51
|
Current Status of the Degradation of Aliphatic and Aromatic Petroleum Hydrocarbons by Thermophilic Microbes and Future Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15122782. [PMID: 30544637 PMCID: PMC6313336 DOI: 10.3390/ijerph15122782] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 01/10/2023]
Abstract
Contamination of the environment by petroleum products is a growing concern worldwide, and strategies to remove these contaminants have been evaluated. One of these strategies is biodegradation, which consists of the use of microorganisms. Biodegradation is significantly improved by increasing the temperature of the medium, thus, the use of thermophiles, microbes that thrive in high-temperature environments, will render this process more efficient. For instance, various thermophilic enzymes have been used in industrial biotechnology because of their unique catalytic properties. Biodegradation has been extensively studied in the context of mesophilic microbes, and the mechanisms of biodegradation of aliphatic and aromatic petroleum hydrocarbons have been elucidated. However, in comparison, little work has been carried out on the biodegradation of petroleum hydrocarbons by thermophiles. In this paper, a detailed review of the degradation of petroleum hydrocarbons (both aliphatic and aromatic) by thermophiles was carried out. This work has identified the characteristics of thermophiles, and unraveled specific catabolic pathways of petroleum products that are only found with thermophiles. Gaps that limit our understanding of the activity of these microbes have also been highlighted, and, finally, different strategies that can be used to improve the efficiency of degradation of petroleum hydrocarbons by thermophiles were proposed.
Collapse
|
52
|
Mohr T, Aliyu H, Küchlin R, Zwick M, Cowan D, Neumann A, de Maayer P. Comparative genomic analysis of Parageobacillus thermoglucosidasius strains with distinct hydrogenogenic capacities. BMC Genomics 2018; 19:880. [PMID: 30522433 PMCID: PMC6282330 DOI: 10.1186/s12864-018-5302-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The facultatively anaerobic thermophile Parageobacillus thermoglucosidasius produces hydrogen gas (H2) by coupling CO oxidation to proton reduction in the water-gas shift (WGS) reaction via a carbon monoxide dehydrogenase-hydrogenase enzyme complex. Although little is known about the hydrogenogenic capacities of different strains of this species, these organisms offer a potentially viable process for the synthesis of this alternative energy source. RESULTS The WGS-catalyzed H2 production capacities of four distinct P. thermoglucosidasius strains were determined by cultivation and gas analysis. Three strains (DSM 2542T, DSM 2543 and DSM 6285) were hydrogenogenic, while the fourth strain (DSM 21625) was not. Furthermore, in one strain (DSM 6285) H2 production commenced earlier in the cultivation than the other hydrogenogenic strains. Comparative genomic analysis of the four strains identified extensive differences in the protein complement encoded on the genomes, some of which are postulated to contribute to the different hydrogenogenic capacities of the strains. Furthermore, polymorphisms and deletions in the CODH-NiFe hydrogenase loci may also contribute towards this variable phenotype. CONCLUSIONS Disparities in the hydrogenogenic capacities of different P. thermoglucosidasius strains were identified, which may be correlated to variability in their global proteomes and genetic differences in their CODH-NiFe hydrogenase loci. The data from this study may contribute towards an improved understanding of WGS-catalysed hydrogenogenesis by P. thermoglucosidasius.
Collapse
Affiliation(s)
- Teresa Mohr
- Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Habibu Aliyu
- Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Raphael Küchlin
- Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Michaela Zwick
- Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Don Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria, 0028 South Africa
| | - Anke Neumann
- Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Pieter de Maayer
- School of Molecular & Cell Biology, Faculty of Science, University of the Witwatersrand, WITS, Johannesburg, 2050 South Africa
| |
Collapse
|
53
|
Thakur V, Kumar V, Kumar S, Singh D. Diverse culturable bacterial communities with cellulolytic potential revealed from pristine habitat in Indian trans-Himalaya. Can J Microbiol 2018; 64:798-808. [DOI: 10.1139/cjm-2017-0754] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Pangi–Chamba Himalaya (PCH) region is very pristine, unique, and virgin niche for bioresource exploration. In the current study, for the first time, the bacterial diversity of this region was investigated for potential cellulose degraders. A total of 454 pure bacterial isolates were obtained from diverse sites in the PCH region, and 111 isolates were further selected for 16S rDNA characterization based on ARDRA grouping. The identified bacteria belonged to 28 genera representing four phyla: Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. Pseudomonas was most abundant genus, followed by Bacillus, Geobacillus, Arthrobacter, Paenibacillus, and Flavobacterium. In addition, six putative novel bacteria (based on 16S rDNA sequence similarity) and thermophiles from non-thermogenic sites were also reported for the first time. Screening for cellulose degradation ability on carboxymethyl cellulose plates revealed that 70.92% of bacteria were cellulolytic. The current study reports diverse bacterial genera (Arthrobacter, Paenibacillus, Chryseobacterium, Pedobacter, Streptomyces, Agromyces, Flavobacterium, and Pseudomonas) with high capacity for cellulose hydrolysis and cellulolytic functionality at wide pH and temperature not previously reported in the literature. Diverse bacterial genera with high cellulolytic activity in broad pH and temperature range provide opportunity to develop a bioprocess for efficient pretreatment of lignocellulosic biomass, which is currently being investigated.
Collapse
Affiliation(s)
- Vikas Thakur
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur-176 061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR – Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Vijay Kumar
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur-176 061, Himachal Pradesh, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur-176 061, Himachal Pradesh, India
| | - Dharam Singh
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 6, Palampur-176 061, Himachal Pradesh, India
| |
Collapse
|
54
|
Peculiarities and biotechnological potential of environmental adaptation by Geobacillus species. Appl Microbiol Biotechnol 2018; 102:10425-10437. [PMID: 30310966 DOI: 10.1007/s00253-018-9422-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022]
Abstract
The genus Geobacillus comprises thermophilic bacilli capable of endospore formation. The members of this genus provide thermostable proteins and can be used in whole cell applications at elevated temperatures; therefore, these organisms are of biotechnological importance. While these applications have been described in previous reviews, the present paper highlights the environmental adaptations and genome diversifications of Geobacillus spp. and their applications in evolutionary-protein engineering. Despite their obligate thermophilic properties, Geobacillus spp. are widely distributed in nature. Because several isolates demonstrate remarkable properties for cell reproduction in their respective niches, they seem to exist not only as endospores but also as vegetative cells in diverse environments. This suggests their excellence in environmental adaptation via genome diversification; in fact, evidence suggests that Geobacillus spp. were derived from Bacillus spp. while diversifying their genomes via horizontal gene transfer. Moreover, when subjected to an environmental stressor, Geobacillus spp. diversify their genomes using inductive mutations and transposable elements to produce derivative cells that are adaptive to the stressor. Notably, inductive mutations in Geobacillus spp. occur more rapidly and frequently than the stress-induced mutagenesis observed in other microorganisms. Owing to this, Geobacillus spp. can efficiently generate mutant genes coding for thermostable enzyme variants from the thermolabile enzyme genes under appropriate selection pressures. This phenomenon provides a new approach to generate thermostable enzymes, termed as thermoadaptation-directed enzyme evolution, thereby expanding the biotechnological potentials of Geobacillus spp. In this review, we have discussed this approach using successful examples and major challenges yet to be addressed.
Collapse
|
55
|
Lebre PH, Aliyu H, De Maayer P, Cowan DA. In silico characterization of the global Geobacillus and Parageobacillus secretome. Microb Cell Fact 2018; 17:156. [PMID: 30285747 PMCID: PMC6171300 DOI: 10.1186/s12934-018-1005-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
Background Geobacillus and Parageobacillus are two ecologically diverse thermophilic genera within the phylum Firmicutes. These taxa have long been of biotechnological interest due to their ability to secrete thermostable enzymes and other biomolecules that have direct applications in various industrial and clinical fields. Despite the commercial and industrial interest in these microorganisms, the full scope of the secreted protein, i.e. the secretome, of Geobacillus and Parageobacillus species remains largely unexplored, with most studies focusing on single enzymes. A genome-wide exploration of the global secretome can provide a platform for understanding the extracellular functional “protein cloud” and the roles that secreted proteins play in the survival and adaptation of these biotechnologically relevant organisms. Results In the present study, the global secretion profile of 64 Geobacillus and Parageobacillus strains, comprising 772 distinct proteins, was predicted using comparative genomic approaches. Thirty-one of these proteins are shared across all strains used in this study and function in cell-wall/membrane biogenesis as well as transport and metabolism of carbohydrates, amino acids and inorganic ions. An analysis of the clustering patterns of the secretomes of the 64 strains according to shared functional orthology revealed a correlation between the secreted profiles of different strains and their phylogeny, with Geobacillus and Parageobacillus species forming two distinct functional clades. Conclusions The in silico characterization of the global secretome revealed a metabolically diverse set of secreted proteins, which include proteases, glycoside hydrolases, nutrient binding proteins and toxins. Electronic supplementary material The online version of this article (10.1186/s12934-018-1005-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Habibu Aliyu
- Technical Biology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Pieter De Maayer
- School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
56
|
Egan K, Field D, Ross RP, Cotter PD, Hill C. In silico Prediction and Exploration of Potential Bacteriocin Gene Clusters Within the Bacterial Genus Geobacillus. Front Microbiol 2018; 9:2116. [PMID: 30298056 PMCID: PMC6160750 DOI: 10.3389/fmicb.2018.02116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/20/2018] [Indexed: 11/30/2022] Open
Abstract
The thermophilic, endospore-forming genus of Geobacillus has historically been associated with spoilage of canned food. However, in recent years it has become the subject of much attention due its biotechnological potential in areas such as enzyme and biofuel applications. One aspect of this genus that has not been fully explored or realized is its use as a source of novel forms of the ribosomally synthesized antimicrobial peptides known as bacteriocins. To date only two bacteriocins have been fully characterized within this genus, i.e., Geobacillin I and II, with only a small number of others partially characterized. Here we bioinformatically investigate the potential of this genus as a source of novel bacteriocins through the use of the in silico screening software BAGEL3, which scans publically available genomes for potential bacteriocin gene clusters. In this study we examined the association of bacteriocin gene presence with niche and phylogenetic position within the genus. We also identified a number of candidates from multiple bacteriocin classes which may be promising antimicrobial candidates when investigated in vitro in future studies.
Collapse
Affiliation(s)
- Kevin Egan
- School of Microbiology, University College, Cork, Ireland
| | - Des Field
- School of Microbiology, University College, Cork, Ireland.,APC Microbiome Institute, Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College, Cork, Ireland.,APC Microbiome Institute, Cork, Cork, Ireland
| | - Paul D Cotter
- APC Microbiome Institute, Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland
| | - Colin Hill
- School of Microbiology, University College, Cork, Ireland.,APC Microbiome Institute, Cork, Cork, Ireland
| |
Collapse
|
57
|
Najar IN, Sherpa MT, Das S, Verma K, Dubey VK, Thakur N. Geobacillus yumthangensis sp. nov., a thermophilic bacterium isolated from a north-east Indian hot spring. Int J Syst Evol Microbiol 2018; 68:3430-3434. [PMID: 30222099 DOI: 10.1099/ijsem.0.003002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A thermophilic, spore-forming, rod-shaped bacterium isolated from the Yumthang hot spring in North Sikkim, India was subjected to taxonomic studies. The thermophilic bacterial isolate was designated as strain AYN2T. Cells were Gram-stain-positive, aerobic, motile, rod-shaped, catalase-positive and methyl red-negative. Strain AYN2T was able to grow in the pH range from 6 to 10 (optimum, pH 7.5-8.0), at 40-70 °C (60 °C) and in NaCl concentrations of 0-4 % (1 %). The major cellular fatty acids were iso-C15 : 0 (12.8 %), iso-C16 : 0 (13.9 %) and iso-C17 : 0 (13.8 %). No matches were found in the rtsba6 Sherlock libraries. The G+C content of the genomic DNA was 42.11 mol%. Based on phylogenetic analysis of the 16S rRNA gene sequences, strain AYNT showed highest sequence similarity to the type strain of Geobacillus toebii (96 %). However, the phenotypic properties of strain AYN2T were clearly distinct from those of G. toebii and related species. On the basis of polyphasic analysis, strain AYN2T represents a novel species in the genus Geobacillus, for which the name Geobacillus yumthangensis sp. nov. is proposed. The type strain is AYN2T(MTCC=12749=KCTC=33950= JCM 32596).
Collapse
Affiliation(s)
- Ishfaq Nabi Najar
- 1Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok - 737102, Sikkim, India
| | - Mingma Thundu Sherpa
- 1Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok - 737102, Sikkim, India
| | - Sayak Das
- 1Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok - 737102, Sikkim, India
| | - Kamalesh Verma
- 2Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Vikash Kumar Dubey
- 2Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.,3Department of Biosciences and Bioengineering, Indian Institute ofTechnology Guwahati, Guwahati-781039, Assam, India
| | - Nagendra Thakur
- 1Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Tadong, Gangtok - 737102, Sikkim, India
| |
Collapse
|
58
|
Bendia AG, Araujo GG, Pulschen AA, Contro B, Duarte RTD, Rodrigues F, Galante D, Pellizari VH. Surviving in hot and cold: psychrophiles and thermophiles from Deception Island volcano, Antarctica. Extremophiles 2018; 22:917-929. [PMID: 30109444 DOI: 10.1007/s00792-018-1048-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
Abstract
Polar volcanoes harbor unique conditions of extreme temperature gradients capable of selecting different types of extremophiles. Deception Island is a marine stratovolcano located at Maritime Antarctica that is notable for its pronounced temperature gradients over very short distances, reaching values up to 100 °C in the fumaroles, and subzero temperatures next to the glaciers. Due to these characteristics, Deception can be considered an interesting analogue of extraterrestrial environments. Our main goal in this study was to isolate thermophilic and psychrophilic bacteria from sediments associated with fumaroles and glaciers from two geothermal sites in Deception Island, comprising temperatures between 0 and 98 °C, and to evaluate their survivability to desiccation and UV-C radiation. Our results revealed that culturable thermophiles and psychrophiles were recovered among the extreme temperature gradient in Deception volcano, which indicates that these extremophiles remain alive even when the conditions do not comprise their growth range. The viability of culturable psychrophiles in hyperthermophilic environments is still poorly understood and our work showed the importance of future studies about their survival strategies in high temperatures. Finally, the spore-forming thermophilic isolates which we found have displayed good survival to desiccation and UV-C irradiation, which suggests their potential to be further explored in astrobiological studies.
Collapse
Affiliation(s)
- Amanda G Bendia
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico 191, São Paulo, SP, 05508-900, Brazil.
| | - Gabriel G Araujo
- Interunities Graduate Program in Biotechnology, Universidade de São Paulo, São Paulo, Brazil
| | - André A Pulschen
- Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Bruna Contro
- Undergraduate Program in Biology, Universidade Estadual Paulista "Julio de Mesquisa Filho", São Paulo, Brazil
| | - Rubens T D Duarte
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico 191, São Paulo, SP, 05508-900, Brazil
| | - Fábio Rodrigues
- Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Vivian H Pellizari
- Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, Praça do Oceanográfico 191, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
59
|
Bressuire-Isoard C, Broussolle V, Carlin F. Sporulation environment influences spore properties in Bacillus: evidence and insights on underlying molecular and physiological mechanisms. FEMS Microbiol Rev 2018; 42:614-626. [DOI: 10.1093/femsre/fuy021] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Christelle Bressuire-Isoard
- UMR408 SQPOV “Sécurité et Qualité des Produits d'Origine Végétale”, INRA–Avignon Université, Centre de Recherche PACA, CS40509, Site Agroparc, 84914 Avignon Cedex 9, France
| | - Véronique Broussolle
- UMR408 SQPOV “Sécurité et Qualité des Produits d'Origine Végétale”, INRA–Avignon Université, Centre de Recherche PACA, CS40509, Site Agroparc, 84914 Avignon Cedex 9, France
| | - Frédéric Carlin
- UMR408 SQPOV “Sécurité et Qualité des Produits d'Origine Végétale”, INRA–Avignon Université, Centre de Recherche PACA, CS40509, Site Agroparc, 84914 Avignon Cedex 9, France
| |
Collapse
|
60
|
Fujii K, Tominaga Y, Okunaka J, Yagi H, Ohshiro T, Suzuki H. Microbial and genomic characterization of Geobacillus thermodenitrificans OS27, a marine thermophile that degrades diverse raw seaweeds. Appl Microbiol Biotechnol 2018; 102:4901-4913. [DOI: 10.1007/s00253-018-8958-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 02/03/2023]
|
61
|
Yilmaz MD, Oktem HA. Eriochrome Black T–Eu3+ Complex as a Ratiometric Colorimetric and Fluorescent Probe for the Detection of Dipicolinic Acid, a Biomarker of Bacterial Spores. Anal Chem 2018; 90:4221-4225. [DOI: 10.1021/acs.analchem.8b00576] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M. Deniz Yilmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Konya Food and Agriculture University, 42080 Konya, Turkey
- Research and Development Center for Diagnostic Kits (KIT-ARGEM), Konya Food and Agriculture University, 42080 Konya, Turkey
| | - Huseyin Avni Oktem
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
- Nanobiz R&D Ltd., Gallium Bld. No.18, METU Science Park, Ankara, Turkey
| |
Collapse
|
62
|
Ramaloko WT, Koen N, Polliack S, Aliyu H, Lebre PH, Mohr T, Oswald F, Zwick M, Zeigler DR, Neumann A, Syldatk C, Cowan DA, De Maayer P. High Quality Draft Genomes of the Type Strains Geobacillus thermocatenulatus DSM 730 T, G. uzenensis DSM 23175 T And Parageobacillus galactosidasius DSM 18751 T. J Genomics 2018; 6:20-23. [PMID: 29483968 PMCID: PMC5824068 DOI: 10.7150/jgen.22986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/15/2017] [Indexed: 12/01/2022] Open
Abstract
The thermophilic 'Geobacilli' are important sources of thermostable enzymes and other biotechnologically relevant macromolecules. The present work reports the high quality draft genome sequences of previously unsequenced type strains of Geobacillus uzenensis (DSM 23175T), G. thermocatenulatus (DSM 730T) and Parageobacillus galactosidasius (DSM 18751T). Phylogenomic analyses revealed that DSM 18751T and DSM 23175T represent later heterotypic synonyms of P. toebii and G. subterraneus, respectively, while DSM 730T represents the type strain for the species G. thermocatenulatus. These genome sequences will contribute towards a deeper understanding of the ecological and biological diversity and the biotechnological exploitation of the 'geobacilli'.
Collapse
Affiliation(s)
| | - Nadine Koen
- Centre for Microbial Ecology and Genomics, University of Pretoria, South Africa
| | - Shamara Polliack
- Centre for Microbial Ecology and Genomics, University of Pretoria, South Africa
| | - Habibu Aliyu
- Centre for Microbial Ecology and Genomics, University of Pretoria, South Africa.,Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Germany
| | | | - Teresa Mohr
- Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Germany
| | - Florian Oswald
- Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Germany
| | - Michaela Zwick
- Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Germany
| | - Daniel Ray Zeigler
- Bacillus Genetic Stock Center, The Ohio State University, Columbus, Ohio, USA
| | - Anke Neumann
- Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Germany
| | - Christoph Syldatk
- Section II: Technical Biology, Institute of Process engineering in Life Science, Karlsruhe Institute of Technology, Germany
| | - Don Arthur Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, South Africa
| | - Pieter De Maayer
- School of Molecular & Cell Biology, Faculty of Science, University of the Witwatersrand, South Africa
| |
Collapse
|
63
|
Pervasiveness of UVC254-resistant Geobacillus strains in extreme environments. Appl Microbiol Biotechnol 2018; 102:1869-1887. [DOI: 10.1007/s00253-017-8712-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/11/2022]
|
64
|
Abstract
The endospore-forming bacteria have persisted on earth perhaps 3Ga, leveraging the flexibility of their distinctive lifestyle to adapt to a remarkably wide range of environments. This process of adaptation can be investigated through the simple but powerful technique of laboratory evolution. Evolved strains can be analyzed by whole genome sequencing and an array of omics technologies. The intensively studied, genetically tractable endospore-former, Bacillus subtilis, is an ideal subject for laboratory evolution experiments. Here, we describe the use of the B. subtilis model system to study the adaptation of these bacteria to reduced and stringent selection for endospore formation, as well as to novel environmental challenges of low atmospheric pressure, high ultraviolet radiation, and unfavourable growth temperatures. In combination with other approaches, including comparative genomics and environmental field work, laboratory evolution may help elucidate how these bacteria have so successfully adapted to life on earth, and perhaps beyond.
Collapse
Affiliation(s)
- Daniel R Zeigler
- Bacillus Genetic Stock Center, The Ohio State University, Columbus, OH, USA
| | - Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
65
|
Jia X, Ye X, Chen J, Lin X, Vasseur L, You M. Purification and biochemical characterization of a cyclodextrin glycosyltransferase fromGeobacillus thermoglucosidansCHB1. STARCH-STARKE 2017. [DOI: 10.1002/star.201700016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xianbo Jia
- Institute of Applied Ecology; Fujian Agriculture and Forestry University; Fuzhou P. R. China
- Faculty of Life Sciences; Fujian Agriculture and Forestry University; Fuzhou P. R. China
| | - Xuejun Ye
- Institute of Soil and Fertilizer; Fujian Academy of Agricultural Sciences; Fuzhou P. R. China
| | - Jichen Chen
- Institute of Soil and Fertilizer; Fujian Academy of Agricultural Sciences; Fuzhou P. R. China
| | - Xinjian Lin
- Institute of Soil and Fertilizer; Fujian Academy of Agricultural Sciences; Fuzhou P. R. China
| | - Liette Vasseur
- Institute of Applied Ecology; Fujian Agriculture and Forestry University; Fuzhou P. R. China
- Department of Biological Sciences; Brock University; Ontario Canada
| | - Minsheng You
- Institute of Applied Ecology; Fujian Agriculture and Forestry University; Fuzhou P. R. China
| |
Collapse
|
66
|
Burgess SA, Flint SH, Lindsay D, Cox MP, Biggs PJ. Insights into the Geobacillus stearothermophilus species based on phylogenomic principles. BMC Microbiol 2017; 17:140. [PMID: 28651524 PMCID: PMC5485677 DOI: 10.1186/s12866-017-1047-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/13/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The genus Geobacillus comprises bacteria that are Gram positive, thermophilic spore-formers, which are found in a variety of environments from hot-springs, cool soils, to food manufacturing plants, including dairy manufacturing plants. Despite considerable interest in the use of Geobacillus spp. for biotechnological applications, the taxonomy of this genus is unclear, in part because of differences in DNA-DNA hybridization (DDH) similarity values between studies. In addition, it is also difficult to use phenotypic characteristics to define a bacterial species. For example, G. stearothermophilus was traditionally defined as a species that does not utilise lactose, but the ability of dairy strains of G. stearothermophilus to use lactose has now been well established. RESULTS This study compared the genome sequences of 63 Geobacillus isolates and showed that based on two different genomic approaches (core genome comparisons and average nucleotide identity) the Geobacillus genus could be divided into sixteen taxa for those Geobacillus strains that have genome sequences available thus far. In addition, using Geobacillus stearothermophilus as an example, we show that inclusion of the accessory genome, as well as phenotypic characteristics, is not suitable for defining this species. For example, this is the first study to provide evidence of dairy adaptation in G. stearothermophilus - a phenotypic feature not typically considered standard in this species - by identifying the presence of a putative lac operon in four dairy strains. CONCLUSIONS The traditional polyphasic approach of combining both genotypic and phenotypic characteristics to define a bacterial species could not be used for G. stearothermophilus where many phenotypic characteristics vary within this taxon. Further evidence of this discordant use of phenotypic traits was provided by analysis of the accessory genome, where the dairy strains contained a putative lac operon. Based on the findings from this study, we recommend that novel bacterial species should be defined using a core genome approach.
Collapse
Affiliation(s)
- S A Burgess
- School of Food and Nutrition, Massey University, Palmerston North, New Zealand.
- Infectious Disease Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
| | - S H Flint
- School of Food and Nutrition, Massey University, Palmerston North, New Zealand
| | - D Lindsay
- Fonterra Research Institute, Palmerston North, New Zealand
| | - M P Cox
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - P J Biggs
- Statistics and Bioinformatics Group, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
- Infectious Disease Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
67
|
Draft Genome Sequence of Geobacillus sp. LEMMY01, a Thermophilic Bacterium Isolated from the Site of a Burning Grass Pile. GENOME ANNOUNCEMENTS 2017; 5:5/19/e00200-17. [PMID: 28495764 PMCID: PMC5427199 DOI: 10.1128/genomea.00200-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We report here the 3,586,065-bp draft genome of Geobacillus sp. LEMMY01, which was isolated (axenic culture) from a thermophilic chemolitoautotrophic consortium obtained from the site of a burning grass pile. The genome contains biosynthetic gene clusters coding for secondary metabolites, such as terpene and lantipeptide, confirming the biotechnological potential of this strain.
Collapse
|
68
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
69
|
Volpi M, Lomstein BA, Sichert A, Røy H, Jørgensen BB, Kjeldsen KU. Identity, Abundance, and Reactivation Kinetics of Thermophilic Fermentative Endospores in Cold Marine Sediment and Seawater. Front Microbiol 2017; 8:131. [PMID: 28220111 PMCID: PMC5292427 DOI: 10.3389/fmicb.2017.00131] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/18/2017] [Indexed: 11/23/2022] Open
Abstract
Cold marine sediments harbor endospores of fermentative and sulfate-reducing, thermophilic bacteria. These dormant populations of endospores are believed to accumulate in the seabed via passive dispersal by ocean currents followed by sedimentation from the water column. However, the magnitude of this process is poorly understood because the endospores present in seawater were so far not identified, and only the abundance of thermophilic sulfate-reducing endospores in the seabed has been quantified. We investigated the distribution of thermophilic fermentative endospores (TFEs) in water column and sediment of Aarhus Bay, Denmark, to test the role of suspended dispersal and determine the rate of endospore deposition and the endospore abundance in the sediment. We furthermore aimed to determine the time course of reactivation of the germinating TFEs. TFEs were induced to germinate and grow by incubating pasteurized sediment and water samples anaerobically at 50°C. We observed a sudden release of the endospore component dipicolinic acid immediately upon incubation suggesting fast endospore reactivation in response to heating. Volatile fatty acids (VFAs) and H2 began to accumulate exponentially after 3.5 h of incubation showing that reactivation was followed by a short phase of outgrowth before germinated cells began to divide. Thermophilic fermenters were mainly present in the sediment as endospores because the rate of VFA accumulation was identical in pasteurized and non-pasteurized samples. Germinating TFEs were identified taxonomically by reverse transcription, PCR amplification and sequencing of 16S rRNA. The water column and sediment shared the same phylotypes, thereby confirming the potential for seawater dispersal. The abundance of TFEs was estimated by most probable number enumeration, rates of VFA production, and released amounts of dipicolinic acid during germination. The surface sediment contained ∼105-106 inducible TFEs cm-3. TFEs thus outnumber thermophilic sulfate-reducing endospores by an order of magnitude. The abundance of cultivable TFEs decreased exponentially with sediment depth with a half-life of 350 years. We estimate that 6 × 109 anaerobic thermophilic endospores are deposited on the seafloor per m2 per year in Aarhus Bay, and that these thermophiles represent >10% of the total endospore community in the surface sediment.
Collapse
Affiliation(s)
- Marta Volpi
- Center for Geomicrobiology, Department of Bioscience, Aarhus UniversityAarhus, Denmark
| | | | | | | | | | - Kasper U. Kjeldsen
- Center for Geomicrobiology, Department of Bioscience, Aarhus UniversityAarhus, Denmark
| |
Collapse
|
70
|
Nguyen V, Wilson C, Hoemberger M, Stiller JB, Agafonov RV, Kutter S, English J, Theobald DL, Kern D. Evolutionary drivers of thermoadaptation in enzyme catalysis. Science 2017; 355:289-294. [PMID: 28008087 PMCID: PMC5649376 DOI: 10.1126/science.aah3717] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/21/2016] [Indexed: 11/02/2022]
Abstract
With early life likely to have existed in a hot environment, enzymes had to cope with an inherent drop in catalytic speed caused by lowered temperature. Here we characterize the molecular mechanisms underlying thermoadaptation of enzyme catalysis in adenylate kinase using ancestral sequence reconstruction spanning 3 billion years of evolution. We show that evolution solved the enzyme's key kinetic obstacle-how to maintain catalytic speed on a cooler Earth-by exploiting transition-state heat capacity. Tracing the evolution of enzyme activity and stability from the hot-start toward modern hyperthermophilic, mesophilic, and psychrophilic organisms illustrates active pressure versus passive drift in evolution on a molecular level, refutes the debated activity/stability trade-off, and suggests that the catalytic speed of adenylate kinase is an evolutionary driver for organismal fitness.
Collapse
Affiliation(s)
- Vy Nguyen
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA
| | - Christopher Wilson
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA
| | - Marc Hoemberger
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA
| | - John B Stiller
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA
| | - Roman V Agafonov
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA
| | - Steffen Kutter
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA
| | - Justin English
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA
| | | | - Dorothee Kern
- Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02452, USA.
| |
Collapse
|
71
|
Aliyu H, Lebre P, Blom J, Cowan D, De Maayer P. Phylogenomic re-assessment of the thermophilic genus Geobacillus. Syst Appl Microbiol 2016; 39:527-533. [DOI: 10.1016/j.syapm.2016.09.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022]
|
72
|
|
73
|
Javed M, Baghaei-Yazdi N, Qin W, Amartey S. An improved agar medium for growth of Geobacillus thermoglucosidarius strains. J Microbiol Methods 2016; 132:116-118. [PMID: 27888139 DOI: 10.1016/j.mimet.2016.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 11/25/2022]
Abstract
Geobacillus species have potential applications in many biotechnological processes. They are fastidious in their vitamin and amino acid requirements. A new semi-defined agar medium (SDM) was developed which gave consistently high viable cell counts of various G. thermoglucosidasius strains (5×108-6×108cfu/ml) under aerobic conditions at 70°C.
Collapse
Affiliation(s)
- M Javed
- Division of Biology, Imperial College of Science Technology and Medicine, London SW7 AZ, UK; Biotech Consultants Ltd., 263 Frimley Green Road, Camberley, Surrey GU16 6LD, UK
| | - N Baghaei-Yazdi
- Division of Biology, Imperial College of Science Technology and Medicine, London SW7 AZ, UK; Biotech Consultants Ltd., 263 Frimley Green Road, Camberley, Surrey GU16 6LD, UK
| | - W Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - S Amartey
- Division of Biology, Imperial College of Science Technology and Medicine, London SW7 AZ, UK.
| |
Collapse
|
74
|
De Maayer P, Cowan DA. Comparative genomic analysis of the flagellin glycosylation island of the Gram-positive thermophile Geobacillus. BMC Genomics 2016; 17:913. [PMID: 27842516 PMCID: PMC5109656 DOI: 10.1186/s12864-016-3273-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/05/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Protein glycosylation involves the post-translational attachment of sugar chains to target proteins and has been observed in all three domains of life. Post-translational glycosylation of flagellin, the main structural protein of the flagellum, is a common characteristic among many Gram-negative bacteria and Archaea. Several distinct functions have been ascribed to flagellin glycosylation, including stabilisation and maintenance of the flagellar filament, motility, surface recognition, adhesion, and virulence. However, little is known about this trait among Gram-positive bacteria. RESULTS Using comparative genomic approaches the flagellin glycosylation loci of multiple strains of the Gram-positive thermophilic genus Geobacillus were identified and characterized. Eighteen of thirty-six compared strains of the genus carry these loci, which show evidence of horizontal acquisition. The Geobacillus flagellin glycosylation islands (FGIs) can be clustered into five distinct types, which are predicted to encode highly variable glycans decorated with distinct and heavily modified sugars. CONCLUSIONS Our comparative genomic analyses showed that, while not universal, flagellin glycosylation islands are relatively common among members of the genus Geobacillus and that the encoded flagellin glycans are highly variable. This suggests that flagellin glycosylation plays an important role in the lifestyles of members of this thermophilic genus.
Collapse
Affiliation(s)
- Pieter De Maayer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits, 2050, Johannesburg, South Africa.
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
75
|
Filippidou S, Wunderlin T, Junier T, Jeanneret N, Dorador C, Molina V, Johnson DR, Junier P. A Combination of Extreme Environmental Conditions Favor the Prevalence of Endospore-Forming Firmicutes. Front Microbiol 2016; 7:1707. [PMID: 27857706 PMCID: PMC5094177 DOI: 10.3389/fmicb.2016.01707] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022] Open
Abstract
Environmental conditions unsuitable for microbial growth are the rule rather than the exception in most habitats. In response to this, microorganisms have developed various strategies to withstand environmental conditions that limit active growth. Endospore-forming Firmicutes (EFF) deploy a myriad of survival strategies in order to resist adverse conditions. Like many bacterial groups, they can form biofilms and detect nutrient scarcity through chemotaxis. Moreover, within this paraphyletic group of Firmicutes, ecophysiological optima are diverse. Nonetheless, a response to adversity that delimits this group is the formation of wet-heat resistant spores. These strategies are energetically demanding and therefore might affect the biological success of EFF. Therefore, we hypothesize that abundance and diversity of EFF should be maximized in those environments in which the benefits of these survival strategies offsets the energetic cost. In order to address this hypothesis, geothermal and mineral springs and drillings were selected because in these environments of steep physicochemical gradients, diversified survival strategies may become a successful strategy.We collected 71 samples from geothermal and mineral environments characterized by none (null), single or multiple limiting environmental factors (temperature, pH, UV radiation, and specific mineral composition). To measure success, we quantified EFF gene copy numbers (GCN; spo0A gene) in relation to total bacterial GCN (16S rRNA gene), as well as the contribution of EFF to community composition. The quantification showed that relative GCN for EFF reached up to 20% at sites characterized by multiple limiting environmental factors, whereas it corresponded to less than 1% at sites with one or no limiting environmental factor. Pyrosequencing of the 16S rRNA gene supports a higher contribution of EFF at sites with multiple limiting factors. Community composition suggested a combination of phylotypes for which active growth could be expected, and phylotypes that are most likely in the state of endospores, in all the sites. In summary, our results suggest that diversified survival strategies, including sporulation and metabolic adaptations, explain the biological success of EFF in geothermal and natural springs, and that multiple extreme environmental factors favor the prevalence of EFF.
Collapse
Affiliation(s)
- Sevasti Filippidou
- Laboratory of Microbiology, University of Neuchâtel Neuchâtel, Switzerland
| | - Tina Wunderlin
- Laboratory of Microbiology, University of Neuchâtel Neuchâtel, Switzerland
| | - Thomas Junier
- Laboratory of Microbiology, University of NeuchâtelNeuchâtel, Switzerland; Vital-IT group, Swiss Institute of BioinformaticsLausanne, Switzerland
| | - Nicole Jeanneret
- Laboratory of Microbiology, University of Neuchâtel Neuchâtel, Switzerland
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional and Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de AntofagastaAntofagasta, Chile; Centre for Biotechnology and Bioengineering, CeBiB, University of ChileSantiago, Chile
| | - Veronica Molina
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas. Universidad de Playa Ancha Valparaíso, Chile
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel Neuchâtel, Switzerland
| |
Collapse
|
76
|
Jiang T, Huang M, He H, Lu J, Zhou X, Cai M, Zhang Y. Bioprocess exploration for thermostable α-amylase production of a deep-sea thermophile Geobacillus sp. in high-temperature bioreactor. Prep Biochem Biotechnol 2016; 46:620-7. [DOI: 10.1080/10826068.2015.1128444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Mengmeng Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hao He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
77
|
Bezuidt OK, Pierneef R, Gomri AM, Adesioye F, Makhalanyane TP, Kharroub K, Cowan DA. The Geobacillus Pan-Genome: Implications for the Evolution of the Genus. Front Microbiol 2016; 7:723. [PMID: 27252683 PMCID: PMC4878294 DOI: 10.3389/fmicb.2016.00723] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/02/2016] [Indexed: 11/13/2022] Open
Abstract
The genus Geobacillus is comprised of a diverse group of spore-forming Gram-positive thermophilic bacterial species and is well known for both its ecological diversity and as a source of novel thermostable enzymes. Although the mechanisms underlying the thermophilicity of the organism and the thermostability of its macromolecules are reasonably well understood, relatively little is known of the evolutionary mechanisms, which underlie the structural and functional properties of members of this genus. In this study, we have compared 29 Geobacillus genomes, with a specific focus on the elements, which comprise the conserved core and flexible genomes. Based on comparisons of conserved core and flexible genomes, we present evidence of habitat delineation with specific Geobacillus genomes linked to specific niches. Our analysis revealed that Geobacillus and Anoxybacillus share a high proportion of genes. Moreover, the results strongly suggest that horizontal gene transfer is a major factor deriving the evolution of Geobacillus from Bacillus, with genetic contributions from other phylogenetically distant taxa.
Collapse
Affiliation(s)
- Oliver K Bezuidt
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria Pretoria, South Africa
| | - Rian Pierneef
- Department of Biochemistry, Centre for Bioinformatics and Computational Biology, University of Pretoria Pretoria, South Africa
| | - Amin M Gomri
- Equipe Métabolites des Extrêmophiles, Laboratoire de Recherche Biotechnologie et Qualité des Aliments, Institut de la Nutrition de l'Alimentation et des Technologies Agro-Alimentaire, Université des Frères Mentouri Constantine, Algeria
| | - Fiyin Adesioye
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria Pretoria, South Africa
| | - Thulani P Makhalanyane
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria Pretoria, South Africa
| | - Karima Kharroub
- Equipe Métabolites des Extrêmophiles, Laboratoire de Recherche Biotechnologie et Qualité des Aliments, Institut de la Nutrition de l'Alimentation et des Technologies Agro-Alimentaire, Université des Frères Mentouri Constantine, Algeria
| | - Don A Cowan
- Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria Pretoria, South Africa
| |
Collapse
|
78
|
Draft Genome Sequences of Seven Thermophilic Spore-Forming Bacteria Isolated from Foods That Produce Highly Heat-Resistant Spores, Comprising Geobacillus spp., Caldibacillus debilis, and Anoxybacillus flavithermus. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00105-16. [PMID: 27151781 PMCID: PMC4859163 DOI: 10.1128/genomea.00105-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the draft genomes of five strains of Geobacillus spp., one Caldibacillus debilis strain, and one draft genome of Anoxybacillus flavithermus, all thermophilic spore-forming Gram-positive bacteria.
Collapse
|
79
|
Isolation and complete genome sequence of the thermophilic Geobacillus sp. 12AMOR1 from an Arctic deep-sea hydrothermal vent site. Stand Genomic Sci 2016; 11:16. [PMID: 26913091 PMCID: PMC4765119 DOI: 10.1186/s40793-016-0137-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/16/2016] [Indexed: 11/17/2022] Open
Abstract
Members of the genus Geobacillus have been isolated from a wide variety of habitats worldwide and are the subject for targeted enzyme utilization in various industrial applications. Here we report the isolation and complete genome sequence of the thermophilic starch-degrading Geobacillus sp. 12AMOR1. The strain 12AMOR1 was isolated from deep-sea hot sediment at the Jan Mayen hydrothermal Vent Site. Geobacillus sp. 12AMOR1 consists of a 3,410,035 bp circular chromosome and a 32,689 bp plasmid with a G + C content of 52 % and 47 %, respectively. The genome comprises 3323 protein-coding genes, 88 tRNA species and 10 rRNA operons. The isolate grows on a suite of sugars, complex polysaccharides and proteinous carbon sources. Accordingly, a versatility of genes encoding carbohydrate-active enzymes (CAZy) and peptidases were identified in the genome. Expression, purification and characterization of an enzyme of the glycoside hydrolase family 13 revealed a starch-degrading capacity and high thermal stability with a melting temperature of 76.4 °C. Altogether, the data obtained point to a new isolate from a marine hydrothermal vent with a large bioprospecting potential.
Collapse
|
80
|
Water-related environments: a multistep procedure to assess the diversity and enzymatic properties of cultivable bacteria. World J Microbiol Biotechnol 2016; 32:42. [DOI: 10.1007/s11274-015-1997-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
|
81
|
Microbial communities affecting albumen photography heritage: a methodological survey. Sci Rep 2016; 6:20810. [PMID: 26864429 PMCID: PMC4749957 DOI: 10.1038/srep20810] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/08/2016] [Indexed: 12/23/2022] Open
Abstract
This study is one of the few investigations which analyze albumen prints, perhaps the most important photographic heritage of the late 19th and early 20th centuries. The chemical composition of photographic samples was assessed using Fourier-transform infrared spectroscopy and X-ray fluorescence. These two non-invasive techniques revealed the complex nature of albumen prints, which are composed of a mixture of proteins, cellulose and salts. Microbial sampling was performed using cellulose nitrate membranes which also permitted the trapped microflora to be observed with a scanning electron microscope. Microbial analysis was performed using the combination of culture-dependent (cultivation in different media, including one 3% NaCl) and culture-independent (bacterial and fungal cloning and sequencing) approaches. The isolated microorganisms were screened for their lipolytic, proteolytic, cellulolytic, catalase and peroxidase activities. The combination of the culture-dependent and -independent techniques together with enzymatic assays revealed a substantial microbial diversity with several deteriogen microorganisms from the genera Bacillus, Kocuria, Streptomyces and Geobacillus and the fungal strains Acrostalagmus luteoalbus, Bjerkandera adusta, Pleurotus pulmonarius and Trichothecium roseum.
Collapse
|
82
|
Brumm PJ, Land ML, Mead DA. Complete genome sequence of Geobacillus thermoglucosidasius C56-YS93, a novel biomass degrader isolated from obsidian hot spring in Yellowstone National Park. Stand Genomic Sci 2015; 10:73. [PMID: 26442136 PMCID: PMC4593210 DOI: 10.1186/s40793-015-0031-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 06/29/2015] [Indexed: 11/29/2022] Open
Abstract
Geobacillus thermoglucosidasius C56-YS93 was one of several thermophilic organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. Comparison of 16 S rRNA sequences confirmed the classification of the strain as a G. thermoglucosidasius species. The genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute and deposited at the NCBI in December 2011 (CP002835). The genome of G. thermoglucosidasius C56-YS93 consists of one circular chromosome of 3,893,306 bp and two circular plasmids of 80,849 and 19,638 bp and an average G + C content of 43.93 %. G. thermoglucosidasius C56-YS93 possesses a xylan degradation cluster not found in the other G. thermoglucosidasius sequenced strains. This cluster appears to be related to the xylan degradation cluster found in G. stearothermophilus. G. thermoglucosidasius C56-YS93 possesses two plasmids not found in the other two strains. One plasmid contains a novel gene cluster coding for proteins involved in proline degradation and metabolism, the other contains a collection of mostly hypothetical proteins.
Collapse
Affiliation(s)
- Phillip J Brumm
- Lucigen Corporation, Middleton, WI USA ; Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI USA
| | | | - David A Mead
- Lucigen Corporation, Middleton, WI USA ; Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, WI USA
| |
Collapse
|
83
|
Jiang T, Cai M, Huang M, He H, Lu J, Zhou X, Zhang Y. Characterization of a thermostable raw-starch hydrolyzing α-amylase from deep-sea thermophile Geobacillus sp. Protein Expr Purif 2015; 114:15-22. [PMID: 26073094 DOI: 10.1016/j.pep.2015.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/05/2015] [Accepted: 06/04/2015] [Indexed: 11/29/2022]
Abstract
A deep-sea thermophile, Geobacillus sp. 4j, was identified to grow on starch and produce thermostable amylase. N-terminally truncated form of Geobacillus sp. 4j α-amylase (Gs4j-amyA) was fused at its N-terminal end with the signal peptide of outer membrane protein A (OmpA) of Escherichia coli. The enzyme was over-expressed in E. coli BL21 with a maximum extracellular production of 130U/ml in shake flask. The yield of the transformant increased 22-fold as compared with that of the wild strain. The recombinant enzyme purified to apparent homogeneity by metal-affinity chromatography, exhibited a molecular mass of 62kDa. It displayed the maximal activity at 60-65°C and pH 5.5. Its half-life (t1/2) at 80°C was 4.25h with a temperature deactivation energy of 166.3kJ/mol. Compared to three commonly used commercial α-amylases, the Gs4j-amyA exhibited similar thermostable performance to BLA but better than BAA and BSA. It also showed a universally efficient raw starch hydrolysis performance superior to commercial α-amylases at an acidic pH approaching nature of starch slurry. As a new acidic-resistant thermostable α-amylase, it has the potential to bypass the industrial gelatinization step in raw starch hydrolysis.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Mengmeng Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hao He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiangshan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
84
|
Genome Sequence of Anoxybacillus geothermalis Strain GSsed3, a Novel Thermophilic Endospore-Forming Species. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00575-15. [PMID: 26067952 PMCID: PMC4463517 DOI: 10.1128/genomea.00575-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anoxybacillus geothermalis strain GSsed3 is an endospore-forming thermophilic bacterium isolated from filter deposits in a geothermal site. This novel species has a larger genome size (7.2 Mb) than that of any other Anoxybacillus species, and it possesses genes that support its phenotypic metabolic characterization and suggest an intriguing link to metals.
Collapse
|
85
|
Durand L, Planchon S, Guinebretiere MH, André S, Carlin F, Remize F. Contamination pathways of spore-forming bacteria in a vegetable cannery. Int J Food Microbiol 2015; 202:10-9. [PMID: 25755080 DOI: 10.1016/j.ijfoodmicro.2015.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/19/2014] [Accepted: 02/17/2015] [Indexed: 11/29/2022]
Abstract
Spoilage of low-acid canned food during prolonged storage at high temperatures is caused by heat resistant thermophilic spores of strict or facultative bacteria. Here, we performed a bacterial survey over two consecutive years on the processing line of a French company manufacturing canned mixed green peas and carrots. In total, 341 samples were collected, including raw vegetables, green peas and carrots at different steps of processing, cover brine, and process environment samples. Thermophilic and highly-heat-resistant thermophilic spores growing anaerobically were counted. During vegetable preparation, anaerobic spore counts were significantly decreased, and tended to remain unchanged further downstream in the process. Large variation of spore levels in products immediately before the sterilization process could be explained by occasionally high spore levels on surfaces and in debris of vegetable combined with long residence times in conditions suitable for growth and sporulation. Vegetable processing was also associated with an increase in the prevalence of highly-heat-resistant species, probably due to cross-contamination of peas via blanching water. Geobacillus stearothermophilus M13-PCR genotypic profiling on 112 isolates determined 23 profile-types and confirmed process-driven cross-contamination. Taken together, these findings clarify the scheme of contamination pathway by thermophilic spore-forming bacteria in a vegetable cannery.
Collapse
Affiliation(s)
- Loïc Durand
- CTCPA, Unité d'Expertise dans la Maitrise du Risque Industriel en Thermorésistants Sporulés, F-84911 Avignon, France
| | - Stella Planchon
- CTCPA, Unité d'Expertise dans la Maitrise du Risque Industriel en Thermorésistants Sporulés, F-84911 Avignon, France
| | - Marie-Hélène Guinebretiere
- INRA, UMR408, Sécurité et Qualité des Produits d'Origine Végétale, F-84000 Avignon, France; Avignon Université, UMR408, Sécurité et Qualité des Produits d'Origine Végétale, F-84000 Avignon, France
| | - Stéphane André
- CTCPA, Unité d'Expertise dans la Maitrise du Risque Industriel en Thermorésistants Sporulés, F-84911 Avignon, France
| | - Frédéric Carlin
- INRA, UMR408, Sécurité et Qualité des Produits d'Origine Végétale, F-84000 Avignon, France; Avignon Université, UMR408, Sécurité et Qualité des Produits d'Origine Végétale, F-84000 Avignon, France
| | - Fabienne Remize
- CTCPA, Unité d'Expertise dans la Maitrise du Risque Industriel en Thermorésistants Sporulés, F-84911 Avignon, France.
| |
Collapse
|
86
|
Abstract
The genus Geobacillus comprises a group of Gram-positive thermophilic bacteria, including obligate aerobes, denitrifiers, and facultative anaerobes that can grow over a range of 45-75°C. Originally classified as group five Bacillus spp., strains of Bacillus stearothermophilus came to prominence as contaminants of canned food and soon became the organism of choice for comparative studies of metabolism and enzymology between mesophiles and thermophiles. More recently, their catabolic versatility, particularly in the degradation of hemicellulose and starch, and rapid growth rates have raised their profile as organisms with potential for second-generation (lignocellulosic) biorefineries for biofuel or chemical production. The continued development of genetic tools to facilitate both fundamental investigation and metabolic engineering is now helping to realize this potential, for both metabolite production and optimized catabolism. In addition, this catabolic versatility provides a range of useful thermostable enzymes for industrial application. A number of genome-sequencing projects have been completed or are underway allowing comparative studies. These reveal a significant amount of genome rearrangement within the genus, the presence of large genomic islands encompassing all the hemicellulose utilization genes and a genomic island incorporating a set of long chain alkane monooxygenase genes. With G+C contents of 45-55%, thermostability appears to derive in part from the ability to synthesize protamine and spermine, which can condense DNA and raise its Tm.
Collapse
|
87
|
Kananavičiūtė R, Čitavičius D. Genetic engineering of Geobacillus spp. J Microbiol Methods 2015; 111:31-9. [DOI: 10.1016/j.mimet.2015.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/02/2015] [Accepted: 02/02/2015] [Indexed: 11/15/2022]
|
88
|
Comparative analysis of the Geobacillus hemicellulose utilization locus reveals a highly variable target for improved hemicellulolysis. BMC Genomics 2014; 15:836. [PMID: 25273399 PMCID: PMC4194401 DOI: 10.1186/1471-2164-15-836] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/23/2014] [Indexed: 11/13/2022] Open
Abstract
Background Members of the thermophilic genus Geobacillus can grow at high temperatures and produce a battery of thermostable hemicellulose hydrolytic enzymes, making them ideal candidates for the bioconversion of biomass to value-added products. To date the molecular determinants for hemicellulose degradation and utilization have only been identified and partially characterized in one strain, namely Geobacillus stearothermophilus T-6, where they are clustered in a single genetic locus. Results Using the G. stearothermophilus T-6 hemicellulose utilization locus as genetic marker, orthologous hemicellulose utilization (HUS) loci were identified in the complete and partial genomes of 17/24 Geobacillus strains. These HUS loci are localized on a common genomic island. Comparative analyses of these loci revealed extensive variability among the Geobacillus hemicellulose utilization systems, with only seven out of 41–68 proteins encoded on these loci conserved among the HUS+ strains. This translates into extensive differences in the hydrolytic enzymes, transport systems and metabolic pathways employed by Geobacillus spp. to degrade and utilize hemicellulose polymers. Conclusions The genetic variability among the Geobacillus HUS loci implies that they have variable capacities to degrade hemicellulose polymers, or that they may degrade distinct polymers, as are found in different plant species and tissues. The data from this study can serve as a basis for the genetic engineering of a Geobacillus strain(s) with an improved capacity to degrade and utilize hemicellulose. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-836) contains supplementary material, which is available to authorized users.
Collapse
|
89
|
Affiliation(s)
- David J Studholme
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
90
|
Verbaendert I, Hoefman S, Boeckx P, Boon N, De Vos P. Primers for overlooked nirK, qnorB, and nosZ genes of thermophilic Gram-positive denitrifiers. FEMS Microbiol Ecol 2014; 89:162-80. [PMID: 24784780 DOI: 10.1111/1574-6941.12346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 12/16/2022] Open
Abstract
Although efforts have been made the past few years, knowledge on genomic and phenotypic diversity and occurrence of the denitrification ability in Gram-positive bacteria are still fragmentary. Many environmental monitoring approaches have used nir, nor, and nos genes as marker genes for detection of denitrification or denitrifying bacteria. However, primers used in these methods often fail to detect the genes in specific bacterial taxa, such as Gram-positive denitrifiers. In this study, novel primer sets specifically targeting nirK, qnorB, and nosZ genes of the Firmicute genus Geobacillus were developed by genomic mining and tested in parallel with commonly used primers on a set of phylogenetically closely related denitrifying geobacilli. Novel nirK and qnorB sequences were recovered from all strains tested, whereas nosZ was detected in part of the strain set, which was in agreement with observed phenotypes. Interspecies and modest intraspecies variations in amplified fragment length polymorphism (AFLP) patterns were observed, verifying presence of genomic variation within the strain set. Our study shows that closely related Gram-positive denitrifiers may differ in denitrification phenotype and genotype. But foremost, novel primers targeting very divergent nirK, qnorB, and nosZ gene sequences of Gram-positive denitrifiers, are now available for cultivation-independent environmental surveys.
Collapse
Affiliation(s)
- Ines Verbaendert
- Laboratory of Microbiology (LM-UGent), Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
| | | | | | | | | |
Collapse
|