51
|
Melott AL, Thomas BC, Kachelrieß M, Semikoz DV, Overholt AC. A Supernova at 50 pc: Effects on the Earth's Atmosphere and Biota. THE ASTROPHYSICAL JOURNAL 2017; 840:105. [PMID: 30034016 PMCID: PMC6052450 DOI: 10.3847/1538-4357/aa6c57] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent 60Fe results have suggested that the estimated distances of supernovae in the last few million years should be reduced from ∼100 to ∼50 pc. Two events or series of events are suggested, one about 2.7 million years to 1.7 million years ago, and another about 6.5-8.7 million years ago. We ask what effects such supernovae are expected to have on the terrestrial atmosphere and biota. Assuming that the Local Bubble was formed before the event being considered, and that the supernova and the Earth were both inside a weak, disordered magnetic field at that time, TeV-PeV cosmic rays (CRs) at Earth will increase by a factor of a few hundred. Tropospheric ionization will increase proportionately, and the overall muon radiation load on terrestrial organisms will increase by a factor of ∼150. All return to pre-burst levels within 10 kyr. In the case of an ordered magnetic field, effects depend strongly on the field orientation. The upper bound in this case is with a largely coherent field aligned along the line of sight to the supernova, in which case, TeV-PeV CR flux increases are ∼104; in the case of a transverse field they are below current levels. We suggest a substantial increase in the extended effects of supernovae on Earth and in the "lethal distance" estimate; though more work is needed. This paper is an explicit follow-up to Thomas et al. We also provide more detail on the computational procedures used in both works.
Collapse
Affiliation(s)
- A L Melott
- Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045, USA
| | - B C Thomas
- Department of Physics and Astronomy, Washburn University, Topeka, KS 66621, USA
| | | | - D V Semikoz
- APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, 119 F-75205 Paris, France
- National Research Nuclear University "MEPHI" (Moscow Engineering Physics Institute), Kashirskoe Highway 31, M4, 115409, Russia
| | - A C Overholt
- Department of Science and Mathematics, MidAmerica Nazarene University, Olathe, KS 66062, USA
| |
Collapse
|
52
|
Spoelstra K, van Grunsven RHA, Donners M, Gienapp P, Huigens ME, Slaterus R, Berendse F, Visser ME, Veenendaal E. Experimental illumination of natural habitat--an experimental set-up to assess the direct and indirect ecological consequences of artificial light of different spectral composition. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0129. [PMID: 25780241 DOI: 10.1098/rstb.2014.0129] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Artificial night-time illumination of natural habitats has increased dramatically over the past few decades. Generally, studies that assess the impact of artificial light on various species in the wild make use of existing illumination and are therefore correlative. Moreover, studies mostly focus on short-term consequences at the individual level, rather than long-term consequences at the population and community level-thereby ignoring possible unknown cascading effects in ecosystems. The recent change to LED lighting has opened up the exciting possibility to use light with a custom spectral composition, thereby potentially reducing the negative impact of artificial light. We describe here a large-scale, ecosystem-wide study where we experimentally illuminate forest-edge habitat with different spectral composition, replicated eight times. Monitoring of species is being performed according to rigid protocols, in part using a citizen-science-based approach, and automated where possible. Simultaneously, we specifically look at alterations in behaviour, such as changes in activity, and daily and seasonal timing. In our set-up, we have so far observed that experimental lights facilitate foraging activity of pipistrelle bats, suppress activity of wood mice and have effects on birds at the community level, which vary with spectral composition. Thus far, we have not observed effects on moth populations, but these and many other effects may surface only after a longer period of time.
Collapse
Affiliation(s)
- Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| | - Roy H A van Grunsven
- Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Maurice Donners
- Philips Research, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands
| | - Phillip Gienapp
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| | - Martinus E Huigens
- Dutch Butterfly Conservation, PO Box 506, 6700 AM Wageningen, The Netherlands
| | - Roy Slaterus
- Dutch Centre for Field Ornithology, PO Box 6521, 6503 GA Nijmegen, The Netherlands
| | - Frank Berendse
- Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| | - Elmar Veenendaal
- Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
53
|
Gaston KJ, Visser ME, Hölker F. The biological impacts of artificial light at night: the research challenge. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0133. [PMID: 25780244 DOI: 10.1098/rstb.2014.0133] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, Wageningen 6700 AB, The Netherlands
| | - Franz Hölker
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin 12587, Germany
| |
Collapse
|
54
|
Le Tallec T, Théry M, Perret M. Melatonin concentrations and timing of seasonal reproduction in male mouse lemurs (Microcebus murinus) exposed to light pollution. J Mammal 2016. [DOI: 10.1093/jmammal/gyw003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
55
|
Reproductive seasonality in creole hair sheep in the tropic. Trop Anim Health Prod 2015; 48:219-22. [PMID: 26477030 DOI: 10.1007/s11250-015-0927-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
The objective of the present study was to evaluate the annual ovulatory activity of hair sheep at 15° N. Nineteen Creole ewes with body weight of 40.8 ± 0.3 kg were used. The ovulatory activity was monitored for a year by quantifying progesterone concentrations in blood samples obtained from all the ewes every 7 days. The differences in monthly proportions of ewes with ovulatory activity were analyzed by the chi-square test. Ovulatory activity decreased from May to July and in September, and 42% of ewes ovulated year round. It is concluded that at 15° N, a high proportion of ewes is capable of ovulating throughout the year in the tropical southeastern region of Mexico.
Collapse
|
56
|
Durrant J, Michaelides EB, Rupasinghe T, Tull D, Green MP, Jones TM. Constant illumination reduces circulating melatonin and impairs immune function in the cricket Teleogryllus commodus. PeerJ 2015; 3:e1075. [PMID: 26339535 PMCID: PMC4558066 DOI: 10.7717/peerj.1075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022] Open
Abstract
Exposure to constant light has a range of negative effects on behaviour and physiology, including reduced immune function in both vertebrates and invertebrates. It is proposed that the associated suppression of melatonin (a ubiquitous hormone and powerful antioxidant) in response to the presence of light at night could be an underlying mechanistic link driving the changes to immune function. Here, we investigated the relationship between constant illumination, melatonin and immune function, using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. Crickets were reared under either a 12 h light: 12 h dark regimen or a constant 24 h light regimen. Circulating melatonin concentration and immune function (haemocyte concentration, lytic activity and phenoloxidase (PO) activity) were assessed in individual adult crickets through the analysis of haemolymph. Constant illumination reduced melatonin and had a negative impact on haemocyte concentrations and lytic activity, but its effect on PO activity was less apparent. Our data provide the first evidence, to our knowledge, of a link between exposure to constant illumination and variation in haemocyte concentration in an invertebrate model, while also highlighting the potential complexity of the immune response following exposure to constant illumination. This study provides insight into the possible negative effect of artificial night-time lighting on the physiology of invertebrates, but whether lower and potentially more ecologically relevant levels of light at night produce comparable results, as has been reported in several vertebrate taxa, remains to be tested.
Collapse
Affiliation(s)
- Joanna Durrant
- School of BioSciences, The University of Melbourne , Melbourne, Victoria , Australia
| | - Ellie B Michaelides
- School of BioSciences, The University of Melbourne , Melbourne, Victoria , Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, Bio21 Institute, The University of Melbourne , Melbourne, Victoria , Australia
| | - Dedreia Tull
- Metabolomics Australia, Bio21 Institute, The University of Melbourne , Melbourne, Victoria , Australia
| | - Mark P Green
- School of BioSciences, The University of Melbourne , Melbourne, Victoria , Australia
| | - Therésa M Jones
- School of BioSciences, The University of Melbourne , Melbourne, Victoria , Australia
| |
Collapse
|