51
|
Henning F, Machado-Schiaffino G, Baumgarten L, Meyer A. Genetic dissection of adaptive form and function in rapidly speciating cichlid fishes. Evolution 2017; 71:1297-1312. [PMID: 28211577 DOI: 10.1111/evo.13206] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/04/2017] [Indexed: 12/14/2022]
Abstract
Genes of major phenotypic effects and strong genetic correlations can facilitate adaptation, direct selective responses, and potentially lead to phenotypic convergence. However, the preponderance of this type of genetic architecture in repeatedly evolved adaptations remains unknown. Using hybrids between Haplochromis chilotes (thick-lipped) and Pundamilia nyererei (thin-lipped) we investigated the genetics underlying hypertrophied lips and elongated heads, traits that evolved repeatedly in cichlids. At least 25 loci of small-to-moderate and mainly additive effects were detected. Phenotypic variation in lip and head morphology was largely independent. Although several QTL overlapped for lip and head morphology traits, they were often of opposite effects. The distribution of effect signs suggests strong selection on lips. The fitness implications of several detected loci were demonstrated using a laboratory assay testing for the association between genotype and variation in foraging performance. The persistence of low fitness alleles in head morphology appears to be maintained through antagonistic pleiotropy/close linkage with positive-effect lip morphology alleles. Rather than being based on few major loci with strong positive genetic correlations, our results indicate that the evolution of the Lake Victoria thick-lipped ecomorph is the result of selection on numerous loci distributed throughout the genome.
Collapse
Affiliation(s)
- Frederico Henning
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany.,Department of Genetics, CCS, Federal University of Rio de Janeiro, Ilha do Fundão, 21941-599, Rio de Janeiro, Brazil
| | | | - Lukas Baumgarten
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| |
Collapse
|
52
|
Rogers SM, Xu S, Schlüter PM. Introduction: integrative molecular ecology is rapidly advancing the study of adaptation and speciation. Mol Ecol 2017; 26:1-6. [DOI: 10.1111/mec.13947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/30/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Sean M. Rogers
- Department of Biological Sciences; University of Calgary; Calgary Alberta Canada T3L 2R9
| | - Shuqing Xu
- Max Planck Institute for Chemical Ecology; Hans-Knöll-Straße 8 D-07745 Jena Germany
| | - Philipp M. Schlüter
- Department of Systematic and Evolutionary Botany; University of Zurich; Zollikerstrasse 107 CH-8008 Zurich Switzerland
| |
Collapse
|
53
|
Bono LM, Smith LB, Pfennig DW, Burch CL. The emergence of performance trade‐offs during local adaptation: insights from experimental evolution. Mol Ecol 2017; 26:1720-1733. [DOI: 10.1111/mec.13979] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Lisa M. Bono
- Department of Biology University of North Carolina at Chapel Hill CB# 3280 Chapel Hill NC 27599 USA
| | - Leno B. Smith
- Department of Biology University of North Carolina at Chapel Hill CB# 3280 Chapel Hill NC 27599 USA
| | - David W. Pfennig
- Department of Biology University of North Carolina at Chapel Hill CB# 3280 Chapel Hill NC 27599 USA
| | - Christina L. Burch
- Department of Biology University of North Carolina at Chapel Hill CB# 3280 Chapel Hill NC 27599 USA
| |
Collapse
|
54
|
Martin CH, Erickson PA, Miller CT. The genetic architecture of novel trophic specialists: larger effect sizes are associated with exceptional oral jaw diversification in a pupfish adaptive radiation. Mol Ecol 2016; 26:624-638. [PMID: 27873369 DOI: 10.1111/mec.13935] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022]
Abstract
The genetic architecture of adaptation is fundamental to understanding the mechanisms and constraints governing diversification. However, most case studies focus on loss of complex traits or parallel speciation in similar environments. It is still unclear how the genetic architecture of these local adaptive processes compares to the architecture of evolutionary transitions contributing to morphological and ecological novelty. Here, we identify quantitative trait loci (QTL) between two trophic specialists in an excellent case study for examining the origins of ecological novelty: a sympatric radiation of pupfishes endemic to San Salvador Island, Bahamas, containing a large-jawed scale-eater and a short-jawed molluscivore with a skeletal nasal protrusion. These specialized niches and trophic traits are unique among over 2000 related species. Measurements of the fitness landscape on San Salvador demonstrate multiple fitness peaks and a larger fitness valley isolating the scale-eater from the putative ancestral intermediate phenotype of the generalist, suggesting that more large-effect QTL should contribute to its unique phenotype. We evaluated this prediction using an F2 intercross between these specialists. We present the first linkage map for pupfishes and detect significant QTL for sex and eight skeletal traits. Large-effect QTL contributed more to enlarged scale-eater jaws than the molluscivore nasal protrusion, consistent with predictions from the adaptive landscape. The microevolutionary genetic architecture of large-effect QTL for oral jaws parallels the exceptional diversification rates of oral jaws within the San Salvador radiation observed over macroevolutionary timescales and may have facilitated exceptional trophic novelty in this system.
Collapse
Affiliation(s)
- Christopher H Martin
- Department of Biology, University of North Carolina at Chapel Hill, Campus Box 3280, 120 South Rd, Chapel Hill, NC 27599-3280, USA
| | - Priscilla A Erickson
- Molecular and Cell Biology Department, University of California, Berkeley, CA 94720, USA.,Department of Biology, University of Virginia, 229 Gilmer Hall, 485 McCormick Road, P.O. Box 400328, Charlottesville, VA 22904, USA
| | - Craig T Miller
- Molecular and Cell Biology Department, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
55
|
Ågren J, Oakley CG, Lundemo S, Schemske DW. Adaptive divergence in flowering time among natural populations of
Arabidopsis thaliana
: Estimates of selection and QTL mapping. Evolution 2016; 71:550-564. [DOI: 10.1111/evo.13126] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Jon Ågren
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre Uppsala University Norbyvägen 18 D SE‐752 36 Uppsala Sweden
| | | | - Sverre Lundemo
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre Uppsala University Norbyvägen 18 D SE‐752 36 Uppsala Sweden
- WWF Norway Postboks 6784, St. Olavs Plass 0130 Oslo Norway
| | - Douglas W. Schemske
- Department of Plant Biology and W. K. Kellogg Biological Station Michigan State University East Lansing Michigan 48824
| |
Collapse
|
56
|
Amrad A, Moser M, Mandel T, de Vries M, Schuurink RC, Freitas L, Kuhlemeier C. Gain and Loss of Floral Scent Production through Changes in Structural Genes during Pollinator-Mediated Speciation. Curr Biol 2016; 26:3303-3312. [PMID: 27916524 DOI: 10.1016/j.cub.2016.10.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
Abstract
The interactions of plants with their pollinators are thought to be a driving force in the evolution of angiosperms. Adaptation to a new pollinator involves coordinated changes in multiple floral traits controlled by multiple genes. Surprisingly, such complex genetic shifts have happened numerous times during evolution. Here we report on the genetic basis of the changes in one such trait, floral scent emission, in the genus Petunia (Solanaceae). The increase in the quantity and complexity of the volatiles during the shift from bee to hawkmoth pollination was due to de novo expression of the genes encoding benzoic acid/salicylic acid carboxyl methyltransferase (BSMT) and benzoyl-CoA:benzylalcohol/2-phenylethanol benzoyltransferase (BPBT) together with moderately increased transcript levels for most enzymes of the phenylpropanoid/benzenoid pathway. Loss of cinnamate-CoA ligase (CNL) function as well as a reduction in the expression of the MYB transcription factor ODO1 explain the loss of scent during the transition from moth to hummingbird pollination. The CNL gene in the hummingbird-adapted species is inactive due to a stop codon, but also appears to have undergone further degradation over time. Therefore, we propose that loss of scent happened relatively early in the transition toward hummingbird pollination, and probably preceded the loss of UV-absorbing flavonols. The discovery that CNL is also involved in the loss of scent during the transition from outcrossing to selfing in Capsella (Brassicaceae) (see the accompanying paper) raises interesting questions about the possible causes of deep evolutionary conservation of the targets of evolutionary change.
Collapse
Affiliation(s)
- Avichai Amrad
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Michel Moser
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Therese Mandel
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Michel de Vries
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Robert C Schuurink
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Loreta Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, Avenida Bento Goncalves, 9500 Porto Alegre, Brazil
| | - Cris Kuhlemeier
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland.
| |
Collapse
|
57
|
Ferris KG, Barnett LL, Blackman BK, Willis JH. The genetic architecture of local adaptation and reproductive isolation in sympatry within the Mimulus guttatus species complex. Mol Ecol 2016; 26:208-224. [PMID: 27439150 DOI: 10.1111/mec.13763] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/05/2023]
Abstract
The genetic architecture of local adaptation has been of central interest to evolutionary biologists since the modern synthesis. In addition to classic theory on the effect size of adaptive mutations by Fisher, Kimura and Orr, recent theory addresses the genetic architecture of local adaptation in the face of ongoing gene flow. This theory predicts that with substantial gene flow between populations local adaptation should proceed primarily through mutations of large effect or tightly linked clusters of smaller effect loci. In this study, we investigate the genetic architecture of divergence in flowering time, mating system-related traits, and leaf shape between Mimulus laciniatus and a sympatric population of its close relative M. guttatus. These three traits are probably involved in M. laciniatus' adaptation to a dry, exposed granite outcrop environment. Flowering time and mating system differences are also reproductive isolating barriers making them 'magic traits'. Phenotypic hybrids in this population provide evidence of recent gene flow. Using next-generation sequencing, we generate dense SNP markers across the genome and map quantitative trait loci (QTLs) involved in flowering time, flower size and leaf shape. We find that interspecific divergence in all three traits is due to few QTL of large effect including a highly pleiotropic QTL on chromosome 8. This QTL region contains the pleiotropic candidate gene TCP4 and is involved in ecologically important phenotypes in other Mimulus species. Our results are consistent with theory, indicating that local adaptation and reproductive isolation with gene flow should be due to few loci with large and pleiotropic effects.
Collapse
Affiliation(s)
- Kathleen G Ferris
- Department of Biology, Duke University, 125 Science Drive, Durham, NC, 27705, USA
| | - Laryssa L Barnett
- Department of Biology, Duke University, 125 Science Drive, Durham, NC, 27705, USA
| | - Benjamin K Blackman
- Department of Biology, University of Virginia, 485 McCormick Road, Charlottesville, VA, 22904, USA
| | - John H Willis
- Department of Biology, Duke University, 125 Science Drive, Durham, NC, 27705, USA
| |
Collapse
|
58
|
Bankoff RJ, Perry GH. Hunter-gatherer genomics: evolutionary insights and ethical considerations. Curr Opin Genet Dev 2016; 41:1-7. [PMID: 27400119 DOI: 10.1016/j.gde.2016.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Abstract
Hunting and gathering societies currently comprise only a small proportion of all human populations. However, the geographic and environmental diversity of modern hunter-gatherer groups, their inherent dependence on ecological resources, and their connection to patterns of behavior and subsistence that represent the vast majority of human history provide opportunities for scientific research to deliver major insights into the evolutionary history of our species. We review recent evolutionary genomic studies of hunter-gatherers, focusing especially on those that identify and functionally characterize phenotypic adaptations to local environments. We also call attention to specific ethical issues that scientists conducting hunter-gatherer genomics research ought to consider, including potential social and economic tensions between traditionally mobile hunter-gatherers and the land ownership-based nation-states by which they are governed, and the implications of genomic-based evidence of long-term evolutionary associations with particular habitats.
Collapse
Affiliation(s)
- Richard J Bankoff
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA; Intercollege Program in Bioethics, Pennsylvania State University, University Park, PA 16802, USA.
| | - George H Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|