There is typically up to three-fold intraspecific variation in both minimal and maximal rates of metabolism, even after controlling for size, sex and age; these differences are consistent over time within a given context, but both minimal and maximal metabolic rates are plastic and can vary in response to changing environments. Here we explore the causes of intraspecific and phenotypic variation at the organ, tissue and mitochondrial levels. We highlight the growing evidence that individuals differ predictably in the flexibility of their metabolic rates and in the extent to which they can suppress minimal metabolism when food is limiting but increase the capacity for aerobic metabolism when a high work rate is beneficial. It is unclear why this intraspecific variation in metabolic flexibility persists-possibly because of trade-offs with the flexibility of other traits-but it has consequences for the ability of populations to respond to a changing world. It is clear that metabolic rates are targets of selection, but more research is needed on the fitness consequences of rates of metabolism and their plasticity at different life stages, especially in natural conditions. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Tommy Norin
- 1 Institute of Biodiversity, Animal Health and Comparative Medicine, MVLS, University of Glasgow , Graham Kerr Building, Glasgow G12 8QQ , UK.,2 DTU Aqua: National Institute of Aquatic Resources , Kemitorvet Building 202, 2800 Kgs. Lyngby , Denmark
| | - Neil B Metcalfe
- 1 Institute of Biodiversity, Animal Health and Comparative Medicine, MVLS, University of Glasgow , Graham Kerr Building, Glasgow G12 8QQ , UK
| |
Collapse
|
80
|
Parisi MA, Cramp RL, Gordos MA, Franklin CE. Can the impacts of cold-water pollution on fish be mitigated by thermal plasticity? CONSERVATION PHYSIOLOGY 2020; 8:coaa005. [PMID: 32099655 PMCID: PMC7026996 DOI: 10.1093/conphys/coaa005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/15/2019] [Accepted: 01/17/2020] [Indexed: 05/23/2023]
Abstract
Increasingly, cold-water pollution (CWP) is being recognised as a significant threat to aquatic communities downstream of large, bottom-release dams. Cold water releases typically occur during summer when storage dams release unseasonably cold and anoxic hypolimnetic waters, which can decrease the temperature of downstream waters by up to 16°C. Depending on the release duration, these hypothermic conditions can persist for many months. The capacity of ectothermic species to tolerate or rapidly adjust to acute temperature changes may determine the nature and magnitude of the impact of CWP on affected species. This study assessed the impacts of an acute reduction in water temperature on the physiological function and locomotor performance of juvenile silver perch (Bidyanus bidyanus) and examined their capacity to thermally compensate for the depressive effects of low temperatures via phenotypic plasticity. Locomotor performance (Ucrit and Usprint) and energetic costs (routine and maximum metabolic rate) were measured at multiple points over a 10-week period following an abrupt 10°C drop in water temperature. We also measured the thermal sensitivity of metabolic enzymes from muscle samples taken from fish following the exposure period. Cold exposure had significant depressive effects on physiological traits, resulting in decreases in performance between 10% and 55%. Although there was partial acclimation of Ucrit (~35% increase in performance) and complete compensation of metabolic rate, this occurred late in the exposure period, meaning silver perch were unable to rapidly compensate for the depressive effects of thermal pollution. The results of this study have substantial implications for the management of cold water releases from large-scale dams and the conservation of native freshwater fish species, as this form of thermal pollution can act as a barrier to fish movement, cause reduced recruitment, ecological community shifts and disruptions to timing and success of reproduction.
Collapse
Affiliation(s)
- M A Parisi
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - R L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - M A Gordos
- Department of Primary Industries (Fisheries), Wollongbar, New South Wales 2477, Australia
| | - C E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
81
|
Kampmann B, Bröde P. Heat Acclimation Does Not Modify Q 10 and Thermal Cardiac Reactivity. Front Physiol 2020; 10:1524. [PMID: 31920722 PMCID: PMC6929604 DOI: 10.3389/fphys.2019.01524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/04/2019] [Indexed: 11/13/2022] Open
Abstract
Heat acclimation (HA) is an essential modifier of physiological strain when working or exercising in the heat. It is unknown whether HA influences the increase of energy expenditure (Q 10 effect) or heart rate (thermal cardiac reactivity TCR) due to increased body temperature. Therefore, we studied these effects using a heat strain database of climatic chamber experiments performed by five semi-nude young males in either non-acclimated or acclimated state. Measured oxygen consumption rate (VO2), heart rate (HR), and rectal temperature (T re) averaged over the third hour of exposure were obtained from 273 trials in total. While workload (walking 4 km/h on level) was constant, heat stress conditions varied widely with air temperature 25-55°C, vapor pressure 0.5-5.3 kPa, and air velocity 0.3-2 m/s. HA was induced by repeated heat exposures over a minimum of 3 weeks. Non-acclimated experiments took place in wintertime with a maximum of two exposures per week. The influence of T re and HA on VO2 and HR was analyzed separately with mixed model ANCOVA. Rising T re significantly (p < 0.01) increased both VO2 (by about 7% per degree increase of T re) and HR (by 39-41 bpm per degree T re); neither slope nor intercept depended significantly on HA (p > 0.4). The effects of T re in this study agree with former outcomes for VO2 (7%/°C increase corresponding to Q 10 = 2) and for HR (TCR of 33 bpm/°C in ISO 9886). Our results indicate that both relations are independent of HA with implications for heat stress assessment at workplaces and for modeling heat balance.
Collapse
Affiliation(s)
- Bernhard Kampmann
- Department of Occupational Health Science, School of Mechanical Engineering and Safety Engineering, University of Wuppertal, Wuppertal, Germany
| | - Peter Bröde
- Department of Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| |
Collapse
|
82
|
Steell SC, Van Leeuwen TE, Brownscombe JW, Cooke SJ, Eliason EJ. An appetite for invasion: digestive physiology, thermal performance and food intake in lionfish ( Pterois spp.). ACTA ACUST UNITED AC 2019; 222:jeb.209437. [PMID: 31527176 DOI: 10.1242/jeb.209437] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/09/2019] [Indexed: 12/25/2022]
Abstract
Species invasions threaten global biodiversity, and physiological characteristics may determine their impact. Specific dynamic action (SDA; the increase in metabolic rate associated with feeding and digestion) is one such characteristic, strongly influencing an animal's energy budget and feeding ecology. We investigated the relationship between SDA, scope for activity, metabolic phenotype, temperature and feeding frequency in lionfish (Pterois spp.), which are invasive to western Atlantic marine ecosystems. Intermittent-flow respirometry was used to determine SDA, scope for activity and metabolic phenotype at 26°C and 32°C. Maximum metabolic rate occurred during digestion, as opposed to exhaustive exercise, as in more athletic species. SDA and its duration (SDAdur) were 30% and 45% lower at 32°C than at 26°C, respectively, and lionfish ate 42% more at 32°C. Despite a 32% decline in scope for activity from 26°C to 32°C, aerobic scope may have increased by 24%, as there was a higher range between standard metabolic rate (SMR) and peak SDA (SDApeak; the maximum postprandial metabolic rate). Individuals with high SMR and low scope for activity phenotypes had a less costly SDA and shorter SDAdur but a higher SDApeak Feeding frequently had a lower and more consistent cost than consuming a single meal, but increased SDApeak These findings demonstrate that: (1) lionfish are robust physiological performers in terms of SDA and possibly aerobic scope at temperatures approaching their thermal maximum, (2) lionfish may consume more prey as oceans warm with climate change, and (3) metabolic phenotype and feeding frequency may be important mediators of feeding ecology in fish.
Collapse
Affiliation(s)
- S Clay Steell
- Fish Ecology and Conservation Physiology Lab, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Travis E Van Leeuwen
- The Cape Eleuthera Institute, Eleuthera, The Bahamas.,Fisheries and Oceans Canada, 80 East White Hills Road, PO Box 5667, St John's, NL, Canada, A1C 5X1
| | - Jacob W Brownscombe
- Fish Ecology and Conservation Physiology Lab, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Lab, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
83
|
Kielland ØN, Bech C, Einum S. Warm and out of breath: Thermal phenotypic plasticity in oxygen supply. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Øystein Nordeide Kielland
- Department of Natural History Centre for Biodiversity Dynamics Norwegian Univ. of Science and Technology NTNU University Museum Trondheim Norway
- Department of Biology Centre for Biodiversity Dynamics Norwegian Univ. of Science and Technology NTNU Trondheim Norway
| | - Claus Bech
- Department of Biology Norwegian Univ. of Science and Technology NTNU Trondheim Norway
| | - Sigurd Einum
- Department of Biology Centre for Biodiversity Dynamics Norwegian Univ. of Science and Technology NTNU Trondheim Norway
| |
Collapse
|
84
|
Vargas-Chacoff L, Muñoz J, Ocampo D, Paschke K, Navarro JM. The effect of alterations in salinity and temperature on neuroendocrine responses of the Antarctic fish Harpagifer antarcticus. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:131-137. [DOI: 10.1016/j.cbpa.2019.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/18/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022]
|
85
|
Nadermann N, Seward RK, Volkoff H. Effects of potential climate change -induced environmental modifications on food intake and the expression of appetite regulators in goldfish. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:138-147. [DOI: 10.1016/j.cbpa.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 12/12/2022]
|
86
|
Ye S, Badhiwala KN, Robinson JT, Cho WH, Siemann E. Thermal plasticity of a freshwater cnidarian holobiont: detection of trans-generational effects in asexually reproducing hosts and symbionts. THE ISME JOURNAL 2019; 13:2058-2067. [PMID: 31015561 PMCID: PMC6775974 DOI: 10.1038/s41396-019-0413-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/16/2019] [Accepted: 03/15/2019] [Indexed: 11/08/2022]
Abstract
Understanding factors affecting the susceptibility of organisms to thermal stress is of enormous interest in light of our rapidly changing climate. When adaptation is limited, thermal acclimation and deacclimation abilities of organisms are critical for population persistence through a period of thermal stress. Holobionts (hosts plus associated symbionts) are key components of various ecosystems, such as coral reefs, yet the contributions of their two partners to holobiont thermal plasticity are poorly understood. Here, we tested thermal plasticity of the freshwater cnidarian Hydra viridissima (green hydra) using individual behavior and population responses. We found that algal presence initially reduced hydra thermal tolerance. Hydra with algae (symbiotic hydra) had comparable acclimation rates, deacclimation rates, and thermal tolerance after acclimation to those without algae (aposymbiotic hydra) but they had higher acclimation capacity. Acclimation of the host (hydra) and/or symbiont (algae) to elevated temperatures increased holobiont thermal tolerance and these effects persisted for multiple asexual generations. In addition, acclimated algae presence enhanced hydra fitness under prolonged sublethal thermal stress, especially when food was limited. Our study indicates while less intense but sublethal stress may favor symbiotic organisms by allowing them to acclimate, sudden large, potentially lethal fluctuations in climate stress likely favor aposymbiotic organisms. It also suggests that thermally stressed colonies of holobionts could disperse acclimated hosts and/or symbionts to other colonies, thereby reducing their vulnerability to climate change.
Collapse
Affiliation(s)
- Siao Ye
- Department of Biosciences, Rice University, Houston, TX, 77005, USA.
| | | | - Jacob T Robinson
- Bioengineering Department, Rice University, Houston, TX, 77005, USA
- Electrical and Computer Engineering Department, Rice University, Houston, TX, 77005, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Won Hee Cho
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
87
|
Slesinger E, Andres A, Young R, Seibel B, Saba V, Phelan B, Rosendale J, Wieczorek D, Saba G. The effect of ocean warming on black sea bass (Centropristis striata) aerobic scope and hypoxia tolerance. PLoS One 2019; 14:e0218390. [PMID: 31194841 PMCID: PMC6564031 DOI: 10.1371/journal.pone.0218390] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022] Open
Abstract
Over the last decade, ocean temperature on the U.S. Northeast Continental Shelf (U.S. NES) has warmed faster than the global average and is associated with observed distribution changes of the northern stock of black sea bass (Centropristis striata). Mechanistic models based on physiological responses to environmental conditions can improve future habitat suitability projections. We measured maximum, standard metabolic rate, and hypoxia tolerance (Scrit) of the northern adult black sea bass stock to assess performance across the known temperature range of the species. Two methods, chase and swim-flume, were employed to obtain maximum metabolic rate to examine whether the methods varied, and if so, the impact on absolute aerobic scope. A subset of individuals was held at 30°C for one month (30chronic°C) prior to experiments to test acclimation potential. Absolute aerobic scope (maximum–standard metabolic rate) reached a maximum of 367.21 mgO2 kg-1 hr-1 at 24.4°C while Scrit continued to increase in proportion to standard metabolic rate up to 30°C. The 30chronic°C group exhibited a significantly lower maximum metabolic rate and absolute aerobic scope in relation to the short-term acclimated group, but standard metabolic rate or Scrit were not affected. This suggests a decline in performance of oxygen demand processes (e.g. muscle contraction) beyond 24°C despite maintenance of oxygen supply. The Metabolic Index, calculated from Scrit as an estimate of potential aerobic scope, closely matched the measured factorial aerobic scope (maximum / standard metabolic rate) and declined with increasing temperature to a minimum below 3. This may represent a critical threshold value for the species. With temperatures on the U.S. NES projected to increase above 24°C in the next 80-years in the southern portion of the northern stock’s range, it is likely black sea bass range will continue to shift poleward as the ocean continues to warm.
Collapse
Affiliation(s)
- Emily Slesinger
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, United States of America
| | - Alyssa Andres
- College of Marine Science, University of South Florida, St. Petersburg, FL, United States of America
| | - Rachael Young
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, United States of America
| | - Brad Seibel
- College of Marine Science, University of South Florida, St. Petersburg, FL, United States of America
| | - Vincent Saba
- National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, United States of America
| | - Beth Phelan
- National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, James J. Howard Laboratory, Highlands, NJ, United States of America
| | - John Rosendale
- National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, James J. Howard Laboratory, Highlands, NJ, United States of America
| | - Daniel Wieczorek
- National Oceanic and Atmospheric Administration (NOAA), Northeast Fisheries Science Center, James J. Howard Laboratory, Highlands, NJ, United States of America
| | - Grace Saba
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, United States of America
- * E-mail:
| |
Collapse
|
88
|
Temperature dependent pre- and postprandial activity in Pacific bluefin tuna (Thunnus orientalis). Comp Biochem Physiol A Mol Integr Physiol 2019; 231:131-139. [DOI: 10.1016/j.cbpa.2019.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 11/24/2022]
|
89
|
Cooper B, Adriaenssens B, Killen SS. Individual variation in the compromise between social group membership and exposure to preferred temperatures. Proc Biol Sci 2019; 285:rspb.2018.0884. [PMID: 29899078 DOI: 10.1098/rspb.2018.0884] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/18/2018] [Indexed: 01/07/2023] Open
Abstract
Group living is widespread among animal species, and comes with a number of costs and benefits associated with foraging, predator avoidance and reproduction. It is largely unknown, however, whether individuals sacrifice exposure to their own preferred or optimal environmental conditions so they can remain part of a social group. Here, we demonstrate that individual three-spine sticklebacks vary in the degree to which they forego exposure to their preferred ambient temperature so they can associate with a group of conspecifics. Individual fish varied widely in preferred temperature when tested in isolation. When the same individuals were presented with a choice of a warm or cold thermal regime in the presence of a social group in one of the environments, fish spent more time with the group if it was close to their own individually preferred temperature. When a group was in a relatively cool environment, focal individuals that were more social deviated most strongly from their preferred temperature to associate with the group. Standard and maximum metabolic rate were not related to temperature preference or thermal compromise. However, individuals with a higher standard metabolic rate were less social, and so energetic demand may indirectly influence the environmental costs experienced by group members. The reduced tendency to engage with a social group when there is a large difference between the group temperature and the individual's preferred temperature suggests a role for temperature in group formation and cohesion that is mediated by individual physiology and behaviour. Together, these data highlight exposure to non-preferred temperatures as a potential cost of group membership that probably has important but to date unrecognized implications for metabolic demand, energy allocation, locomotor performance and overall group functioning.
Collapse
Affiliation(s)
- B Cooper
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - B Adriaenssens
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - S S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| |
Collapse
|
90
|
Zanuzzo FS, Bailey JA, Garber AF, Gamperl AK. The acute and incremental thermal tolerance of Atlantic cod (Gadus morhua) families under normoxia and mild hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2019; 233:30-38. [PMID: 30930205 DOI: 10.1016/j.cbpa.2019.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
Given climate change projections, the limited ability of fish reared in sea-cages to behaviourally thermoregulate, and that thermal tolerance may be heritable, studies that examine family-related differences in upper thermal tolerance are quite relevant to the aquaculture industry. Thus, we investigated the upper thermal tolerance of 15 Atlantic cod (Gadus morhua L.) families by challenging them with acute (2 °C h-1) and incremental (1 °C every 4 days) temperature increases (CTmax and ITmax tests, respectively) under normoxia (~ 100% air saturation) and mild hypoxia (~ 75% air sat.). The cod's CTmax was 22.5 ± 0.1 °C (mean ± S.E.) during normoxia and 21.8 ± 0.1 °C during hypoxia (P < 0.001); and these two CTmax values were significantly correlated across families. In both the normoxic and hypoxic ITmax tests, feed intake fell by ~50% between 17 and 18 °C, and stopped entirely by 21 °C. No mortalities were observed under 20 °C in the normoxic and hypoxic ITmax tests, and the ITmax value was ~21.7 °C in both groups. Differences in the upper thermal tolerance between families were only observed in the CTmax experiment. No correlation was found between the specific growth rate and the CTmax of the families. Further, no correlation existed between CTmax and ITmax. This study is the first to compare the thermal tolerance of fish families to both CTmax and ITmax challenges, and the data: 1) suggest that the Atlantic cod is quite tolerant of acute (i.e., hours) or short-term (i.e., weeks) exposure to high water temperatures (i.e., up to 20 °C); 2) indicate that it might be difficult to select fish with higher ITmax values; and 3) question the relevance of CTmax for selecting fish that are destined for sea-cages where temperatures slowly warm over the summer.
Collapse
Affiliation(s)
- Fábio S Zanuzzo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada..
| | - Jason A Bailey
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Amber F Garber
- Huntsman Marine Science Centre, 1 Lower Campus Road, St. Andrews, NB E5B 2L7, Canada
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
91
|
Abe TK, Kitagawa T, Makiguchi Y, Sato K. Chum salmon migrating upriver adjust to environmental temperatures through metabolic compensation. ACTA ACUST UNITED AC 2019; 222:jeb.186189. [PMID: 30630968 DOI: 10.1242/jeb.186189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/01/2019] [Indexed: 01/03/2023]
Abstract
Ectotherms adjust their thermal performance to various thermal ranges by altering their metabolic rates. These metabolic adjustments involve plastic and/or genetic traits and pathways depend on species-specific ecological contexts. Chum salmon (Oncorhynchus keta) are ecologically unique among the Pacific salmonids as early-run and late-run populations are commonly observed in every part of their range. In the Sanriku coastal area, Japan, early-run adults experience high water temperatures (12-24°C) during their migration, compared with those of the late-run adults (4-15°C), suggesting that the two populations might have different thermal performance. Here, we found population-specific differences in the thermal sensitivities of metabolic rates [resting metabolic rate, RMR, and maximum (aerobic) metabolic rate, MMR] and critical temperature maxima. Using these parameters, we estimated thermal performance curves of absolute aerobic scope (AAS). The populations had different thermal performance curves of AAS, and in both populations high values of AAS were maintained throughout the range of ecologically relevant temperatures. However, the populations did not vary substantially in the peak (AAS at optimal temperature, T optAAS) or breadth (width of sub-optimal temperature range) of the performance curves. The AAS curve of early-run fish was shifted approximately 3°C higher than that of late-run fish. Furthermore, when the data for RMR and MMR were aligned to the thermal differences from T optAAS, it became clear that the populations did not differ in the temperature dependence of their metabolic traits. Our results indicate that chum salmon thermally accommodate through compensatory alterations in metabolic rates. Our results imply that metabolic plasticity and/or the effect of genetic variance on plasticity might play a pivotal role in their thermal accommodation.
Collapse
Affiliation(s)
- Takaaki K Abe
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Takashi Kitagawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Yuya Makiguchi
- College of Bioresource Science, Nihon University, 1866 Fujisawa, Kanagawa 252-0880, Japan
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
92
|
Domestication and Temperature Modulate Gene Expression Signatures and Growth in the Australasian Snapper Chrysophrys auratus. G3-GENES GENOMES GENETICS 2019; 9:105-116. [PMID: 30591433 PMCID: PMC6325909 DOI: 10.1534/g3.118.200647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying genes and pathways involved in domestication is critical to understand how species change in response to human-induced selection pressures, such as increased temperatures. Given the profound influence of temperature on fish metabolism and organismal performance, a comparison of how temperature affects wild and domestic strains of snapper is an important question to address. We experimentally manipulated temperature conditions for F1-hatchery and wild Australasian snapper (Chrysophrys auratus) for 18 days to mimic seasonal extremes and measured differences in growth, white muscle RNA transcription and hematological parameters. Over 2.2 Gb paired-end reads were assembled de novo for a total set of 33,017 transcripts (N50 = 2,804). We found pronounced growth and gene expression differences between wild and domesticated individuals related to global developmental and immune pathways. Temperature-modulated growth responses were linked to major pathways affecting metabolism, cell regulation and signaling. This study is the first step toward gaining an understanding of the changes occurring in the early stages of domestication, and the mechanisms underlying thermal adaptation and associated growth in poikilothermic vertebrates. Our study further provides the first transcriptome resources for studying biological questions in this non-model fish species.
Collapse
|
93
|
Hu YC, Lu HL, Cheng KM, Luo LG, Zeng ZG. Thermal dependence of feeding performance and resting metabolic expenditure in different altitudinal populations of toad-headed lizards. J Therm Biol 2019; 80:16-20. [PMID: 30784481 DOI: 10.1016/j.jtherbio.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/06/2018] [Accepted: 01/01/2019] [Indexed: 11/16/2022]
Abstract
Inter-population variations in growth rate can result from independent or interactive effects of genetic and environmental factors, and be induced by some physiological differences as well. Toad-headed lizards (Phrynocephalus vlangalii) from a higher-elevation population were shown to have a higher growth rate than those from a lower-elevation population. The physiological basis of growth rate variation in this species is not well understood. Here, we investigated the feeding performance and resting metabolic rate (RMR) of lower- and higher-elevation individuals at different test ambient temperatures to evaluate the role of differences in energy intake, assimilation efficiency and metabolic expenditure on growth rate variations. Within the range of 25-35 °C, lizard RMR increased with increasing test ambient temperature, but food intake, apparent digestive coefficient (ADC, food energy minus faecal energy divided by food energy), and assimilation efficiency (AE, food energy minus faecal and urinary energy divided by food energy) were less thermally sensitive in both populations. Higher-elevation lizards tended to eat more food and have a lower RMR than lower-elevation ones, despite the lack of differences in ADC and AE. Our result showed that more energy intake and reduced maintenance cost may be associated with the higher growth rate of higher-elevation lizards. Accordingly, inter-population differences in energy acquisition and expenditure could act as potential sources for geographic variation in growth rate.
Collapse
Affiliation(s)
- Ying-Chao Hu
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Hong-Liang Lu
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China.
| | - Kun-Ming Cheng
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Lai-Gao Luo
- School of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Zhi-Gao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
94
|
Gilmore KL, Doubleday ZA, Gillanders BM. Prolonged exposure to low oxygen improves hypoxia tolerance in a freshwater fish. CONSERVATION PHYSIOLOGY 2019; 7:coz058. [PMID: 31798881 PMCID: PMC6882409 DOI: 10.1093/conphys/coz058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/19/2018] [Accepted: 08/17/2019] [Indexed: 05/03/2023]
Abstract
Persistent hypoxic or low-oxygen conditions in aquatic systems are becoming more frequent worldwide, causing large-scale mortalities to aquatic fauna. It is poorly understood, however, whether species can acclimate to long-term hypoxic conditions. In two experiments, we exposed juvenile freshwater fish (Murray cod, Maccullochella peelii) to low-oxygen conditions and investigated acclimation effects. Experiment 1 determined how responses could be modified by exposure to different temperatures (20, 24 and 28°C) and oxygen conditions (control 6-8 mgO2 L-1 and low-oxygen 3-4 mgO2 L-1) over 30 days. Experiment 2 determined the acclimation ability of fish exposed to two temperatures (20 and 28°C) and low-oxygen conditions (3-4 mgO2 L-1) for three different acclimation periods (7, 14 and 30 days). Responses were measured by determining critical oxygen tension (P crit), loss of equilibrium and aerobic capacity using resting respirometry. In experiment 1, resting oxygen requirements were negatively affected by long-term low-oxygen exposure except at the highest temperature (28°C). However, long-term acclimation in low-oxygen improved tolerance as measured by loss of equilibrium but not P crit. In experiment 2, fish could tolerate lower oxygen levels before reaching loss of equilibrium after 7 days acclimation, but this declined overtime. Murray cod were most tolerant to low-oxygen at the lowest temperature (20°C) and shortest exposure time (7 days). Extended low-oxygen exposure resulted in reduced aerobic capacity of fish particularly at the lowest temperature. While prior exposure to low-oxygen may allow fish to cope with hypoxic conditions better in the long-term, acclimation time was inversely related to tolerance, suggesting that resistance to hypoxia might decrease as a function of exposure time. Our study fills a much-needed gap in our understanding of how freshwater species acclimate to hypoxia, and in particular, how exposure to prolonged periods of low-oxygen and elevated temperatures affect organisms physiologically.
Collapse
Affiliation(s)
- Kayla L Gilmore
- Southern Seas Ecology Laboratories, School of Biological Sciences and Environment Institute, University of Adelaide, SA 5005, Australia
- Corresponding author: Southern Seas Ecology Laboratories, School of Biological Sciences and Environment Institute, University of Adelaide, SA 5005, Australia. ,
| | - Zoe A Doubleday
- Southern Seas Ecology Laboratories, School of Biological Sciences and Environment Institute, University of Adelaide, SA 5005, Australia
| | - Bronwyn M Gillanders
- Southern Seas Ecology Laboratories, School of Biological Sciences and Environment Institute, University of Adelaide, SA 5005, Australia
- Corresponding author: Southern Seas Ecology Laboratories, School of Biological Sciences and Environment Institute, University of Adelaide, SA 5005, Australia. ,
| |
Collapse
|
95
|
Nyboer EA, Chapman LJ. Cardiac plasticity influences aerobic performance and thermal tolerance in a tropical, freshwater fish at elevated temperatures. ACTA ACUST UNITED AC 2018; 221:jeb.178087. [PMID: 29895683 DOI: 10.1242/jeb.178087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/04/2018] [Indexed: 01/10/2023]
Abstract
Fishes faced with novel thermal conditions often modify physiological functioning to compensate for elevated temperatures. This physiological plasticity (thermal acclimation) has been shown to improve metabolic performance and extend thermal limits in many species. Adjustments in cardiorespiratory function are often invoked as mechanisms underlying thermal plasticity because limitations in oxygen supply have been predicted to define thermal optima in fishes; however, few studies have explicitly linked cardiorespiratory plasticity to metabolic compensation. Here, we quantified thermal acclimation capacity in the commercially harvested Nile perch (Lates niloticus) of East Africa, and investigated mechanisms underlying observed changes. We reared juvenile Nile perch for 3 months under two temperature regimes, and then measured a series of metabolic traits (e.g. aerobic scope) and critical thermal maximum (CTmax) upon acute exposure to a range of experimental temperatures. We also measured morphological traits of heart ventricles, gills and brains to identify potential mechanisms for compensation. We found that long-term (3 month) exposure to elevated temperature induced compensation in upper thermal tolerance (CTmax) and metabolic performance (standard and maximum metabolic rate, and aerobic scope), and induced cardiac remodeling in Nile perch. Furthermore, variation in heart morphology influenced variations in metabolic function and thermal tolerance. These results indicate that plastic changes enacted over longer exposures lead to differences in metabolic flexibility when organisms are acutely exposed to temperature variation. Furthermore, we established functional links between cardiac plasticity, metabolic performance and thermal tolerance, providing evidence that plasticity in cardiac capacity may be one mechanism for coping with climate change.
Collapse
Affiliation(s)
- Elizabeth A Nyboer
- Department of Biology, McGill University, Office N3/11, Stewart Biology Building, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1
| | - Lauren J Chapman
- Department of Biology, McGill University, Office N3/11, Stewart Biology Building, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada, H3A 1B1
| |
Collapse
|
96
|
Ilha P, Schiesari L, Yanagawa FI, Jankowski K, Navas CA. Deforestation and stream warming affect body size of Amazonian fishes. PLoS One 2018; 13:e0196560. [PMID: 29718960 PMCID: PMC5931656 DOI: 10.1371/journal.pone.0196560] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
Declining body size has been suggested to be a universal response of organisms to rising temperatures, manifesting at all levels of organization and in a broad range of taxa. However, no study to date evaluated whether deforestation-driven warming could trigger a similar response. We studied changes in fish body size, from individuals to assemblages, in streams in Southeastern Amazonia. We first conducted sampling surveys to validate the assumption that deforestation promoted stream warming, and to test the hypothesis that warmer deforested streams had reduced fish body sizes relative to cooler forest streams. As predicted, deforested streams were up to 6 °C warmer and had fish 36% smaller than forest streams on average. This body size reduction could be largely explained by the responses of the four most common species, which were 43–55% smaller in deforested streams. We then conducted a laboratory experiment to test the hypothesis that stream warming as measured in the field was sufficient to cause a growth reduction in the dominant fish species in the region. Fish reared at forest stream temperatures gained mass, whereas those reared at deforested stream temperatures lost mass. Our results suggest that deforestation-driven stream warming is likely to be a relevant factor promoting observed body size reductions, although other changes in stream conditions, like reductions in organic matter inputs, can also be important. A broad scale reduction in fish body size due to warming may be occurring in streams throughout the Amazonian Arc of Deforestation, with potential implications for the conservation of Amazonian fish biodiversity and food supply for people around the Basin.
Collapse
Affiliation(s)
- Paulo Ilha
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| | - Luis Schiesari
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Gestão Ambiental, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Fernando I. Yanagawa
- Gestão Ambiental, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - KathiJo Jankowski
- US Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, United States of America
| | - Carlos A. Navas
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
97
|
Fugère V, Mehner T, Chapman LJ. Impacts of deforestation‐induced warming on the metabolism, growth and trophic interactions of an afrotropical stream fish. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Vincent Fugère
- Department of BiologyMcGill University Montreal QC Canada
- Department of Biology and Ecology of FishesLeibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
| | - Thomas Mehner
- Department of Biology and Ecology of FishesLeibniz‐Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
| | | |
Collapse
|
98
|
Clown knifefish ( Chitala ornata ) oxygen uptake and its partitioning in present and future temperature environments. Comp Biochem Physiol A Mol Integr Physiol 2018; 216:52-59. [DOI: 10.1016/j.cbpa.2017.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 11/21/2022]
|
99
|
Norin T, Clark TD. Fish face a trade-off between 'eating big' for growth efficiency and 'eating small' to retain aerobic capacity. Biol Lett 2017; 13:rsbl.2017.0298. [PMID: 28931728 DOI: 10.1098/rsbl.2017.0298] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/31/2017] [Indexed: 11/12/2022] Open
Abstract
Feeding provides the necessary energy to fuel all fitness-related processes including activity, growth and reproduction. Nevertheless, prey consumption and digestive processes can have physical and physiological trade-offs with other critical functions, many of which are not clearly understood. Using an ambush predator, barramundi (Lates calcarifer), fed meals ranging 0.6-3.4% of body mass, we examined interrelations between meal size, growth efficiency and surplus aerobic metabolic capacity (aerobic scope, AS). Large meals required a greater absolute investment of energy to process (a larger so-called specific dynamic action, SDA), but the percentage of digestible meal energy required in the SDA response (SDA coefficient) decreased with increasing meal size. Combined with the findings that growth rate and growth efficiency also increased with food intake, our results demonstrate that it is energetically advantageous for fish to select large prey. However, following a large meal, SDA processes occupied up to 77% of the available AS, indicating that other oxygen-demanding activities like swimming may be compromised while large meals are processed. This trade-off between meal size and AS suggests that fishes like barramundi would benefit from regulating prey size based on imminent requirements and threats.
Collapse
Affiliation(s)
- Tommy Norin
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Timothy D Clark
- University of Tasmania Institute for Marine and Antarctic Studies, and CSIRO Agriculture and Food, Hobart, Tasmania 7000, Australia
| |
Collapse
|
100
|
Kim SY, Metcalfe NB, da Silva A, Velando A. Thermal conditions during early life influence seasonal maternal strategies in the three-spined stickleback. BMC Ecol 2017; 17:34. [PMID: 29126411 PMCID: PMC5681783 DOI: 10.1186/s12898-017-0144-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Conditions experienced by a female during early life may affect her reproductive strategies and maternal investment later in life. This effect of early environmental conditions is a potentially important mechanism by which animals can compensate for the negative impacts of climate change. In this study, we experimentally tested whether three-spined sticklebacks (Gasterosteus aculeatus) change their maternal strategy according to environmental temperatures experienced earlier in life. We studied maternal investment from a life-history perspective because females are expected to adjust their reproductive strategy in relation to their current and future reproductive returns as well as offspring fitness. RESULTS F1 families were reared in control and elevated winter temperatures and their reproductive trajectories were studied when returned to common conditions. Females that had experienced the warm winter treatment (n = 141) had a lower fecundity and reduced breeding and total lifespan compared to the control individuals (n = 159). Whereas the control females tended to produce their heaviest and largest clutches in their first reproductive attempt, the warm-acclimated females invested less in their first clutch, but then produced increasingly heavy clutches over the course of the breeding season. Egg mass increased with clutch number at a similar rate in the two groups. The warm-acclimated females increased the investment of carotenoids in the first and last clutches of the season. Thus, any transgenerational effects of the maternal thermal environment on offspring phenotype may be mediated by the allocation of antioxidants into eggs but not by egg size. CONCLUSIONS Our results indicate that conditions experienced by females during juvenile life have a profound effect on life-time maternal reproductive strategies. The temperature-induced changes in maternal strategy may be due to constraints imposed by the higher energetic costs of a warm environment, but it is possible that they allow the offspring to compensate for higher energetic costs and damage when they face the same thermal stress as did their mothers.
Collapse
Affiliation(s)
- Sin-Yeon Kim
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36310 Vigo, Spain
| | - Neil B. Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ UK
| | - Alberto da Silva
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36310 Vigo, Spain
| | - Alberto Velando
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|