51
|
Zhang A, Gao R, Diao N, Xie G, Gao G, Cao S. Cloning, expression and characterization of an organic solvent tolerant lipase from Pseudomonas fluorescens JCM5963. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
52
|
Quintana-Castro R, Díaz P, Valerio-Alfaro G, García HS, Oliart-Ros R. Gene cloning, expression, and characterization of the Geobacillus Thermoleovorans CCR11 thermoalkaliphilic lipase. Mol Biotechnol 2008; 42:75-83. [PMID: 19107605 DOI: 10.1007/s12033-008-9136-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 12/01/2008] [Indexed: 11/28/2022]
Abstract
The gene for a Geobacillus thermoleovorans CCR11 thermostable lipase was recovered by PCR and cloned. Four genetic constructions were designed and successfully expressed in E. coli: (i) the lipase structural gene (lipCCR11) in the PinPoint Xa vector; (ii) the lipase structural gene (lipACCR11) in the pET-28a(+) vector; (iii) the lipase structural gene minus the signal peptide (lipMatCCR11) in the pET-3b vector; and (iv) the lipase structural gene plus its own promoter (lipProCCR11) in the pGEM-T cloning vector. The lipase gene sequence analysis showed an open reading frame of 1,212 nucleotides coding for a mature lipase of 382 residues (40 kDa) plus a 22 residues signal peptide. Expression under T7 and T7lac promoter resulted in a 40- and 36-fold increase in lipolytic activity with respect to the original strain lipase. All recombinant lipases showed an optimal activity at pH 9.0, but variations were found in the temperature for maximum activity and the substrate specificity among them and when compared with the parental strain lipase, especially in the recombinant lipases that contained fusion tags. Therefore, it is important to find the appropriate expression system able to attain a high concentration of the recombinant lipase without compromising the proper folding of the protein.
Collapse
Affiliation(s)
- Rodolfo Quintana-Castro
- Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, Veracruz, 91897, Mexico
| | | | | | | | | |
Collapse
|
53
|
WANG CH, GUO RF, YU HW, JIA YM. Cloning and Sequence Analysis of a Novel Cold-Adapted Lipase Gene from Strain lip35 (Pseudomonas sp.). ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1671-2927(08)60167-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
54
|
Fan Z, Yue C, Tang Y, Zhang Y. Cloning, sequence analysis and expression of bacterial lipase-coding DNA fragments from environment in Escherichia coli. Mol Biol Rep 2008; 36:1515-9. [PMID: 18773306 DOI: 10.1007/s11033-008-9344-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 08/12/2008] [Indexed: 11/26/2022]
Abstract
Thirteen pairs of primers were designed, synthesized and used to clone the whole coding sequences or mature peptide-coding sequences of lipases. Bacteria producing extracellular lipases were enriched for the extraction of total DNAs. Eight fragments with 500-1,200 bp in length were obtained by using touchdown PCR and sequenced. Five of them were found to be lipase-coding DNAs. One fragment called BL9 that was 95.9% similar to a coding sequence of putative lipase. This lipase contained a Gly-His-Ser-Met-Gly motif which is matched to the consensus Gly-X-Ser-X-Gly conserved among lipolytic enzymes. The BL9 DNA fragment was inserted into the expression vector pET32a(+) of Escherichia coli. A functional product was yielded in the supernatant and produced a hydrolyzed zone on the tributyrin agar.
Collapse
Affiliation(s)
- Zhaoxin Fan
- College of Life Science, Sichuan University, Sichuan Key Laboratory of Molecular Biology & Biotechnology, Chengdu, 610064, China.
| | | | | | | |
Collapse
|
55
|
Verma ML, Azmi W, Kanwar SS. Microbial lipases: at the interface of aqueous and non-aqueous media. A review. Acta Microbiol Immunol Hung 2008; 55:265-94. [PMID: 18800594 DOI: 10.1556/amicr.55.2008.3.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In recent times, biotechnological applications of microbial lipases in synthesis of many organic molecules have rapidly increased in non-aqueous media. Microbial lipases are the 'working horses' in biocatalysis and have been extensively studied when their exceptionally high stability in non-aqueous media has been discovered. Stability of lipases in organic solvents makes them commercially feasibile in the enzymatic esterification reactions. Their stability is affected by temperature, reaction medium, water concentration and by the biocatalyst's preparation. An optimization process for ester synthesis from pilot scale to industrial scale in the reaction medium is discussed. The water released during the esterification process can be controlled over a wide range and has a profound effect on the activity of the lipases. Approaches to lipase catalysis like protein engineering, directed evolution and metagenome approach were studied. This review reports the recent development in the field ofnon-aqueous microbial lipase catalysis and factors controlling the esterification/transesterification processes in organic media.
Collapse
Affiliation(s)
- M L Verma
- Department of Biotechnology, Himachal Pradesh University, Summer-Hill, Shimla 171 005, India
| | | | | |
Collapse
|
56
|
Snellman EA, Colwell RR. Transesterification activity of a novel lipase from Acinetobacter venetianus RAG-1. Antonie van Leeuwenhoek 2008; 94:621-5. [DOI: 10.1007/s10482-008-9276-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 08/04/2008] [Indexed: 10/21/2022]
|
57
|
Metagenomics: Future of microbial gene mining. Indian J Microbiol 2008; 48:202-15. [PMID: 23100714 DOI: 10.1007/s12088-008-0033-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Accepted: 04/07/2008] [Indexed: 10/21/2022] Open
Abstract
Modern biotechnology has a steadily increasing demand for novel genes for application in various industrial processes and development of genetically modified organisms. Identification, isolation and cloning for novel genes at a reasonable pace is the main driving force behind the development of unprecedented experimental approaches. Metagenomics is one such novel approach for engendering novel genes. Metagenomics of complex microbial communities (both cultivable and uncultivable) is a rich source of novel genes for biotechnological purposes. The contributions made by metagenomics to the already existing repository of prokaryotic genes is quite impressive but nevertheless, this technique is still in its infancy. In the present review we have drawn comparison between routine cloning techniques and metagenomic approach for harvesting novel microbial genes and described various methods to reach down to the specific genes in the metagenome. Accomplishments made thus far, limitations and future prospects of this resourceful technique are discussed.
Collapse
|
58
|
Chu X, He H, Guo C, Sun B. Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl Microbiol Biotechnol 2008; 80:615-25. [PMID: 18600322 DOI: 10.1007/s00253-008-1566-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 11/30/2022]
Abstract
The demand for novel biocatalysts is increasing in modern biotechnology, which greatly stimulates the development of powerful tools to explore the genetic resources in the environment. Metagenomics, a culture independent strategy, provides an access to valuable genetic resources of the uncultured microbes. In this study, two novel esterase genes designated as estA and estB, which encoded 277- and 328-amino-acid peptides, respectively, were isolated from a marine microbial metagenomic library by functional screening, and the corresponding esterases EstA and EstB were biochemically characterized. Amino acid sequence comparison and phylogenetic analysis indicated that EstA together with other putative lipolytic enzymes was closely related to family III, and EstB with its relatives formed a subfamily of family IV. Site-directed mutagenesis showed that EstA contained classical catalytic triad made up of S146-D222-H255, whereas EstB contained an unusual catalytic triad which consisted of S-E-H, an important feature of the subfamily. EstA exhibited habitat-specific characteristics such as its high level of stability in the presence of various divalent cations and at high concentrations of NaCl. EstB displayed remarkable activity against p-nitrophenyl esters and was highly stable in 30% methanol, ethanol, dimethylformamide, and dimethyl sulfoxide, making EstB a potential candidate for industrial applications.
Collapse
Affiliation(s)
- Xinmin Chu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | | | | | | |
Collapse
|
59
|
Joseph B, Ramteke PW, Thomas G. Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 2008; 26:457-70. [PMID: 18571355 DOI: 10.1016/j.biotechadv.2008.05.003] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 05/09/2008] [Indexed: 10/22/2022]
Abstract
Lipases are glycerol ester hydrolases that catalyze the hydrolysis of triglycerides to free fatty acids and glycerol. Lipases catalyze esterification, interesterification, acidolysis, alcoholysis and aminolysis in addition to the hydrolytic activity on triglycerides. The temperature stability of lipases has regarded as the most important characteristic for use in industry. Psychrophilic lipases have lately attracted attention because of their increasing use in the organic synthesis of chiral intermediates due to their low optimum temperature and high activity at very low temperatures, which are favorable properties for the production of relatively frail compounds. In addition, these enzymes have an advantage under low water conditions due to their inherent greater flexibility, wherein the activity of mesophilic and thermophilic enzymes are severely impaired by an excess of rigidity. Cold-adapted microorganisms are potential source of cold-active lipases and they have been isolated from cold regions and studied. Compared to other lipases, relatively smaller numbers of cold active bacterial lipases were well studied. Lipases isolated from different sources have a wide range of properties depending on their sources with respect to positional specificity, fatty acid specificity, thermostability, pH optimum, etc. Use of industrial enzymes allows the technologist to develop processes that closely approach the gentle, efficient processes in nature. Some of these processes using cold active lipase from C. antarctica have been patented by pharmaceutical, chemical and food industries. Cold active lipases cover a broad spectrum of biotechnological applications like additives in detergents, additives in food industries, environmental bioremediations, biotransformation, molecular biology applications and heterologous gene expression in psychrophilic hosts to prevent formation of inclusion bodies. Cold active enzymes from psychrotrophic microorganisms showing high catalytic activity at low temperatures can be highly expressed in such recombinant strains. Thus, cold active lipases are today the enzymes of choice for organic chemists, pharmacists, biophysicists, biochemical and process engineers, biotechnologists, microbiologists and biochemists.
Collapse
Affiliation(s)
- Babu Joseph
- Department of Microbiology and Microbial Technology, College of Biotechnology and Allied Sciences, Allahabad Agricultural Institute-Deemed University, Uttar Pradesh, India
| | | | | |
Collapse
|
60
|
Extremely thermostable esterases from the thermoacidophilic euryarchaeon Picrophilus torridus. Extremophiles 2008; 12:351-64. [PMID: 18330499 DOI: 10.1007/s00792-008-0139-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 12/26/2007] [Indexed: 10/22/2022]
Abstract
Two genes encoding esterases EstA and EstB of Picrophilus torridus were identified by the means of genome analysis and were subsequently cloned in Escherichia coli. PTO 0988, which is encoding EstA, consists of 579 bp, whereas PTO 1141, encoding EstB, is composed of 696 bp, corresponding to 192 aa and 231 aa, respectively. Sequence comparison revealed that both biocatalysts have low sequence identities (14 and 16%) compared to previously characterized enzymes. Detailed analysis suggests that EstA and EstB are the first esterases from thermoacidophiles not classified as members of the HSL family. Furthermore, the subunits with an apparent molecular mass of 22 and 27 kDa of the homotrimeric EstA and EstB, respectively, represent the smallest esterase subunits from thermophilic microorganisms reported to date. The recombinant esterases were purified by Ni2+ affinity chromatography, and the activity of the purified esterases was measured over a wide pH (pH 4.5-8.5) and temperature range (10-90 degrees C). Highest activity of the esterases was measured at 70 degrees C (EstA) and 55 degrees C (EstB) with short pNP-esters as preferred substrates. In addition, esters of the non-steroidal anti-inflammatory drugs naproxen, ketoprofen, and ibuprofen are hydrolyzed by both EstA and EstB. Extreme thermostability was measured for both enzymes at temperatures as high as 90 degrees C. The determined half-life (t1/2) at 90 degrees C was 21 and 10 h for EstA and EstB, respectively. Remarkable preservation of esterase activity in the presence of detergents, urea, and commonly used organic solvents complete the exceptional phenotype of EstA and EstB.
Collapse
|
61
|
Parra LP, Reyes F, Acevedo JP, Salazar O, Andrews BA, Asenjo JA. Cloning and fusion expression of a cold-active lipase from marine Antarctic origin. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2007.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
62
|
Uchiyama T, Watanabe K. The SIGEX scheme: high throughput screening of environmental metagenomes for the isolation of novel catabolic genes. Biotechnol Genet Eng Rev 2008; 24:107-16. [PMID: 18059628 DOI: 10.1080/02648725.2007.10648094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Taku Uchiyama
- Department of Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
63
|
Roh C, Villatte F, Kim BG, Schmid RD. Screening and purification for novel cytochrome b5 from uncultured environmental micro-organisms. Lett Appl Microbiol 2007; 44:475-80. [PMID: 17451512 DOI: 10.1111/j.1472-765x.2007.02118.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS We describe a sequence-based PCR method suitable for the isolation of a novel soluble heme-binding domain of cytochrome b(5) (cyt b(5)) gene directly from metagenomic DNA is described. METHODS AND RESULTS Using the degenerate primer set, a cyt b(5) gene was isolated directly from metagenomic DNA. Based on the sequence-based PCR method, the similar conserved motif of cyt b(5) from Rhodopseudomonas palustris strain makes the novel target gene. The gene encoding cyt b(5) was cloned and expressed in Escherichia coli BL21 (DE3) using pET expression system. The expressed recombinant enzyme was purified by Ni-nitrilotriacetic acid affinity chromatography and characterized. CONCLUSIONS Sequence-based strategy is an effective method for application of the novel gene from metagenomic DNA. SIGNIFICANCE AND IMPACT OF THE STUDY Investigation of novel genes from metagenome, most of the micro-organism species are largely untapped, could represent an interesting and useful reservoir for biological processes.
Collapse
Affiliation(s)
- C Roh
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
| | | | | | | |
Collapse
|
64
|
Salameh M, Wiegel J. Lipases from extremophiles and potential for industrial applications. ADVANCES IN APPLIED MICROBIOLOGY 2007; 61:253-83. [PMID: 17448792 DOI: 10.1016/s0065-2164(06)61007-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Moh'd Salameh
- Microbiology Department, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
65
|
Maldonado LMTP, Hernández VEB, Rivero EM, Barba de la Rosa AP, Flores JLF, Acevedo LGO, De León Rodríguez A. Optimization of culture conditions for a synthetic gene expression in Escherichia coli using response surface methodology: The case of human interferon beta. ACTA ACUST UNITED AC 2007; 24:217-22. [PMID: 17126075 DOI: 10.1016/j.bioeng.2006.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 09/30/2006] [Accepted: 10/13/2006] [Indexed: 10/24/2022]
Abstract
A human interferon beta (hINF-beta) synthetic gene was optimized and expressed in Escherichia coli BL21-SI using a vector with the T7 promoter. To determine the best culture conditions such as culture medium, temperature, cell density and inducer concentration, we used the response surface methodology and a Box-Behnken design to get the highest hINF-beta production. The maximum hINF-beta production of 61 mg l(-1) was attained using minimum medium and the following predicted optimal conditions: temperature of 32.5 degrees C, cell density of 0.64, and inducer concentration of 0.30 M NaCl. This is the first report showing the successful performance of the BL21-SI system in a minimum medium. The response surface methodology is effective for the optimization of recombinant protein production using synthetic genes.
Collapse
Affiliation(s)
- Luz M T Paz Maldonado
- Division of Molecular Biology, Institute for Scientific and Technological Research of San Luis Potosi, Apartado Postal 3-74, Tangamanga, 78231 San Luis Potosi, S.L.P., Mexico
| | | | | | | | | | | | | |
Collapse
|
66
|
Drepper T, Eggert T, Hummel W, Leggewie C, Pohl M, Rosenau F, Wilhelm S, Jaeger KE. Novel biocatalysts for white biotechnology. Biotechnol J 2006; 1:777-86. [PMID: 16927261 DOI: 10.1002/biot.200600059] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
White Biotechnology uses microorganisms and enzymes to manufacture a large variety of chemical products. Therefore, the demand for new and useful biocatalysts is steadily and rapidly increasing. We have developed methods for the isolation of new enzyme genes, constructed novel expression systems, and optimized existing enzymes for biotechnological applications by methods of directed evolution. Furthermore, we have isolated and characterized biocatalysts relevant for the preparation of enantiopure compounds.
Collapse
Affiliation(s)
- Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Research Center Jülich, Jülich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
Inverse PCR has been used for the recovery of genome regions flanking a known sequence, although its application to metagenome walking is limited due to inefficient amplification from low copy number fragments. Here we present an improved inverse PCR scheme that enables walking of rare fragments in environmental metagenomes. Our scheme includes the following steps: (i) inverse PCR in which one primer is connected to an affinity tag; (ii) affinity purification of PCR products for removing background metagenome; and (iii) nested PCR to recover target flanking regions (IAN-PCR). In a model experiment, flanking regions of a gene fragment in Ralstonia eutropha were recovered from mixtures of Ralstonia and Escherichia genomes by standard inverse PCR, inverse PCR coupled to nested PCR (IN-PCR), and IAN-PCR, showing that they were recovered when ratios of Ralstonia genome to the background Escherichia genome were greater than 10−1, 10−3, and 10−5, respectively. The utility of IAN-PCR was also examined by recovering flanking regions of PCR-amplified putative chitinase gene fragments from a groundwater metagenome, showing that IAN-PCR obtained flanking regions for more diverse gene fragments than IN-PCR. Since rare sequences are a critical element of natural genetic diversity, IAN-PCR enables access to undiscovered diverse genes in the environment.
Collapse
|
68
|
Elend C, Schmeisser C, Leggewie C, Babiak P, Carballeira JD, Steele HL, Reymond JL, Jaeger KE, Streit WR. Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl Environ Microbiol 2006; 72:3637-45. [PMID: 16672512 PMCID: PMC1472341 DOI: 10.1128/aem.72.5.3637-3645.2006] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The metagenomes of uncultured microbial communities are rich sources for novel biocatalysts. In this study, esterase EstA3 was derived from a drinking water metagenome, and esterase EstCE1 was derived from a soil metagenome. Both esterases are approximately 380 amino acids in size and show similarity to beta-lactamases, indicating that they belong to family VIII of the lipases/esterases. EstA3 had a temperature optimum at 50 degrees C and a pH optimum at pH 9.0. It was remarkably active and very stable in the presence of solvents and over a wide temperature and pH range. It is active in a multimeric form and displayed a high level of activity against a wide range of substrates including one secondary ester, 7-[3-octylcarboxy-(3-hydroxy-3-methyl-butyloxy)]-coumarin, which is normally unreactive. EstCE1 was active in the monomeric form and had a temperature optimum at 47 degrees C and a pH optimum at pH 10. It exhibited the same level of stability as EstA3 over wide temperature and pH ranges and in the presence of dimethyl sulfoxide, isopropanol, and methanol. EstCE1 was highly enantioselective for (+)-menthylacetate. These enzymes display remarkable characteristics that cannot be related to the original environment from which they were derived. The high level of stability of these enzymes together with their unique substrate specificities make them highly useful for biotechnological applications.
Collapse
Affiliation(s)
- C Elend
- Molekulare Enzymtechnologie, Universität Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
|
70
|
Drepper T, Eggert T, Hummel W, Leggewie C, Pohl M, Rosenau F, Jaeger KE. Neue Biokatalysatoren für die Weiße Biotechnologie. CHEM-ING-TECH 2006. [DOI: 10.1002/cite.200500197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
71
|
Ranjan R, Grover A, Kapardar RK, Sharma R. Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem Biophys Res Commun 2005; 335:57-65. [PMID: 16054111 DOI: 10.1016/j.bbrc.2005.07.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 07/14/2005] [Indexed: 11/19/2022]
Abstract
Metagenomic libraries give access to gene pool of bacteria present in environmental samples avoiding the culture bias. A metagenomic library of pond water microbial assemblage in plasmid vector containing about 532 Mb of community DNA was prepared. Screening of a part of the unamplified library resulted in isolation of 11 unique lipolytic clones with an ability to hydrolyze tributyrin. DNA sequence of the lipolytic genes varied in G+C composition from 57% to 75%. Twelve lipolytic genes encoding proteins with 25-70% amino acid identity with proteins in the databases were identified. Ten of the encoded proteins belonged to seven known lipolytic protein families. One of the proteins was similar to recently identified esterase BioH. A lipolytic protein with high similarity to yet uncharacterized alpha/beta hydrolase protein family abh_upf0017 was identified from one of the clones. Conserved motif for lipolytic enzymes GXSXG, conserved aspartic and histidine residues were identified in this encoded protein.
Collapse
Affiliation(s)
- Ravi Ranjan
- Department of Environmental Biology, University of Delhi, Delhi 110007, India
| | | | | | | |
Collapse
|
72
|
Rhee JK, Ahn DG, Kim YG, Oh JW. New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol 2005; 71:817-25. [PMID: 15691936 PMCID: PMC546692 DOI: 10.1128/aem.71.2.817-825.2005] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene coding for a thermostable esterase was isolated by functional screening of Escherichia coli cells that had been transformed with fosmid environmental DNA libraries constructed with metagenomes from thermal environmental samples. The gene conferring esterase activity on E. coli grown on tributyrin agar was composed of 936 bp, corresponding to 311 amino acid residues with a molecular mass of 34 kDa. The enzyme showed significant amino acid similarity (64%) to the enzyme from a hyperthermophilic archaeon, Pyrobaculum calidifontis. An amino acid sequence comparison with other esterases and lipases revealed that the enzyme should be classified as a new member of the hormone-sensitive lipase family. The recombinant esterase that was overexpressed and purified from E. coli was active above 30 degrees C up to 95 degrees C and had a high thermal stability. It displayed a high degree of activity in a pH range of 5.5 to 7.5, with an optimal pH of approximately 6.0. The best substrate for the enzyme among the p-nitrophenyl esters (C(4) to C(16)) examined was p-nitrophenyl caproate (C(6)), and no lipolytic activity was observed with esters containing an acyl chain length of longer than 10 carbon atoms, indicating that the enzyme is an esterase and not a lipase.
Collapse
Affiliation(s)
- Jin-Kyu Rhee
- Department of Biotechnology, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
73
|
Weir BS, Turner SJ, Silvester WB, Park DC, Young JM. Unexpectedly diverse Mesorhizobium strains and Rhizobium leguminosarum nodulate native legume genera of New Zealand, while introduced legume weeds are nodulated by Bradyrhizobium species. Appl Environ Microbiol 2004; 70:5980-7. [PMID: 15466541 PMCID: PMC522066 DOI: 10.1128/aem.70.10.5980-5987.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The New Zealand native legume flora are represented by four genera, Sophora, Carmichaelia, Clianthus, and Montigena. The adventive flora of New Zealand contains several legume species introduced in the 19th century and now established as serious invasive weeds. Until now, nothing has been reported on the identification of the associated rhizobia of native or introduced legumes in New Zealand. The success of the introduced species may be due, at least in part, to the nature of their rhizobial symbioses. This study set out to address this issue by identifying rhizobial strains isolated from species of the four native legume genera and from the introduced weeds: Acacia spp. (wattles), Cytisus scoparius (broom), and Ulex europaeus (gorse). The identities of the isolates and their relationship to known rhizobia were established by comparative analysis of 16S ribosomal DNA, atpD, glnII, and recA gene sequences. Maximum-likelihood analysis of the resultant data partitioned the bacteria into three genera. Most isolates from native legumes aligned with the genus Mesorhizobium, either as members of named species or as putative novel species. The widespread distribution of strains from individual native legume genera across Mesorhizobium spp. contrasts with previous reports implying that bacterial species are specific to limited numbers of legume genera. In addition, four isolates were identified as Rhizobium leguminosarum. In contrast, all sequences from isolates from introduced weeds aligned with Bradyrhizobium species but formed clusters distinct from existing named species. These results show that native legume genera and these introduced legume genera do not have the same rhizobial populations.
Collapse
Affiliation(s)
- Bevan S Weir
- Landcare Research, Private Bag 92170, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
74
|
Danchin A. The bag or the spindle: the cell factory at the time of systems' biology. Microb Cell Fact 2004; 3:13. [PMID: 15537427 PMCID: PMC534799 DOI: 10.1186/1475-2859-3-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Accepted: 11/10/2004] [Indexed: 11/10/2022] Open
Abstract
Genome programs changed our view of bacteria as cell factories, by making them amenable to systematic rational improvement. As a first step, isolated genes (including those of the metagenome), or small gene clusters are improved and expressed in a variety of hosts. New techniques derived from functional genomics (transcriptome, proteome and metabolome studies) now allow users to shift from this single-gene approach to a more integrated view of the cell, where it is more and more considered as a factory. One can expect in the near future that bacteria will be entirely reprogrammed, and perhaps even created de novo from bits and pieces, to constitute man-made cell factories. This will require exploration of the landscape made of neighbourhoods of all the genes in the cell. Present work is already paving the way for that futuristic view of bacteria in industry.
Collapse
Affiliation(s)
- Antoine Danchin
- Genetics of Bacterial Genomes, Institut Pasteur, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
75
|
Snellman EA, Colwell RR. Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential. J Ind Microbiol Biotechnol 2004; 31:391-400. [PMID: 15378387 DOI: 10.1007/s10295-004-0167-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 08/08/2004] [Indexed: 10/26/2022]
Abstract
Lipases (EC 3.1.1.3) have received increased attention recently, evidenced by the increasing amount of information about lipases in the current literature. The renewed interest in this enzyme class is due primarily to investigations of their role in pathogenesis and their increasing use in biotechnological applications. Also, many microbial lipases are available as commercial products, the majority of which are used in detergents, cosmetic production, food flavoring, and organic synthesis. Lipases are valued biocatalysts because they act under mild conditions, are highly stable in organic solvents, show broad substrate specificity, and usually show high regio- and/or stereo-selectivity in catalysis. A number of lipolytic strains of Acinetobacter have been isolated from a variety of sources and their lipases possess many biochemical properties similar to those that have been developed for biotechnological applications. This review discusses the biology of lipase expression in Acinetobacter, with emphasis on those aspects relevant to potential biotechnology applications.
Collapse
Affiliation(s)
- Erick A Snellman
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD 21202, USA
| | | |
Collapse
|
76
|
Hutchins LM, Hunter L, Ehya N, Gibbs MD, Bergquist PL, Hutton CA. Highly enantioselective recombinant thermoalkalophilic lipases from Geobacillus and Bacillus sp. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.tetasy.2004.07.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
77
|
Shah DSH, Russell RRB. A novel glucan-binding protein with lipase activity from the oral pathogen Streptococcus mutans. MICROBIOLOGY-SGM 2004; 150:1947-1956. [PMID: 15184580 DOI: 10.1099/mic.0.26955-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus mutans produces extracellular glucosyltransferases (GTFs) that synthesize glucans from sucrose. These glucans are important in determining the permeability properties and adhesiveness of dental plaque. GTFs and the GbpA glucan-binding protein are characterized by a binding domain containing a series of 33-amino-acid repeats, called 'A' repeats. The S. mutans genome sequence was searched for ORFs containing 'A' repeats, and one novel gene, gbpD, which appears to be unique to the mutans group of streptococci, was identified. The GbpD sequence revealed the presence of three 'A' repeats, in the middle of the protein, and a novel glucan-binding assay showed that GbpD binds to dextran with a K(D) of 2-3 nM. Construction of truncated derivatives of GbpD confirmed that the 'A' repeat region was essential for binding. Furthermore, a gbpD knockout mutant was modified in the extent of aggregation induced by polymers derived from sucrose. The N-terminus of GbpD has a signal sequence, followed by a region with no homologues in the public databases, while the C-terminus has homology to the alpha/beta hydrolase family (including lipases and carboxylesterases). GbpD contains the two regions typical of these enzymes: a GxSxG active site 'lipase box' and an 'oxyanion hole'. GbpD released free fatty acids (FFAs) from a range of triglycerides in the presence of calcium, indicating a lipase activity. The glucan binding/lipase bifunctionality suggested the natural substrate for the enzyme may be a surface macromolecule consisting of carbohydrate linked to lipid. The gbpD mutant was less hydrophobic than wild-type and pure recombinant GbpD reduced the hydrophobicity of S. mutans and another plaque bacterium, Streptococcus sanguinis. GbpD bound to and released FFA from lipoteichoic acid (LTA) of S. sanguinis, but had no effect on LTA from S. mutans. These results raise the intriguing possibility that GbpD may be involved in direct interspecies competition within the plaque biofilm.
Collapse
Affiliation(s)
- Deepan S H Shah
- School of Dental Sciences, University of Newcastle, Newcastle upon Tyne NE2 4BW, UK
| | - Roy R B Russell
- School of Dental Sciences, University of Newcastle, Newcastle upon Tyne NE2 4BW, UK
| |
Collapse
|
78
|
Kwoun Kim H, Jung YJ, Choi WC, Ryu HS, Oh TK, Lee JK. Sequence-based approach to finding functional lipases from microbial genome databases. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09609.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
79
|
Gray KA, Richardson TH, Robertson DE, Swanson PE, Subramanian MV. Soil-based gene discovery: a new technology to accelerate and broaden biocatalytic applications. ADVANCES IN APPLIED MICROBIOLOGY 2003; 52:1-27. [PMID: 12964238 DOI: 10.1016/s0065-2164(03)01001-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Kevin A Gray
- Diversa Corporation San Diego, California 92121, USA
| | | | | | | | | |
Collapse
|
80
|
Bradner JR, Bell PJL, Te'o VSJ, Nevalainen KMH. The application of PCR for the isolation of a lipase gene from the genomic DNA of an Antarctic microfungus. Curr Genet 2003; 44:224-30. [PMID: 13680154 DOI: 10.1007/s00294-003-0440-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 07/29/2003] [Accepted: 08/01/2003] [Indexed: 11/28/2022]
Abstract
We successfully isolated a lipase gene (designated lipPA) directly from the genomic DNA of an Antarctic isolate of Penicillium allii using PCR and a suite of degenerate primers specifically designed to target two conserved regions of fungal lipase genes. We applied the biolistic transformation system to successfully integrate the lipPA gene into a heterologous fungal host, Trichoderma reesei, one of the most powerful secretors of extracellular proteins, and induced the transformant to secrete an active lipase into the growth medium. The recombinant lipase had a temperature optimum of 25 degrees C at pH 7.9 and retained greater than 50% of the maximum activity from 10 degrees C to 35 degrees C and over a pH range from 4.0 to 8.5.
Collapse
Affiliation(s)
- J Ron Bradner
- Department of Biological Sciences, Macquarie University, NSW 2109 Sydney, Australia.
| | | | | | | |
Collapse
|