51
|
Colorectal Cancer and Mitochondrial Dysfunctions of the Adjunct Adipose Tissues: A Case Study. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2169036. [PMID: 30581847 PMCID: PMC6276517 DOI: 10.1155/2018/2169036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/04/2018] [Accepted: 11/11/2018] [Indexed: 01/03/2023]
Abstract
Excess body weight has been causally linked to an increased risk of different cancer types, including colorectal cancer (CRC) but the mechanisms underlying this association are practically unknown. We investigate redox state-superoxide (SO) generation rate, activity of complex I in electron transport chain (ETC) of mitochondria and of dinitrosyl iron complexes by electron paramagnetic resonance; activity of matrix metalloproteinase (gelatinase) MMP-2 and MMP-9 by gel zymography of adipose tissues (AT) from 46 patients (64.0 ± 1.6 y.o.) with CRC (II-III stages, pT2-3N0-2M0) in the AT adjacent to tumor (ATAT) and at a distance of 3 cm from the tumor (ATD) to follow the connection of the AT redox state with some of the tumor microenvironment indicators. We have incubated the AT species with the tumor necrosis factor α (TNF-α) to follow its influence on the measured values. As a control, normal AT (NAT) obtained during the liposuction is used. Tumor-induced changes in mitochondrial ETC of ATAT, particularly for Complex I, lead to the enhanced SO generation and consequent oxidative modifications of DNA in ATAT (up to 6.1 times higher than that in NAT and 3.7 times higher than that in ATD, p < 0.05). Gelatinase activity in ATAT is significantly higher than in ATD. A considerable effect of TNF-α on ATAT and ATD (but not on NAT, i.e., only on the tissues where the reprogramming of metabolism has already occurred under the influence of tumor) manifested in increase of cellular hypoxia, gelatinase activity, and SO generation rate is observed. The results can be used for better understanding the mechanism(s) of metabolic symbiosis of tumor and AT as well as serving as a basis for new therapeutic approaches.
Collapse
|
52
|
Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair. Cells 2018; 7:cells7100167. [PMID: 30322133 PMCID: PMC6210724 DOI: 10.3390/cells7100167] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering.
Collapse
|
53
|
Wan Z, Gao X, Dong Y, Zhao Y, Chen X, Yang G, Liu L. Exosome-mediated cell-cell communication in tumor progression. Am J Cancer Res 2018; 8:1661-1673. [PMID: 30323961 PMCID: PMC6176174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023] Open
Abstract
Exosomes, which are 30-150 nm lipid bilayer vehicles, have been recognized as one of the most crucial components of the tumor microenvironment. Exosomes transfer specific lipid, nucleic acids, proteins and other bioactive molecules from the donor cells to the recipient cells. Accumulating evidence has suggested that cancer cells and the tumor associated stromal cells can release and receive exosomes, inside of which the components and amounts are greatly changed. Pioneering studies have revealed that these exosomes play essential roles in tumor progression. Here we summarize the recent advances in this field, by focusing on the exosome biogenesis in the cancer condition, and their biological function in angiogenesis, metastasis and chemo-resistance of tumor. The review would not only provide a summary of this field, but also insights and perspectives on exosome-based strategies in cancer diagnoses, prevention and therapy.
Collapse
Affiliation(s)
- Zhuo Wan
- Department of Hematology, Tangdu Hospital, Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
| | - Xiaotong Gao
- Department of Hematology, Tangdu Hospital, Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
| | - Yan Dong
- Department of Hematology, Tangdu Hospital, Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
| | - Yingxin Zhao
- Department of Hematology, Tangdu Hospital, Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
| | - Xutao Chen
- Department of Implantation, School of Stomatology, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Guodong Yang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Li Liu
- Department of Hematology, Tangdu Hospital, Fourth Military Medical UniversityXi’an 710038, Shaanxi, China
| |
Collapse
|
54
|
Wang S, Xu M, Li X, Su X, Xiao X, Keating A, Zhao RC. Exosomes released by hepatocarcinoma cells endow adipocytes with tumor-promoting properties. J Hematol Oncol 2018; 11:82. [PMID: 29898759 PMCID: PMC6001126 DOI: 10.1186/s13045-018-0625-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022] Open
Abstract
Background The initiation and progression of hepatocellular carcinoma (HCC) are largely dependent on its local microenvironment. Adipocytes are an important component of hepatic microenvironment in nonalcoholic fatty liver disease (NAFLD), which is a significant risk factor for HCC. Given the global prevalence of NAFLD, a better understanding of the interplay between HCC cells and adipocytes is urgently needed. Exosomes, released by malignant cells, represent a novel way of cell-cell interaction and have been shown to play an important role in cancer cell communication with their microenvironment. Here, we explore the role of HCC-derived exosomes in the cellular and molecular conversion of adipocytes into tumor-promoting cells. Methods Exosomes were isolated from HCC cell line HepG2 and added to adipocytes. Transcriptomic alterations of exosome-stimulated adipocytes were analyzed using gene expression profiling, and secretion of inflammation-associated cytokines was detected by RT-PCR and ELISA. In vivo mouse xenograft model was used to evaluate the growth-promoting and angiogenesis-enhancing effects of exosome-treated adipocytes. Protein content of tumor exosomes was analyzed by mass spectrometry. Activated phospho-kinases involved in exosome-treated adipocytes were detected by phospho-kinase antibody array and Western blot. Results Our results demonstrated that HCC cell HepG2-derived exosomes could be actively internalized by adipocytes and caused significant transcriptomic alterations and in particular induced an inflammatory phenotype in adipocytes. The tumor exosome-treated adipocytes, named exo-adipocytes, promoted tumor growth, enhanced angiogenesis, and recruited more macrophages in mouse xenograft model. In vitro, conditioned medium from exo-adipocytes promoted HepG2 cell migration and increased tube formation of human umbilical vein endothelial cells (HUVECs). Mechanistically, we found HepG2 exosomes activated several phopho-kinases and NF-κB signaling pathway in exo-adipocytes. Additionally, a total of 1428 proteins were identified in HepG2 exosomes by mass spectrometry. Conclusions Our results provide new insights into the concept that tumor cell-derived exosomes can educate surrounding adipocytes to create a favorable microenvironment for tumor progression.
Collapse
Affiliation(s)
- Shihua Wang
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Meiqian Xu
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Xiaodong Su
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xian Xiao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Armand Keating
- Cell Therapy Translational Research Laboratory, Princess Margaret Cancer Centre, Toronto, Ontario, M5G 2M9, Canada. .,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, M5G 2M9, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Ontario, M5G 2M9, Canada.
| | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Institute of Basic Medical Sciences, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
55
|
Carter DRF, Clayton A, Devitt A, Hunt S, Lambert DW. Extracellular vesicles in the tumour microenvironment. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0475. [PMID: 29158307 DOI: 10.1098/rstb.2016.0475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2017] [Indexed: 12/14/2022] Open
Affiliation(s)
- David Raul Francisco Carter
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford OX3 0BP, UK
| | - Aled Clayton
- Division of Cancer and Genetics, Tenovus Institute, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Andrew Devitt
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Stuart Hunt
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK
| | - Daniel W Lambert
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK .,Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|