51
|
Prionemia and leukocyte-platelet-associated infectivity in sheep transmissible spongiform encephalopathy models. J Virol 2011; 86:2056-66. [PMID: 22156536 DOI: 10.1128/jvi.06532-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dynamics of the circulation and distribution of transmissible spongiform encephalopathy (TSE) agents in the blood of infected individuals remain largely unknown. This clearly limits the understanding of the role of blood in TSE pathogenesis and the development of a reliable TSE blood detection assay. Using two distinct sheep scrapie models and blood transfusion, this work demonstrates the occurrence of a very early and persistent prionemia. This ability to transmit disease by blood transfusion was correlated with the presence of infectivity in white blood cells (WBC) and peripheral blood mononucleated cells (PBMC) as detected by bioassay in mice overexpressing the ovine prion protein PrP (tg338 mice) and with the identification of abnormal PrP in WBC after using protein misfolding cyclic amplification (PMCA). Platelets and a large variety of leukocyte subpopulations also were shown to be infectious. The use of endpoint titration in tg338 mice indicated that the infectivity in WBC (per ml of blood) was 10(6.5)-fold lower than that in 1 g of posterior brainstem sample. In both WBC and brainstem, infectivity displayed similar resistance to PK digestion. The data strongly support the concept that WBC are an accurate target for reliable TSE detection by PMCA. The presence of infectivity in short-life-span blood cellular elements raises the question of the origin of prionemia.
Collapse
|
52
|
González L, Dagleish MP, Martin S, Finlayson J, Sisó S, Eaton SL, Goldmann W, Witz J, Hamilton S, Stewart P, Pang Y, Steele P, Reid HW, Chianini F, Jeffrey M. Factors influencing temporal variation of scrapie incidence within a closed Suffolk sheep flock. J Gen Virol 2011; 93:203-211. [PMID: 21918004 DOI: 10.1099/vir.0.034652-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several studies have shown that transmission of natural scrapie can occur vertically and horizontally, and that variations in scrapie incidence between and within infected flocks are mostly due to differences in the proportion of sheep with susceptible and resistant PRNP genotypes. This report presents the results of a 12-year period of scrapie monitoring in a closed flock of Suffolk sheep, in which only animals of the ARQ/ARQ genotype developed disease. Among a total of 120 of these, scrapie attack rates varied between birth cohorts from 62.5 % (5/8) to 100 % (9/9), and the incidence of clinical disease among infected sheep from 88.9 % (8/9) to 100 % (in five birth cohorts). Susceptible sheep born to scrapie-infected ewes showed a slightly higher risk of becoming infected (97.2 %), produced earlier biopsy-positive results (mean 354 days) and developed disease at a younger age (median 736 days) than those born to non-infected dams (80.3 %, 451 and 782 days, respectively). Taken together, this was interpreted as evidence of maternal transmission. However, it was also observed that, for the birth cohorts with the highest incidence of scrapie (90-100 %), sheep born to infected and non-infected dams had a similar risk of developing scrapie (97.1 and 95.3 %, respectively). Compared with moderate-attack-rate cohorts (62.5-66.7 %), high-incidence cohorts had greater numbers of susceptible lambs born to infected ewes, suggesting that increased rates of horizontal transmission in these cohorts could have been due to high levels of environmental contamination caused by infected placentas.
Collapse
Affiliation(s)
- Lorenzo González
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Mark P Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Stuart Martin
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Jeanie Finlayson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Sílvia Sisó
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Samantha L Eaton
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Wilfred Goldmann
- The Roslin Institute and R(D)SVS University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Janey Witz
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Scott Hamilton
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Paula Stewart
- The Roslin Institute and R(D)SVS University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Yvonne Pang
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Philip Steele
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Hugh W Reid
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Francesca Chianini
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| | - Martin Jeffrey
- Animal Health and Veterinary Laboratories Agency (AHVLA), Pentlands Science Park, Bush Loan, Midlothian EH26 0PZ, UK
| |
Collapse
|
53
|
Abstract
Prion sorption to soil is thought to play an important role in the transmission of scrapie and chronic wasting disease (CWD) via the environment. Sorption of PrP to soil and soil minerals is influenced by the strain and species of PrP(Sc) and by soil characteristics. However, the ability of soil-bound prions to convert PrP(c) to PrP(Sc) under these wide-ranging conditions remains poorly understood. We developed a semiquantitative protein misfolding cyclic amplification (PMCA) protocol to evaluate replication efficiency of soil-bound prions. Binding of the hyper (HY) strain of transmissible mink encephalopathy (TME) (hamster) prions to a silty clay loam soil yielded a greater-than-1-log decrease in PMCA replication efficiency with a corresponding 1.3-log reduction in titer. The increased binding of PrP(Sc) to soil over time corresponded with a decrease in PMCA replication efficiency. The PMCA efficiency of bound prions varied with soil type, where prions bound to clay and organic surfaces exhibited significantly lower replication efficiencies while prions bound to sand exhibited no apparent difference in replication efficiency compared to unbound controls. PMCA results from hamster and CWD agent-infected elk prions yielded similar findings. Given that PrP(Sc) adsorption affinity varies with soil type, the overall balance between prion adsorption affinity and replication efficiency for the dominant soil types of an area may be a significant determinant in the environmental transmission of prion diseases.
Collapse
|
54
|
Padilla D, Béringue V, Espinosa JC, Andreoletti O, Jaumain E, Reine F, Herzog L, Gutierrez-Adan A, Pintado B, Laude H, Torres JM. Sheep and goat BSE propagate more efficiently than cattle BSE in human PrP transgenic mice. PLoS Pathog 2011; 7:e1001319. [PMID: 21445238 PMCID: PMC3060172 DOI: 10.1371/journal.ppat.1001319] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 02/15/2011] [Indexed: 11/29/2022] Open
Abstract
A new variant of Creutzfeldt Jacob Disease (vCJD) was identified in humans and linked to the consumption of Bovine Spongiform Encephalopathy (BSE)-infected meat products. Recycling of ruminant tissue in meat and bone meal (MBM) has been proposed as origin of the BSE epidemic. During this epidemic, sheep and goats have been exposed to BSE-contaminated MBM. It is well known that sheep can be experimentally infected with BSE and two field BSE-like cases have been reported in goats. In this work we evaluated the human susceptibility to small ruminants-passaged BSE prions by inoculating two different transgenic mouse lines expressing the methionine (Met) allele of human PrP at codon 129 (tg650 and tg340) with several sheep and goat BSE isolates and compared their transmission characteristics with those of cattle BSE. While the molecular and neuropathological transmission features were undistinguishable and similar to those obtained after transmission of vCJD in both transgenic mouse lines, sheep and goat BSE isolates showed higher transmission efficiency on serial passaging compared to cattle BSE. We found that this higher transmission efficiency was strongly influenced by the ovine PrP sequence, rather than by other host species-specific factors. Although extrapolation of results from prion transmission studies by using transgenic mice has to be done very carefully, especially when human susceptibility to prions is analyzed, our results clearly indicate that Met129 homozygous individuals might be susceptible to a sheep or goat BSE agent at a higher degree than to cattle BSE, and that these agents might transmit with molecular and neuropathological properties indistinguishable from those of vCJD. Our results suggest that the possibility of a small ruminant BSE prion as vCJD causal agent could not be ruled out, and that the risk for humans of a potential goat and/or sheep BSE agent should not be underestimated. Prion diseases, also referred as transmissible spongiform encephalopathies, are fatal neurodegenerative diseases caused by proteinaceous infectious particles denominated “prions.” Prion diseases acquired their first real public relevance with the outbreak of bovine spongiform encephalopathy (BSE) (“mad cow disease”) in the United Kingdom in the 80s and its link with the appearance of a new, variant form of Creutzfeldt-Jakob disease in humans. Recycling of ruminant tissues in meat and bone meal has been proposed as origin of the BSE epidemic. During this episode, sheep and goats have also been exposed to BSE-contaminated meal, so transmission to this species may have occurred. We analyzed the human susceptibility to sheep and goat passaged-BSE prions by using transgenic mice expressing human prion protein (PrP). When different sheep and goat BSE isolates were inoculated in these transgenic mice, higher susceptibility than that observed for cattle BSE was detected and the disease manifestation was similar to that observed in mice inoculated with the new variant of Creutzfeldt-Jakob disease. Our findings suggest that humans are at least equally, and might be even more, susceptible to a sheep or goat BSE agent compared to a cattle BSE one.
Collapse
Affiliation(s)
- Danielle Padilla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Vincent Béringue
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | | | - Olivier Andreoletti
- UMR INRA-ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Emilie Jaumain
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Fabienne Reine
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Laetitia Herzog
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | | | - Belen Pintado
- Departamento de Reproducción Animal-INIA, Madrid, Spain
| | - Hubert Laude
- INRA, UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
- * E-mail:
| |
Collapse
|
55
|
O'Rourke KI, Zhuang D, Truscott TC, Yan H, Schneider DA. Sparse PrP(Sc) accumulation in the placentas of goats with naturally acquired scrapie. BMC Vet Res 2011; 7:7. [PMID: 21284878 PMCID: PMC3041672 DOI: 10.1186/1746-6148-7-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 02/01/2011] [Indexed: 12/31/2022] Open
Abstract
Background Domestic goats (Capra hircus) are a natural and experimental host of scrapie and bovine spongiform encephalopathy, the transmissible spongiform encephalopathies (TSE) of sheep and cattle. Goats are also susceptible to experimental infection with the agents of TSEs of deer and elk (chronic wasting disease) and humans (Creutzfeldt Jakob disease). Distribution of PrPSc, the abnormal prion protein, is similar in the tissues of scrapie-infected sheep and goats but no data are available on the potential shedding of the agent through the placenta, the presumed route of transmission of ovine scrapie. We describe the sparse accumulation of PrPSc in the placentas of goats with naturally acquired classical scrapie in comparison to field cases of classical ovine scrapie. Results PrPSc was detected in the shed placentas from a sample of U.S. goats with naturally occurring scrapie, diagnosed by antemortem lymphoid tissue biopsy or identified as high risk progeny of infected dams. PrPSc accumulation patterns in the intact placentome and western blot banding was similar in the caprine and ovine samples. However, levels of PrPSc estimated from ELISA and immunohistochemistry assays were generally lower in goats than in sheep, although wide variation was noted in both species. Conclusions PrPSc accumulates in the shed placentas of goats with naturally acquired scrapie. Although these levels were low in most caprine samples, the caprine placenta may contribute to prion contamination of kidding facilities and transmission to co-housed sheep or goats.
Collapse
Affiliation(s)
- Katherine I O'Rourke
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164, USA.
| | | | | | | | | |
Collapse
|
56
|
Joint Scientific Opinion on any possible epidemiological or molecular association between TSEs in animals and humans. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.1945] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
57
|
Breeding with resistant rams leads to rapid control of classical scrapie in affected sheep flocks. Vet Res 2011; 42:5. [PMID: 21314971 PMCID: PMC3037897 DOI: 10.1186/1297-9716-42-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 11/30/2010] [Indexed: 11/25/2022] Open
Abstract
Susceptibility to scrapie, a transmissible spongiform encephalopathy in sheep, is modulated by the genetic make-up of the sheep. Scrapie control policies, based on selecting animals of resistant genotype for breeding, have recently been adopted by the Netherlands and other European countries. Here we assess the effectiveness of a breeding programme based on selecting rams of resistant genotype to obtain outbreak control in classical scrapie-affected sheep flocks under field conditions. In six commercially-run flocks following this breeding strategy, we used genotyping to monitor the genotype distribution, and tonsil biopsies and post-mortem analyses to monitor the occurrence of scrapie infection. The farmers were not informed about the monitoring results until the end of the study period of six years. We used a mathematical model of scrapie transmission to analyze the monitoring data and found that where the breeding scheme was consistently applied, outbreak control was obtained after at most four years. Our results also show that classical scrapie control can be obtained before the frequency of non-resistant animals is reduced to zero in the flock. This suggests that control at the national scale can be obtained without a loss of genetic polymorphisms from any of the sheep breeds.
Collapse
|
58
|
YOKOYAMA T, OKADA H, MURAYAMA Y, MASUJIN K, IWAMARU Y, MOHRI S. Examination of the Offspring of a Japanese Cow Affected with L-Type Bovine Spongiform Encephalopathy. J Vet Med Sci 2011; 73:121-3. [DOI: 10.1292/jvms.10-0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Takashi YOKOYAMA
- Prion Disease Research Center, National Institute of Animal Health
| | - Hiroyuki OKADA
- Prion Disease Research Center, National Institute of Animal Health
| | - Yuichi MURAYAMA
- Prion Disease Research Center, National Institute of Animal Health
| | - Kentaro MASUJIN
- Prion Disease Research Center, National Institute of Animal Health
| | | | - Shirou MOHRI
- Prion Disease Research Center, National Institute of Animal Health
| |
Collapse
|
59
|
|
60
|
Gough KC, Maddison BC. Prion transmission: prion excretion and occurrence in the environment. Prion 2010; 4:275-82. [PMID: 20948292 DOI: 10.4161/pri.4.4.13678] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prion diseases range from being highly infectious, for example scrapie and CWD, which show facile transmission between susceptible individuals, to showing negligible horizontal transmission, such as BSE and CJD, which are spread via food or iatrogenically, respectively. Scrapie and CWD display considerable in vivo dissemination, with PrP(Sc) and infectivity being found in a range of peripheral tissues. This in vivo dissemination appears to facilitate the recently reported excretion of prion through multiple routes such as from skin, feces, urine, milk, nasal secretions, saliva and placenta. Furthermore, excreted scrapie and CWD agent is detected within environmental samples such as water and on the surfaces of inanimate objects. The cycle of "uptake of prion from the environment--widespread in vivo prion dissemination--prion excretion--prion persistence in the environment" is likely to explain the facile transmission and maintenance of these diseases within wild and farmed populations over many years.
Collapse
Affiliation(s)
- Kevin C Gough
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, Sutton Bonington, UK.
| | | |
Collapse
|
61
|
Dagleish M, Benavides J, Chianini F. Immunohistochemical diagnosis of infectious diseases of sheep. Small Rumin Res 2010. [DOI: 10.1016/j.smallrumres.2010.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
62
|
Sisó S, González L, Jeffrey M. Neuroinvasion in prion diseases: the roles of ascending neural infection and blood dissemination. Interdiscip Perspect Infect Dis 2010; 2010:747892. [PMID: 20652006 PMCID: PMC2905956 DOI: 10.1155/2010/747892] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 03/08/2010] [Indexed: 01/27/2023] Open
Abstract
Prion disorders are infectious, neurodegenerative diseases that affect humans and animals. Susceptibility to some prion diseases such as kuru or the new variant of Creutzfeldt-Jakob disease in humans and scrapie in sheep and goats is influenced by polymorphisms of the coding region of the prion protein gene, while other prion disorders such as fatal familial insomnia, familial Creutzfeldt-Jakob disease, or Gerstmann-Straussler-Scheinker disease in humans have an underlying inherited genetic basis. Several prion strains have been demonstrated experimentally in rodents and sheep. The progression and pathogenesis of disease is influenced by both genetic differences in the prion protein and prion strain. Some prion diseases only affect the central nervous system whereas others involve the peripheral organs prior to neuroinvasion. Many experiments undertaken in different species and using different prion strains have postulated common pathways of neuroinvasion. It is suggested that prions access the autonomic nerves innervating peripheral organs and tissues to finally reach the central nervous system. We review here published data supporting this view and additional data suggesting that neuroinvasion may concurrently or independently involve the blood vascular system.
Collapse
Affiliation(s)
- Sílvia Sisó
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Lorenzo González
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Martin Jeffrey
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| |
Collapse
|
63
|
Santucciu C, Maestrale C, Madau L, Attene S, Cancedda MG, Demontis F, Tilocca MG, Saba M, Macciocu S, Carta A, Ligios C. Association of N176K and L141F dimorphisms of the PRNP gene with lack of pathological prion protein deposition in placentas of naturally and experimentally scrapie-affected ARQ/ARQ sheep. J Gen Virol 2010; 91:2402-7. [PMID: 20463148 DOI: 10.1099/vir.0.021188-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The placenta is important in the horizontal transmission of the aetiological agent in scrapie-affected sheep. It has been demonstrated that the placentas of fetuses carrying the dimorphism Q171R of the PRNP gene is resistant to pathological prion protein (PrP(Sc)) accumulation in the placenta. To test whether other PRNP polymorphisms are associated with a lack of placental PrP(Sc) deposition, we carried out a study on 26 naturally and 11 experimentally scrapie-affected ewes with or without clinical signs. PrP(Sc) was detected in the placenta of ARQ/ARQ(wild type) fetuses by Western blot and immunohistochemical analysis, but not in ARQN(176)/ARQK(176) or, as expected, ARQ/ARR samples. Furthermore, three of four AL(141)RQ/AF(141)RQ placentas were also PrP(Sc) negative, suggesting that the dimorphism at codon 141 may also mediate placental deposition of PrP(Sc). This finding demonstrates for the first time that fetal PRNP polymorphisms, other than those at codon 171, are associated with the lack of placental deposition of PrP(Sc).
Collapse
Affiliation(s)
- Cinzia Santucciu
- Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Tabouret G, Lacroux C, Lugan S, Costes P, Corbière F, Weisbecker JL, Schelcher F, Andréoletti O. Relevance of oral experimental challenge with classical scrapie in sheep. J Gen Virol 2010; 91:2139-2144. [PMID: 20444991 DOI: 10.1099/vir.0.021311-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oral inoculation is currently considered as the best approach to mimic natural TSE contamination in ruminants. In this study, we compared the timing of abnormal prion protein (PrP(Sc)) dissemination and accumulation in the organism of susceptible sheep either orally inoculated or naturally infected with classical scrapie. Both animal groups shared a similar PrP(Sc) dissemination scheme and accumulation dynamics in lymphoid tissues. However, orally challenged animals displayed an earlier neuro-invasion and a dramatically shorter incubation period than naturally exposed sheep. No differences were observed between the groups with regards to the neuro-invasion route. These results unambiguously indicate that oral inoculation can have an impact on both the earliness of neuro-invasion and the incubation period. They also support the statement that oral inoculation is a relevant model for investigating transmissible spongiform encephalopathy pathogenesis. Nevertheless, data obtained under such experimental conditions should be used with some caution.
Collapse
Affiliation(s)
- Guillaume Tabouret
- UMR INRA ENVT 1225, Interactions Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Caroline Lacroux
- UMR INRA ENVT 1225, Interactions Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Séverine Lugan
- UMR INRA ENVT 1225, Interactions Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Pierrette Costes
- UMR INRA ENVT 1225, Interactions Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Fabien Corbière
- UMR INRA ENVT 1225, Interactions Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | | | - François Schelcher
- UMR INRA ENVT 1225, Interactions Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| |
Collapse
|
65
|
Melchior MB, Windig JJ, Hagenaars TJ, Bossers A, Davidse A, van Zijderveld FG. Eradication of scrapie with selective breeding: are we nearly there? BMC Vet Res 2010; 6:24. [PMID: 20441587 PMCID: PMC2873516 DOI: 10.1186/1746-6148-6-24] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 05/04/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Following EU decision 2003/100/EC Member States have recently implemented sheep breeding programmes to reduce the prevalence of sheep with TSE susceptible prion genotypes. The present paper investigates the progress of the breeding programme in the Netherlands. The PrP genotype frequencies were monitored through time using two sets of random samples: one set covers the years 2005 to 2008 and is taken from national surveillance programme; the other is taken from 168 random sheep farms in 2007. The data reveal that although the level of compliance to the breeding programme has been high, the frequency of susceptible genotypes varies substantially between farms. The 168 sheep farms are a subset of 689 farms participating in a postal survey inquiring about management and breeding strategies. This survey aimed to identify how much these strategies varied between farms, in order to inform assessment of the expected future progress towards eradication of classical scrapie. RESULTS On the one hand, we found that compliance to the national breeding program has been high, and the frequency of resistant genotypes is expected to increase further in the next few years. On the other hand, we observed a large variation in prevalence of the scrapie resistant PrP genotype ARR between farms, implicating a large variation of genetic resistance between farms. Substantial between-flock differences in management and breeding strategies were found in the postal survey, suggesting considerable variation in risk of scrapie transmission between farms. CONCLUSIONS Our results show that although there has been a good progress in the breeding for scrapie resistance and the average farm-level scrapie susceptibility in the Netherlands has been significantly reduced, still a considerable proportion of farms contain high frequencies of susceptible genotypes in their sheep population. Since 2007 the breeding for genetic resistance is voluntarily again, and participation to selective breeding can decrease as a result of this. This, together with the patterns of direct and indirect contact between sheep farms, might present a challenge of the aim of scrapie eradication. Communication to sheep owners of the effect of the breeding programme thus far, and of the prospects for classical scrapie eradication in The Netherlands might be essential for obtaining useful levels of participation to the voluntary continuation of the breeding programme.
Collapse
Affiliation(s)
- Marielle B Melchior
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, the Netherlands.
| | | | | | | | | | | |
Collapse
|
66
|
Gubbins S, Touzeau S, Hagenaars TJ. The role of mathematical modelling in understanding the epidemiology and control of sheep transmissible spongiform encephalopathies: a review. Vet Res 2010; 41:42. [PMID: 20175963 PMCID: PMC2847197 DOI: 10.1051/vetres/2010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 02/19/2010] [Indexed: 11/29/2022] Open
Abstract
To deal with the incompleteness of observations and disentangle the complexities of transmission much use has been made of mathematical modelling when investigating the epidemiology of sheep transmissible spongiform encephalopathies (TSE) and, in particular, scrapie. Importantly, these modelling approaches allow the incidence of clinical disease to be related to the underlying prevalence of infection, thereby overcoming one of the major difficulties when studying these diseases. Models have been used to investigate the epidemiology of scrapie within individual flocks and at a regional level; to assess the efficacy of different control strategies, especially selective breeding programmes based on prion protein (PrP) genotype; to interpret the results of scrapie surveillance; and to inform the design of surveillance programmes. Furthermore, mathematical modelling has played an important role when assessing the risk to human health posed by the possible presence of bovine spongiform encephalopathy in sheep. Here, we review the various approaches that have been taken when developing and analysing mathematical models for the epidemiology and control of sheep TSE and assess their impact on our understanding of these diseases. We also identify areas that require further work, discuss future challenges and identify data gaps.
Collapse
Affiliation(s)
- Simon Gubbins
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, United Kingdom.
| | | | | |
Collapse
|
67
|
Scientific Opinion on Risk of transmission of TSEs via semen and embryo transfer in small ruminants (sheep and goats). EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
68
|
Espinosa JC, Herva ME, Andréoletti O, Padilla D, Lacroux C, Cassard H, Lantier I, Castilla J, Torres JM. Transgenic mice expressing porcine prion protein resistant to classical scrapie but susceptible to sheep bovine spongiform encephalopathy and atypical scrapie. Emerg Infect Dis 2009; 15:1214-21. [PMID: 19751582 PMCID: PMC2815954 DOI: 10.3201/eid1508.081218] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Atypical scrapie strain phenotypes may shift when transmitted to a new host. How susceptible pigs are to infection with sheep prions is unknown. We show, through transmission experiments in transgenic mice expressing porcine prion protein (PrP), that the susceptibility of this mouse model to bovine spongiform encephalopathy (BSE) can be enhanced after its passage in ARQ sheep, indicating that the pathogenicity of the BSE agent is modified after passage in sheep. Transgenic mice expressing porcine PrP were, nevertheless, completely resistant to infection with a broad panel of classical scrapie isolates from different sheep PrP genotypes and with different biochemical characteristics. The atypical (Nor98 like) isolate (SC-PS152) was the only scrapie isolate capable of transmission in these mice, although with a marked transmission barrier. Unexpectedly, the atypical scrapie agent appeared to undergo a strain phenotype shift upon transmission to porcine-PrP transgenic mice and acquired new strain properties, suggesting that atypical scrapie agent may exhibit different phenotypes depending on the host cellular PrP or other genetic factors.
Collapse
|
69
|
Evidence for maternal transmission of scrapie in naturally affected flocks. Prev Vet Med 2009; 93:121-8. [PMID: 19945758 DOI: 10.1016/j.prevetmed.2009.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/14/2009] [Accepted: 10/16/2009] [Indexed: 11/24/2022]
Abstract
It has been known for many years that the offspring of scrapie affected ewes are at increased risk of developing scrapie but whether this is simply the result of an increased genetic susceptibility or transmission of infection has always been unclear. To contribute to clarify this we analysed the data collected in a detailed study of scrapie occurrence in a number of naturally affected commercial sheep flocks in Great Britain (GB) to investigate the association between PrP genotype and parental scrapie status and the incidence of scrapie. Our analyses confirmed the strong association between PrP genotype and the incidence of scrapie found in previous studies and a low incidence of scrapie in animals carrying the ARR allele and a high risk in homozygous VRQ animals. However, we also demonstrate an increased incidence of scrapie in the offspring of scrapie affected ewes controlling for the confounding effect of PrP genotype, but no increased scrapie incidence in the offspring of scrapie affected sires. Our results suggest that some of the increased incidence of scrapie in the offspring of scrapie affected ewes is the result of transmission of infection from mother to offspring. Our results confirm that a breeding policy aimed at decreasing the genetic susceptibility of the population should decrease the incidence of scrapie and that removing the offspring of scrapie affected animals from affected flocks could contribute to the control of this disease.
Collapse
|
70
|
Moreno CR, Moazami-Goudarzi K, Briand S, Robert-Granie C, Weisbecker JL, Laurent P, Cribiu EP, Haley CS, Andreoletti O, Bishop SC, Pong-Wong R. Mapping of quantitative trait loci affecting classical scrapie incubation time in a population comprising several generations of scrapie-infected sheep. J Gen Virol 2009; 91:575-9. [DOI: 10.1099/vir.0.014134-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
71
|
|
72
|
Sisó S, Jeffrey M, González L. Neuroinvasion in sheep transmissible spongiform encephalopathies: the role of the haematogenous route. Neuropathol Appl Neurobiol 2009; 35:232-46. [DOI: 10.1111/j.1365-2990.2008.00978.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
73
|
Guignot F, Baril G, Dupont F, Cognie Y, Folch J, Alabart JL, Poulin N, Beckers JF, Bed'hom B, Babilliot JM, Mermillod P. Determination of sex and scrapie resistance genotype in preimplantation ovine embryos. Mol Reprod Dev 2009; 76:183-90. [PMID: 18543282 DOI: 10.1002/mrd.20940] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of this study was to test the accuracy of genotype diagnosis after pre-amplification of DNA extracted from biopsies obtained by microblade cutting of ovine embryos and to evaluate the viability of biopsied embryos after vitrification/warming and transfer to recipients. Sex and PrP genotypes were determined. Sex diagnosis was done by PCR amplification of ZFX/ZFY and SRY sequences after PEP-PCR while PrP genotype determination was performed after specific pre-amplification of specific target including codons 136, 154 and 171. Embryos were collected at Day 7 after oestrus. Blastocysts and expanded blastocysts were biopsied immediately after collection whereas compacted morulae were biopsied after 24 hr of in vitro culture. Eighty-nine biopsied embryos were frozen by vitrification. Fresh and vitrified whole embryos were kept as control. DNA of biopsies was extracted and pre-amplified. Sex diagnosis was efficient for 96.6% of biopsies and PrP genotyping was determined in 95.8% of codons. After embryo transfer, no significant difference was observed in lambing rate between biopsied, vitrified control and fresh embryos (54.5%, 60% and 66.6%, respectively). Embryo survival rate was not different between biopsied and whole vitrified embryos (P = 0.38). At birth, 96.7% of diagnosed sex and 95.4% of predetermined codons were correct. Lamb PrP profiles were in agreement with parental genotype. PEP-PCR coupled with sex diagnosis and nested PCR coupled with PrP genotype predetermination are very accurate techniques to genotype ovine embryo before transfer. These original results allow planning of selection of resistant genotype to scrapie and sex of offspring before transfer of cryopreserved embryo.
Collapse
Affiliation(s)
- Florence Guignot
- UMR INRA-CNRS-Université de Tours-Haras Nationaux, Physiologie de la Reproduction et des Comportements, Nouzilly, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Ryder SJ, Dexter GE, Heasman L, Warner R, Moore SJ. Accumulation and dissemination of prion protein in experimental sheep scrapie in the natural host. BMC Vet Res 2009; 5:9. [PMID: 19243608 PMCID: PMC2649917 DOI: 10.1186/1746-6148-5-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 02/25/2009] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In order to study the sites of uptake and mechanisms of dissemination of scrapie prions in the natural host under controlled conditions, lambs aged 14 days and homozygous for the VRQ allele of the PrP gene were infected by the oral route. Infection occurred in all lambs with a remarkably short and highly consistent incubation period of approximately 6 months. Challenge of lambs at approximately eight months of age resulted in disease in all animals, but with more variable incubation periods averaging significantly longer than those challenged at 14 days. This model provides an excellent system in which to study the disease in the natural host by virtue of the relatively short incubation period and close resemblance to natural infection. RESULTS Multiple sites of prion uptake were identified, of which the most important was the Peyer's patch of the distal ileum. Neuroinvasion was detected initially in the enteric nervous system prior to infection of the central nervous system. At end stage disease prion accumulation was widespread throughout the entire neuraxis, but vacuolar pathology was absent in most animals that developed disease at 6-7 months of age. CONCLUSION Initial spread of detectable PrP was consistent with drainage in afferent lymph to dependent lymph nodes. Subsequent accumulation of prions in lymphoid tissue not associated with the gut is consistent with haematogenous spread. In addition to macrophages and follicular dendritic cells, prion containing cells consistent with afferent lymph dendritic cells were identified and are suggested as a likely vehicle for carriage of prions from initial site of uptake to the lymphoreticular system, and as potential carriers of prion protein in blood. It is apparent that spongiform change, the characteristic lesion of scrapie and other prion diseases, is not responsible for the clinical signs in sheep, but may develop in an age dependent manner.
Collapse
Affiliation(s)
- Stephen J Ryder
- Department of Pathology, Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey KT153NB, UK.
| | | | | | | | | |
Collapse
|
75
|
Human and animal exposure risk related to Transmissible Spongiform Encephalopathies (TSEs) from milk and milk products derived from small ruminants Scientific opinion of the Panel on Biological Hazards. EFSA J 2008. [DOI: 10.2903/j.efsa.2008.849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
76
|
Identification of new quantitative trait Loci (other than the PRNP gene) modulating the scrapie incubation period in sheep. Genetics 2008; 179:723-6. [PMID: 18493086 DOI: 10.1534/genetics.108.088146] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although susceptibility to scrapie is largely controlled by the PRNP gene, we have searched for additional genomic regions that affect scrapie incubation time in sheep, using two half-sib families with a susceptible PRNP genotype and naturally infected by scrapie. Quantitative trait loci were detected on OAR6 and OAR18.
Collapse
|
77
|
Risks of transmitting ruminant spongiform encephalopathies (prion diseases) by semen and embryo transfer techniques. Theriogenology 2008; 70:725-45. [DOI: 10.1016/j.theriogenology.2008.05.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/12/2008] [Accepted: 05/14/2008] [Indexed: 11/21/2022]
|
78
|
Sisó S, Jeffrey M, Steele P, McGovern G, Martin S, Finlayson J, Chianini F, González L. Occurrence and cellular localization of PrPd in kidneys of scrapie-affected sheep in the absence of inflammation. J Pathol 2008; 215:126-34. [PMID: 18381605 DOI: 10.1002/path.2336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Following a preliminary description of disease-associated prion protein (PrPd) deposition in the kidneys of scrapie-affected sheep, detailed studies have been undertaken in order to evaluate the factors that could account for such PrPd accumulation and to determine the precise location of PrPd in the renal papillae. Immunohistochemical (IHC) examinations for PrPd were conducted in kidneys collected at post-mortem from 30 naturally and 37 experimentally infected sheep. In addition, PrPd detection by western blot analysis (WB) and ultrastructural examination was carried out in a selection of kidneys. PrPd-specific, multifocal IHC labelling with antibody R145 was achieved in the kidneys of 44% and 51% of the naturally and experimentally infected sheep, respectively. The specificity of these results was confirmed by further IHC and WB using several PrP antibodies raised to different amino acid sequences, and by examination of control tissues. PrPd was shown to accumulate in the interstitium of the renal papillae, in association with the cell membrane and lysosomes of fibroblast-like cells, or extracellularly, in close contact with collagen and basal membranes. These deposits were unrelated to inflammatory changes in the kidney as shown by routine histology and by IHC for different immune cell markers. PrPd accumulated in the kidney of sheep that showed widespread PrPd deposition in the lymphoreticular system and had long incubation periods; these findings argue for a haematogenous origin of renal PrPd, although the precise site and mechanism-glomerular filtration and reabsorption at Henle's loop, or extravasation from vasa recta capillaries, or both-by which PrPd leaves the blood to accumulate in the interstitium of renal papillae remain to be determined. Either of these pathogenetic mechanisms could lead to environmental contamination via urine.
Collapse
Affiliation(s)
- S Sisó
- Veterinary Laboratories Agency Lasswade, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
TSE risk assessment from carcasses of ovine and caprine animals below 6 months of age from TSE infected flocks intended for human consumption - Scientific Opinion of the Panel on Biological Hazards. EFSA J 2008; 6:719. [PMID: 37213859 PMCID: PMC10193622 DOI: 10.2903/j.efsa.2008.719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
80
|
|
81
|
Effects of nutrition and genotype on prion protein (PrPC) gene expression in the fetal and maternal sheep placenta. Placenta 2008; 29:422-8. [PMID: 18358531 DOI: 10.1016/j.placenta.2008.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 01/24/2008] [Accepted: 02/09/2008] [Indexed: 11/21/2022]
Abstract
For placental transmission of scrapie to occur, the normal cellular prion protein (PrPC) must be converted to an abnormal infectious form known as PrPSc. PrPC genotype influences susceptibility to contracting scrapie, but we still do not understand whether genotype or expression levels of PrPC are important in transmission of scrapie. Some evidence exists that nutrition affects expression levels of PrPC. Thus, we evaluated the effects of genotype and nutrition on PrPC mRNA and protein expression in adolescent ewes fed at control (100% of National Research Council [NRC] requirements) or restricted (60% of NRC) levels of diet intake during two periods of pregnancy (days 50-90 and days 90-130)]. Gravid uteri (n=50) from singleton pregnancies were collected at day 130, and placentomes were either separated into caruncular (CAR; maternal) or cotyledonary (COT; fetal) placenta and snap-frozen for PrPC mRNA expression or perfusion fixed for PrPC protein expression. PrPC genotypes were determined (codons 136 and 171) using SNP assay. There were no genotype effects on PrPC mRNA expression in CAR or on PrPC protein expression in either CAR or COT, but PrPC mRNA expression in COT was greater (P<0.02) when codon 136 was homozygous for alanine. Some PrPC protein-positive cells were found in the epithelium of CAR, but most were found in trophoblast binucleate and mononucleate cells of COT. In CAR, from days 90 to 130, PrPC protein abundance was greater (P=0.003) in diet-restricted ewes than in control ewes, but was less uniformly distributed (P<0.007). Additionally, in COT, from days 90 to 130, PrPC protein was less uniformly distributed (P<0.01) in diet-restricted ewes. The localized increase in PrPC protein expression, found in ewes diet-restricted late in pregnancy, may suggest a protective role for PrPC in placental biology. Further study is needed to evaluate whether nutrition, PrPC genotype, and PrPC expression levels influence placental transmission of scrapie.
Collapse
|
82
|
Excretion of BSE and scrapie prions in stools from murine models. Vet Microbiol 2008; 131:205-11. [PMID: 18395370 DOI: 10.1016/j.vetmic.2008.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 02/09/2008] [Accepted: 02/26/2008] [Indexed: 11/20/2022]
Abstract
Faeces from infected animals have been suggested as a potential source of contamination and transmission of prion diseases in the environment. This work describes the development of a procedure for the detection of PrP(res) in stools which is based on a detergent-based extraction and immunoprecipitation (IP). The procedure was evaluated by analyzing TSE-spiked sheep and mice faeces, and proved to be specific for PrP(res) with sensitivities of 5-10 microg of infected brain tissue. In order to analyze the shedding of prions, we studied stools from orally inoculated mice over 4-days post-inoculation and also stools from terminally sick scrapie-infected mice. PrP(res) was only detected in stools shortly after the oral ingestion of TSE agents. The procedure described could be a useful tool for studying the excretion of prions and for evaluating potential environmental contamination by prions.
Collapse
|
83
|
Simmons MM, Spiropoulos J, Hawkins SAC, Bellworthy SJ, Tongue SC. Approaches to investigating transmission of spongiform encephalopathies in domestic animals using BSE as an example. Vet Res 2008; 39:34. [PMID: 18284911 DOI: 10.1051/vetres:2008011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 02/12/2008] [Indexed: 11/14/2022] Open
Abstract
Bovine spongiform encephalopathy was a novel spongiform encephalopathy, in an hitherto unaffected species, that had characteristics of a point source epidemic, with an agent that could have been incorporated into a wide variety of feedstuffs and iatrogenically administered to naïve populations, and there was early evidence that it was not restricted to bovines. It was vital to establish, albeit experimentally, which other species might be affected, and whether the epidemic could be maintained by natural transmission, if the source was removed. In contrast, scrapie has been endemic throughout Great Britain for centuries, is maintained naturally (even if we don't know exactly how) and has a known host range. The principles, process and integration of evidence from different types of studies, however, are similar for both of these transmissible spongiform encephalopathies (TSE) and can be applied to any emerging or suspected spongiform encephalopathy. This review discusses the experimental approaches used to determine TSE transmissibility and infectivity and how they relate to natural disease and control measures.
Collapse
Affiliation(s)
- Marion Mathieson Simmons
- Pathology Department, Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | | | | | | | | |
Collapse
|
84
|
van Keulen LJM, Bossers A, van Zijderveld F. TSE pathogenesis in cattle and sheep. Vet Res 2008; 39:24. [PMID: 18258167 DOI: 10.1051/vetres:2007061] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 11/09/2007] [Indexed: 12/18/2022] Open
Abstract
Many studies have been undertaken in rodents to study the pathogenesis of transmissible spongiform encephalopathies (TSE). Only a few studies have focused on the pathogenesis of bovine spongiform encephalopathy (BSE) and scrapie in their natural hosts. In this review, we summarize the most recent insights into the pathogenesis of BSE and scrapie starting from the initial uptake of TSE agents and crossing of the gut epithelium. Following replication in the gut-associated lymphoid tissues (GALT), TSE agents spread to the enteric nervous system (ENS) of the gut. Infection is then carried through the efferent fibers of the post-ganglionic neurons of the parasympathetic and sympathetic nervous system to the pre-ganglionic neurons in the medulla oblongata of the brain and the thoracic segments of the spinal cord. The differences between the pathogenesis of BSE in cattle and scrapie in sheep are discussed as well as the possible existence of additional pathogenetic routes.
Collapse
Affiliation(s)
- Lucien J M van Keulen
- Department of Bacteriology and TSE's, Central Institute for animal Disease Control , Wageningen University and Research Centre, 8203 AA Lelystad, the Netherlands.
| | | | | |
Collapse
|
85
|
High incidence of subclinical infection of lymphoid tissues in scrapie-affected sheep flocks. Arch Virol 2008; 153:637-44. [PMID: 18227967 DOI: 10.1007/s00705-008-0035-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
Abstract
Prion diseases are characterized by a long incubation period. In scrapie, sheep may incubate and spread the infection for several years before clinical signs evolve. We have previously studied the occurrence of subclinical infection in the brain. Now, we have studied the occurrence of subclinical infection in the brain and several lymphoid tissues in two scrapie-affected Icelandic sheep flocks by immunohistochemistry for PrP(Sc), a molecular marker for infectivity, and correlated this with results of PrP genotyping. At culling, one flock had one confirmed scrapie case, while the other flock had two. Analysis of 106 asymptomatic sheep by immunostaining for PrP(Sc) revealed that the incidence of subclinical infection was 58.3% in one flock and 42.5% in the other. PrP(Sc) was only detected in lymphoid tissues. The youngest positive sheep were 4 months old. PrP genotyping showed that over 90% of the sheep were of a genotype which is moderately sensitive to infection and may delay neuroinvasion. Our results show that asymptomatic sheep may spread the infection during the long incubation period of several years, which constitutes an important obstacle in the eradication of scrapie. Our findings indicate that contamination of the environment plays an important part in sustaining the infection.
Collapse
|
86
|
Crozet C, Lehmann S. [Prions: where do we stand 20 years after the appearance of bovine spongiform encephalopathy?]. Med Sci (Paris) 2007; 23:1148-57. [PMID: 18154718 DOI: 10.1051/medsci/200723121148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bovine spongiform encephalopathy (BSE) is a transmissible spongiform encephalopathy (TSE) identified twenty years ago in the British cattle herds. Creutzfeldt-Jakob disease (CJD) is a TSE that occurs in humans. In 1996, scientists found a possible link between BSE and a new variant of CJD (vCJD). The fact that the non conventional infectious agent of TSE, named prions, could cross the species barrier from cattle to human through meat consumption, raised a tremendous concern for public safety in Europe. This led to the development in the following two decades of substantial and expensive measures to contain BSE and prevent its transmission to humans. In parallel, scientific programs have been funded to progress through the comprehension of the physiopathology of these fatal disorders. In Europe, the BSE epidemics is now ending and the number of cases is decreasing thanks to the strict control of animal foodstuff that was the main source of prion contamination. Only a small number of vCJD have been detected, however, additional concerns have been raised recently for public safety as secondary transmission of CJD through medical procedure and blood transfusion is possible. In addition, the possibility that the BSE was transmitted to other animals including small ruminants is also worrisome. Research efforts are now focussing on decontamination and ante mortem diagnosis of TSE to prevent animal and human transmission. However, needs for fundamental research are still important as many questions remain to be addressed to understand the mechanism of prion transmission, as well as its pathogenesis.
Collapse
Affiliation(s)
- Carole Crozet
- Institut de Génétique Humaine, UPR1142 CNRS, CHU de Montpellier, UM1 Montpellier, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | | |
Collapse
|
87
|
Novakofski J, Brewer MS, Mateus-Pinilla N, Killefer J, McCusker RH. Prion biology relevant to bovine spongiform encephalopathy. J Anim Sci 2007; 83:1455-76. [PMID: 15890824 DOI: 10.2527/2005.8361455x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bovine spongiform encephalopathy (BSE) and chronic wasting disease (CWD) of deer and elk are a threat to agriculture and natural resources, as well as a human health concern. Both diseases are transmissible spongiform encephalopathies (TSE), or prion diseases, caused by autocatalytic conversion of endogenously encoded prion protein (PrP) to an abnormal, neurotoxic conformation designated PrPsc. Most mammalian species are susceptible to TSE, which, despite a range of species-linked names, is caused by a single highly conserved protein, with no apparent normal function. In the simplest sense, TSE transmission can occur because PrPsc is resistant to both endogenous and environmental proteinases, although many details remain unclear. Questions about the transmission of TSE are central to practical issues such as livestock testing, access to international livestock markets, and wildlife management strategies, as well as intangible issues such as consumer confidence in the safety of the meat supply. The majority of BSE cases seem to have been transmitted by feed containing meat and bone meal from infected animals. In the United Kingdom, there was a dramatic decrease in BSE cases after neural tissue and, later, all ruminant tissues were banned from ruminant feed. However, probably because of heightened awareness and widespread testing, there is growing evidence that new variants of BSE are arising "spontaneously," suggesting ongoing surveillance will continue to find infected animals. Interspecies transmission is inefficient and depends on exposure, sequence homology, TSE donor strain, genetic polymorphism of the host, and architecture of the visceral nerves if exposure is by an oral route. Considering the low probability of interspecies transmission, the low efficiency of oral transmission, and the low prion levels in nonnervous tissues, consumption of conventional animal products represents minimal risk. However, detection of rare events is challenging, and TSE literature is characterized by subsequently unsupported claims of species barriers or absolute tissue safety. This review presents an overview of TSE and summarizes recent research on pathogenesis and transmission.
Collapse
Affiliation(s)
- J Novakofski
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, IL 61801-4737, USA.
| | | | | | | | | |
Collapse
|
88
|
Jeffrey M, González L. Classical sheep transmissible spongiform encephalopathies: pathogenesis, pathological phenotypes and clinical disease. Neuropathol Appl Neurobiol 2007; 33:373-94. [PMID: 17617870 DOI: 10.1111/j.1365-2990.2007.00868.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scrapie is a prion disease or transmissible spongiform encephalopathy (TSE) of sheep, goats and moufflon. As with its human counterparts, pathology consists of vacuolation, gliosis and accumulations of abnormal forms of a host prion protein (PrPd) in the brain of affected individuals. Immunohistochemical methods can be used to identify both the intracellular truncation sites of PrPd in different cell types (PrPd epitope mapping) and the different morphological patterns of accumulation (PrPd profiling). Differences in the inferred truncation sites of PrPd are found for different strains of sheep TSEs and for different infected cell types within individual strains. Immunochemical methods of characterizing strains broadly correspond to PrPd mapping discriminatory results, but distinct PrPd profiles, which provide strain- and source-specific information on both the cell types which sustain infection (cellular tropisms) and the cellular processing of PrPd, have no immunoblotting counterparts. The cause of neurological dysfunction in human is commonly considered to be neuronal loss secondary to a direct or indirect effect of the accumulation of PrPd. However, in sheep scrapie there is no significant neuronal loss, and relationships between different magnitudes, topographical and cytological forms of PrPd accumulation and clinical signs are not evident. PrPd accumulation also occurs in lymphoid tissues, for which there is indirect evidence of a pathological effect, in the peripheral nervous system and in other tissues. It is generally assumed that neuroinvasion results from infection of the enteric nervous system neurones subsequent to amplification of infectivity in lymphoid tissues and later spread via sympathetic and parasympathetic pathways. The evidence for this is, however, circumstantial. Accumulation of PrPd and presence of infectivity in tissues other than the nervous and lymphoreticular systems gives insights on the ways of transmission of infection and on food safety.
Collapse
Affiliation(s)
- M Jeffrey
- Veterinary Laboratory Agency, Lasswade Laboratory, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, Scotland, UK.
| | | |
Collapse
|
89
|
Hunter N. Scrapie: uncertainties, biology and molecular approaches. Biochim Biophys Acta Mol Basis Dis 2007; 1772:619-28. [PMID: 17560089 DOI: 10.1016/j.bbadis.2007.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 04/23/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
The study of the biology of scrapie in sheep is irretrievably associated with the genetics of the PrP gene in sheep. Control of susceptibility and resistance is so closely linked to certain alleles of the sheep PrP gene that no review on scrapie can avoid PrP genetics. Before the importance of PrP protein was discovered and before the influence of the gene itself on disease incidence was understood, it was clear there were some sheep which were more susceptible to natural scrapie than others and that this feature was heritable. These early observations have led to the development and use of PrP genotyping in sheep in what is probably the biggest genetic selection process ever attempted. The accompanying increase in surveillance has also discovered a novel type of scrapie, the subject of much speculation about its origin.
Collapse
Affiliation(s)
- Nora Hunter
- Neuropathogenesis Unit, Roslin Institute, West Mains Road, Edinburgh, Scotland, UK.
| |
Collapse
|
90
|
Lacroux C, Corbière F, Tabouret G, Lugan S, Costes P, Mathey J, Delmas JM, Weisbecker JL, Foucras G, Cassard H, Elsen JM, Schelcher F, Andréoletti O. Dynamics and genetics of PrPSc placental accumulation in sheep. J Gen Virol 2007; 88:1056-1061. [PMID: 17325381 DOI: 10.1099/vir.0.82218-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Placentae from scrapie-affected ewes are an important source of contamination. This study confirmed that scrapie-incubating ewes bearing susceptible genotypes could produce both abnormal prion protein (PrPSc)-positive and -negative placentae, depending only on the PRP genotype of the fetus. The results also provided evidence indicating that scrapie-incubating ARR/VRQ ewes may be unable to accumulate prions in the placenta, whatever the genotype of their progeny. Multinucleated trophoblast cells appeared to play a key role in placental PrPSc accumulation. PrPSc accumulation began in syncytiotrophoblasts before disseminating to uninucleated trophoblasts. As these result from trophoblast/uterine epithelial cell fusion, syncytiotrophoblast cells expressed maternal and fetal PrPC, whilst uninucleated trophoblast cells only expressed fetal PrPC. In ARR/VRQ scrapie-infected ewes, expression of the ARR allele by syncytiotrophoblasts appeared to prevent initiation of PrPSc placental deposition. The absence of prions in affected ARR/VRQ sheep placentae reinforces strongly the interest in ARR selection for scrapie control.
Collapse
Affiliation(s)
- C Lacroux
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - F Corbière
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - G Tabouret
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - S Lugan
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - P Costes
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - J Mathey
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - J M Delmas
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | | | - G Foucras
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - H Cassard
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - J M Elsen
- INRA Station d'Amélioration Génétique des Animaux, 31326 Castanet Tolosan, France
| | - F Schelcher
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| | - O Andréoletti
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076 Toulouse, France
| |
Collapse
|
91
|
Vascellari M, Nonno R, Mutinelli F, Bigolaro M, Di Bari MA, Melchiotti E, Marcon S, D'Agostino C, Vaccari G, Conte M, De Grossi L, Rosone F, Giordani F, Agrimi U. PrPSc in salivary glands of scrapie-affected sheep. J Virol 2007; 81:4872-6. [PMID: 17301130 PMCID: PMC1900156 DOI: 10.1128/jvi.02148-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The salivary glands of scrapie-affected sheep and healthy controls were investigated for the presence of the pathological prion protein (PrP(Sc)). PrP(Sc) was detected in major (parotid and mandibular) and minor (buccal, labial, and palatine) salivary glands of naturally and experimentally infected sheep. Using Western blotting, the PrP(Sc) concentration in glands was estimated to be 0.02 to 0.005% of that in brain. Immunohistochemistry revealed intracellular depositions of PrP(Sc) in ductal and acinar epithelia and occasional labeling in the lumina of salivary ducts. The presence of PrP(Sc) in salivary glands highlights the possible role of saliva in the horizontal transmission of scrapie.
Collapse
Affiliation(s)
- Marta Vascellari
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, 35020 Legnaro (PD), Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Ierna M, Farquhar CF, Outram GW, Bruce ME. Resistance of neonatal mice to scrapie is associated with inefficient infection of the immature spleen. J Virol 2007; 80:474-82. [PMID: 16352571 PMCID: PMC1317550 DOI: 10.1128/jvi.80.1.474-482.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies demonstrated that neonatal mice up to about a week old are less susceptible than adult mice to infection by intraperitoneal inoculation with mouse-passaged scrapie. In peripherally inoculated adult mice, scrapie replicates in lymphoid tissues such as the spleen before invading the central nervous system. Here, we investigated scrapie susceptibility in neonatal mice in more detail, concentrating on spleen involvement. First, we demonstrated that neonatal mice are about 10 times less susceptible than adults to intraperitoneal scrapie inoculation. Then we injected mice intraperitoneally with a scrapie dose that produced disease in all mice inoculated at 10 days or older but in only about a third of neonatally inoculated mice. In this experiment, spleens collected 70 days after scrapie injection of mice 10 days old or older almost all contained pathological prion protein, PrPSc, and those that were bioassayed all contained high infectivity levels. In contrast, at this early stage, only two of six spleens from neonatally inoculated mice had detectable, low infectivity levels; no PrPSc was detected, even in the two spleens. Therefore, neonatal mice have an impaired ability to replicate scrapie in their spleens, suggesting that replication sites are absent or sparse at birth but mature within 10 days. The increase in susceptibility with age correlated with the first immunocytochemical detection of the normal cellular form of prion protein, PrPc, on maturing follicular dendritic cell networks. As lymphoid tissues are more mature at birth in sheep, cattle, and humans than in mice, our results suggest that in utero infection with scrapie-like agents is theoretically possible in these species.
Collapse
Affiliation(s)
- Michelle Ierna
- Institute for Animal Health, Neuropathogenesis Unit, Ogston Building, West Mains Road, Edinburgh EH9 3JF, United Kingdom
| | | | | | | |
Collapse
|
93
|
Hopp P, Omer MK, Heier BT. A case–control study of scrapie Nor98 in Norwegian sheep flocks. J Gen Virol 2006; 87:3729-3736. [PMID: 17098991 DOI: 10.1099/vir.0.81951-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Scrapie is a fatal, neurological disease of sheep and goats and belongs to the transmissible spongiform encephalopathies. In 1998, a new type of scrapie, designated scrapie Nor98, was detected in Norway. Scrapie Nor98 differs from classical scrapie in the distribution of pathological changes and of the scrapie prion protein, the Western blot profile of the prion protein, and with isolated cases usually being observed in the case flocks. In 2004, a case–control study was conducted on scrapie Nor98 with 28 cases and 102 randomly selected controls. The questionnaire included questions on demographic data, animal contact between sheep flocks, indirect contact with equipment, use of concentrate feed and supplemental feeds, and use of medicines and vaccines. The data were analysed by using logistic regression with the sheep flock as the statistical unit. In the final model, the detection of scrapie Nor98 was related to the practice of not removing all afterbirths, the use of vitamin and mineral feed supplements, the absence of concentrate feed of swine or poultry on the farm and the presence of dogs on the farm. The results show that the epidemiology of scrapie Nor98 differs from that of classical scrapie in that no risk factors that indicate transmission of scrapie Nor98 between flocks by movement or direct contact between animals were found. Furthermore, the association between scrapie Nor98 and mineral intake shown herein should be explored further. Although the possibility that scrapie Nor98 has a low transmissibility between animals under natural conditions cannot be ruled out, the results would also be in accordance with a spontaneous aetiology.
Collapse
Affiliation(s)
- Petter Hopp
- National Veterinary Institute, PO Box 8156 Dep, NO-0033 Oslo, Norway
| | - Mohamed K Omer
- National Veterinary Institute, PO Box 8156 Dep, NO-0033 Oslo, Norway
| | - Berit T Heier
- National Veterinary Institute, PO Box 8156 Dep, NO-0033 Oslo, Norway
| |
Collapse
|
94
|
Doherr MG. Brief review on the epidemiology of transmissible spongiform encephalopathies (TSE). Vaccine 2006; 25:5619-24. [PMID: 17126962 DOI: 10.1016/j.vaccine.2006.10.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2006] [Accepted: 10/30/2006] [Indexed: 11/25/2022]
Abstract
Transmissible spongiform encephalopathies (TSE) form a group of human and animal diseases that share common features such as (a) distinct pathological lesions in the central nervous system, (b) transmissibility at least in experimental settings, and (c) a long incubation period. Considerable differences exist in the host range of individual TSEs, their routes of transmission, and factors influencing the host susceptibility (such as genotype). The objective of this review was to briefly describe the main epidemiological features of TSEs with emphasis on small ruminant (sheep, goats) TSE, bovine spongiform encephalopathy (BSE) in cattle and chronic wasting disease (CWD) in deer and elk.
Collapse
Affiliation(s)
- Marcus G Doherr
- Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, P.O. Box 8466, 3001 Bern, Switzerland.
| |
Collapse
|
95
|
Espinosa JC, Andréoletti O, Castilla J, Herva ME, Morales M, Alamillo E, San-Segundo FD, Lacroux C, Lugan S, Salguero FJ, Langeveld J, Torres JM. Sheep-passaged bovine spongiform encephalopathy agent exhibits altered pathobiological properties in bovine-PrP transgenic mice. J Virol 2006; 81:835-43. [PMID: 17079295 PMCID: PMC1797487 DOI: 10.1128/jvi.01356-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sheep can be experimentally infected with bovine spongiform encephalopathy (BSE), and the ensuing disease is similar to scrapie in terms of pathogenesis and clinical signs. BSE infection in sheep is an animal and human health concern. In this study, the transmission in BoPrP-Tg110 mice of prions from BSE-infected sheep was examined and compared to the transmission of original cattle BSE in cattle and sheep scrapie prions. Our results indicate no transmission barrier for sheep BSE prions to infect BoPrP-Tg110 mice, but the course of the disease is accelerated compared to the effects of the original BSE isolate. The shortened incubation period of sheep BSE in the model was conserved in subsequent passage in BoPrP-Tg110 mice, indicating that it is not related to infectious titer differences. Biochemical signature, lesion profile, and PrP(Sc) deposition pattern of both cattle and sheep BSE were similar. In contrast, all three sheep scrapie isolates tested showed an evident transmission barrier and further adaptation in subsequent passage. Taken together, those data indicate that BSE agent can be altered by crossing a species barrier, raising concerns about the virulence of this new prion towards other species, including humans. The BoPrP-Tg110 mouse bioassay should be considered as a valuable tool for discriminating scrapie and BSE in sheep.
Collapse
Affiliation(s)
- Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal, INIA, 28130 Valdeolmos, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
McIntyre KM, Gubbins S, Sivam SK, Baylis M. Flock-level risk factors for scrapie in Great Britain: analysis of a 2002 anonymous postal survey. BMC Vet Res 2006; 2:25. [PMID: 16887027 PMCID: PMC1557843 DOI: 10.1186/1746-6148-2-25] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Accepted: 08/03/2006] [Indexed: 11/10/2022] Open
Abstract
Background In November 2002, an anonymous postal survey of sheep farmers in Great Britain (GB) was conducted to identify factors associated with the flock-level occurrence of scrapie. This survey was undertaken to update an earlier postal survey in 1998, and was the first occasion in which a large-scale postal survey had been repeated. Results The results of the 2002 survey indicated that scrapie was more likely to occur in certain geographic regions; in purebred compared to commercial flocks; in larger flocks; in flocks which lambed in group pens compared to those which lambed in individual pens; in flocks which always lambed in the same location compared to those which did not; and in farms which kept certain breeds of sheep. In addition to these factors, the likelihood of the disease occurring in homebred animals was higher in flocks which bred a greater proportion of replacement animals or which bought-in lambs. Finally, within-flock transmission following exposure was more likely to occur in hill flocks compared to other farm types; in flocks which bred a greater proportion of replacement animals; and in farms which kept a certain crossbreed of ewe. Conclusion The risk factors identified from the 1998 and 2002 anonymous postal surveys in Great Britain were similar. However, differences between the surveys were identified in the influence of region and of purchasing behaviour on the risk of scrapie. These differences are most likely a consequence of changes in farmer awareness and the impact of the 2001 foot-and-mouth disease epidemic, respectively.
Collapse
Affiliation(s)
- K Marie McIntyre
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Simon Gubbins
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - S Kumar Sivam
- Veterinary Laboratories Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Matthew Baylis
- Veterinary Clinical Science, University of Liverpool, Leahurst, Neston, Wirral, Cheshire CH64 7TE, UK
| |
Collapse
|
97
|
Abstract
Centrifugal spread of the prion agent to peripheral tissues is postulated to occur by axonal transport along nerve fibers. This study investigated the distribution of the pathological isoform of the protein (PrP(Sc)) in the tongues and nasal cavities of hamsters following intracerebral inoculation of the HY strain of the transmissible mink encephalopathy (TME) agent. We report that PrP(Sc) deposition was found in the lamina propria, taste buds, and stratified squamous epithelium of fungiform papillae in the tongue, as well as in skeletal muscle cells. Using laser scanning confocal microscopy, PrP(Sc) was localized to nerve fibers in each of these structures in the tongue, neuroepithelial taste cells of the taste bud, and, possibly, epithelial cells. This PrP(Sc) distribution was consistent with a spread of HY TME agent along both somatosensory and gustatory cranial nerves to the tongue and suggests subsequent synaptic spread to taste cells and epithelial cells via peripheral synapses. In the nasal cavity, PrP(Sc) accumulation was found in the olfactory and vomeronasal epithelium, where its location was consistent with a distribution in cell bodies and apical dendrites of the sensory neurons. Prion spread to these sites is consistent with transport via the olfactory nerve fibers that descend from the olfactory bulb. Our data suggest that epithelial cells, neuroepithelial taste cells, or olfactory sensory neurons at chemosensory mucosal surfaces, which undergo normal turnover, infected with the prion agent could be shed and play a role in the horizontal transmission of animal prion diseases.
Collapse
Affiliation(s)
- Crista DeJoia
- Department of Veterinary Molecular Biology, P.O. Box 173610, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | |
Collapse
|
98
|
Abstract
Bovine spongiform encephalopathy (BSE) is one of several diseases known collectively as transmissible spongiform encephalopathies (TSE) and caused by prions, which are nonconventional infectious agents. The risk of human infection by exposure to a TSE agent is generally considered to be low, because of the species barrier. However, the prions causing BSE in cattle are able to cross the species barrier easily. The appearance of variant Creutzfeldt–Jakob disease (vCJD) after human exposure to BSE prions has highlighted the possible impacts of this infection on human health. Today, a major concern is that the number of BSE cases in many European countries, including the emerging eastern European countries of the EU, is growing. A further concern now emerging is the possibility that BSE could spread to other livestock species, such as sheep or goats. This paper provides an overview of BSE transmission and its potential implications for public health.
Collapse
Affiliation(s)
- Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal, INIA, 28130 Valdeolmos, Madrid, Spain
| | - Monica Morales
- Centro de Investigación en Sanidad Animal, INIA, 28130 Valdeolmos, Madrid, Spain
| | - Maria Eugenia Herva
- Centro de Investigación en Sanidad Animal, INIA, 28130 Valdeolmos, Madrid, Spain
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal, INIA, 28130 Valdeolmos, Madrid, Spain
| |
Collapse
|
99
|
Alverson J, O'Rourke KI, Baszler TV. PrPSc accumulation in fetal cotyledons of scrapie-resistant lambs is influenced by fetus location in the uterus. J Gen Virol 2006; 87:1035-1041. [PMID: 16528055 DOI: 10.1099/vir.0.81418-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Placentae from scrapie-infected ewes have been shown to accumulate PrPSc when the genotype of the fetus is of a susceptible genotype (VRQ/VRQ, ARQ/VRQ or ARQ/ARQ). Cotyledons from fetuses of genotypes ARR/ARR, ARQ/ARR and ARQ/VRR have previously been shown to be resistant to PrPSc accumulation. By using ewes from a naturally infected scrapie flock, cotyledons from fetuses of multiple births of different genotypes were examined. PrPSc was detected in fetal cotyledons of genotype ARQ/ARQ, but not in cotyledons from their dizygotic twin of genotype ARQ/ARR. This confirms earlier reports of single fetuses of these genotypes, but is the first description of such a finding in twin fetuses, one of each genotype. It is also demonstrated that cotyledons from sibling fetuses of genotypes ARQ/VRQ and ARQ/ARQ have different patterns of PrPSc accumulation depending on whether the dam is of genotype ARQ/ARQ or ARQ/VRQ. Lastly, it is shown that cotyledons from fetuses with resistant genotypes are weakly positive for PrPSc when they have shared the same pregnant uterine horn with a fetus of a susceptible genotype with cotyledons positive for the detection of PrPSc. Additionally, a PCR product for the Sry gene, a product specific to males, was found in cotyledons from female fetuses that had shared a uterine horn with a male fetus. This indicates that some sharing of fetal blood occurs between placentomes and fetuses residing in the same uterine horn, which can result in PrPSc accumulation in cotyledons with resistant genotypes.
Collapse
Affiliation(s)
- Janet Alverson
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
- USDA, ARS, Animal Disease Research Unit, 3003 ADBF, Washington State University, Pullman, WA 99164, USA
| | - Katherine I O'Rourke
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
- USDA, ARS, Animal Disease Research Unit, 3003 ADBF, Washington State University, Pullman, WA 99164, USA
| | - Timothy V Baszler
- Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA 99164, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
100
|
Rigou P, Rezaei H, Grosclaude J, Staunton S, Quiquampoix H. Fate of prions in soil: adsorption and extraction by electroelution of recombinant ovine prion protein from montmorillonite and natural soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:1497-503. [PMID: 16568762 DOI: 10.1021/es0516965] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Prions, the infectious agents thought to be responsible for transmissible spongiform encephalopathies, may contaminate soils and have been reported to persist there for years. We have studied the adsorption and desorption of a model recombinant prion protein on montmorillonite and natural soil samples in order to elucidate mechanisms of prion retention in soils. Clay minerals, such as montmorillonite, are known to be strong adsorbents for organic molecules, including proteins. Montmorillonite was found to have a large and selective adsorption capacity for both the normal and the aggregated prion protein. Adsorption occurred mainly via the N-terminal domain of the protein. Incubation with standard buffers and detergents did not desorb the full length protein from montmorillonite, emphasizing the largely irreversible trapping of prion protein by this soil constituent. An original electroelution method was developed to extract prion protein from both montmorillonite and natural soil samples, allowing quantification when coupled with rapid prion detection tests. This easy-to-perform method produced concentrated prion protein extracts and allowed detection of protein at levels as low as 0.2 ppb in natural soils.
Collapse
Affiliation(s)
- Peggy Rigou
- Virologie et Immunologie Moléculaires, INRA, F-78352 Jouy-en-Josas, France.
| | | | | | | | | |
Collapse
|