51
|
Hanley KA, Monath TP, Weaver SC, Rossi SL, Richman RL, Vasilakis N. Fever versus fever: the role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2013; 19:292-311. [PMID: 23523817 PMCID: PMC3749261 DOI: 10.1016/j.meegid.2013.03.008] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 11/28/2022]
Abstract
Two different species of flaviviruses, dengue virus (DENV) and yellow fever virus (YFV), that originated in sylvatic cycles maintained in non-human primates and forest-dwelling mosquitoes have emerged repeatedly into sustained human-to-human transmission by Aedes aegypti mosquitoes. Sylvatic cycles of both viruses remain active, and where the two viruses overlap in West Africa they utilize similar suites of monkeys and Aedes mosquitoes. These extensive similarities render the differences in the biogeography and epidemiology of the two viruses all the more striking. First, the sylvatic cycle of YFV originated in Africa and was introduced into the New World, probably as a result of the slave trade, but is absent in Asia; in contrast, sylvatic DENV likely originated in Asia and has spread to Africa but not to the New World. Second, while sylvatic YFV can emerge into extensive urban outbreaks in humans, these invariably die out, whereas four different types of DENV have established human transmission cycles that are ecologically and evolutionarily distinct from their sylvatic ancestors. Finally, transmission of YFV among humans has been documented only in Africa and the Americas, whereas DENV is transmitted among humans across most of the range of competent Aedes vectors, which in the last decade has included every continent save Antarctica. This review summarizes current understanding of sylvatic transmission cycles of YFV and DENV, considers possible explanations for their disjunct distributions, and speculates on the potential consequences of future establishment of a sylvatic cycle of DENV in the Americas.
Collapse
Affiliation(s)
- Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM 88003
| | | | - Scott C. Weaver
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610
| | - Shannan L. Rossi
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610
| | - Rebecca L. Richman
- Department of Biology, New Mexico State University, Las Cruces, NM 88003
- Department of Geography, New Mexico State University, Las Cruces, NM 88003
| | - Nikos Vasilakis
- Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610
| |
Collapse
|
52
|
Keating JA, Bhattacharya D, Lim PY, Falk S, Weisblum B, Bernard KA, Sharma M, Kuhn RJ, Striker R. West Nile virus methyltransferase domain interacts with protein kinase G. Virol J 2013; 10:242. [PMID: 23876037 PMCID: PMC3725163 DOI: 10.1186/1743-422x-10-242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/11/2013] [Indexed: 11/10/2022] Open
Abstract
Background The flaviviral nonstructural protein 5 (NS5) is a phosphoprotein, though the precise identities and roles of many specific phosphorylations remain unknown. Protein kinase G (PKG), a cGMP-dependent protein kinase, has previously been shown to phosphorylate dengue virus NS5. Methods We used mass spectrometry to specifically identify NS5 phosphosites. Co-immunoprecipitation assays were used to study protein-protein interactions. Effects on viral replication were measured via replicon system and plaque assay titering. Results We identified multiple sites in West Nile virus (WNV) NS5 that are phosphorylated during a WNV infection, and showed that the N-terminal methyltransferase domain of WNV NS5 can be specifically phosphorylated by PKG in vitro. Expressing PKG in cell culture led to an enhancement of WNV viral production. We hypothesized this effect on replication could be caused by factors beyond the specific phosphorylations of NS5. Here we show for the first time that PKG is also able to stably interact with a viral substrate, WNV NS5, in cell culture and in vitro. While the mosquito-borne WNV NS5 interacted with PKG, tick-borne Langat virus NS5 did not. The methyltransferase domain of NS5 is able to mediate the interaction between NS5 and PKG, and mutating positive residues in the αE region of the methyltransferase interrupts the interaction. These same mutations completely inhibited WNV replication. Conclusions PKG is not required for WNV replication, but does make a stable interaction with NS5. While the consequence of the NS5:PKG interaction when it occurs is unclear, mutational data demonstrates that this interaction occurs in a region of NS5 that is otherwise necessary for replication. Overall, the results identify an interaction between virus and a cellular kinase and suggest a role for a host kinase in enhancing flaviviral replication.
Collapse
Affiliation(s)
- Julie A Keating
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Evangelista J, Cruz C, Guevara C, Astete H, Carey C, Kochel TJ, Morrison AC, Williams M, Halsey ES, Forshey BM. Characterization of a novel flavivirus isolated from Culex (Melanoconion) ocossa mosquitoes from Iquitos, Peru. J Gen Virol 2013; 94:1266-1272. [DOI: 10.1099/vir.0.050575-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We describe the isolation and characterization of a novel flavivirus, isolated from a pool of Culex (Melanoconion) ocossa Dyar and Knab mosquitoes collected in 2009 in an urban area of the Amazon basin city of Iquitos, Peru. Flavivirus infection was detected by indirect immunofluorescent assay of inoculated C6/36 cells using polyclonal flavivirus antibodies (St. Louis encephalitis virus, yellow fever virus and dengue virus type 1) and confirmed by RT-PCR. Based on partial sequencing of the E and NS5 gene regions, the virus isolate was most closely related to the mosquito-borne flaviviruses but divergent from known species, with less than 45 and 71 % pairwise amino acid identity in the E and NS5 gene products, respectively. Phylogenetic analysis of E and NS5 amino acid sequences demonstrated that this flavivirus grouped with mosquito-borne flaviviruses, forming a clade with Nounané virus (NOUV). Like NOUV, no replication was detected in a variety of mammalian cells (Vero-76, Vero-E6, BHK, LLCMK, MDCK, A549 and RD) or in intracerebrally inoculated newborn mice. We tentatively designate this genetically distinct flavivirus as representing a novel species, Nanay virus, after the river near where it was first detected.
Collapse
Affiliation(s)
- Julio Evangelista
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Cristhopher Cruz
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Carolina Guevara
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Helvio Astete
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Cristiam Carey
- Dirección Regional de Salud de Loreto, Av 28 de Julio, Punchana, Loreto, Peru
| | - Tadeusz J. Kochel
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Amy C. Morrison
- Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, USA
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Maya Williams
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Eric S. Halsey
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Brett M. Forshey
- Virology Department, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| |
Collapse
|
54
|
Novel cis-acting element within the capsid-coding region enhances flavivirus viral-RNA replication by regulating genome cyclization. J Virol 2013; 87:6804-18. [PMID: 23576500 DOI: 10.1128/jvi.00243-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
cis-Acting elements in the viral genome RNA (vRNA) are essential for the translation, replication, and/or encapsidation of RNA viruses. In this study, a novel conserved cis-acting element was identified in the capsid-coding region of mosquito-borne flavivirus. The downstream of 5' cyclization sequence (5'CS) pseudoknot (DCS-PK) element has a three-stem pseudoknot structure, as demonstrated by structure prediction and biochemical analysis. Using dengue virus as a model, we show that DCS-PK enhances vRNA replication and that its function depends on its secondary structure and specific primary sequence. Mutagenesis revealed that the highly conserved stem 1 and loop 2, which are involved in potential loop-helix interactions, are crucial for DCS-PK function. A predicted loop 1-stem 3 base triple interaction is important for the structural stability and function of DCS-PK. Moreover, the function of DCS-PK depends on its position relative to the 5'CS, and the presence of DCS-PK facilitates the formation of 5'-3' RNA complexes. Taken together, our results reveal that the cis-acting element DCS-PK enhances vRNA replication by regulating genome cyclization, and DCS-PK might interplay with other cis-acting elements to form a functional vRNA cyclization domain, thus playing critical roles during the flavivirus life cycle and evolution.
Collapse
|
55
|
Beck A, Guzman H, Li L, Ellis B, Tesh RB, Barrett ADT. Phylogeographic reconstruction of African yellow fever virus isolates indicates recent simultaneous dispersal into east and west Africa. PLoS Negl Trop Dis 2013; 7:e1910. [PMID: 23516640 PMCID: PMC3597480 DOI: 10.1371/journal.pntd.0001910] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022] Open
Abstract
Yellow fever virus (YFV) is a mosquito-borne flavivirus that is a major public health problem in tropical areas of Africa and South America. There have been detailed studies on YFV ecology in West Africa and South America, but current understanding of YFV circulation on the African continent is incomplete. This inadequacy is especially notable for East and Central Africa, for which the unpredictability of human outbreaks is compounded by limitations in both historical and present surveillance efforts. Sparse availability of nucleotide sequence data makes it difficult to investigate the dispersal of YFV in these regions of the continent. To remedy this, we constructed Bayesian phylogenetic and geographic analyses utilizing 49 partial genomic sequences to infer the structure of YFV divergence across the known range of the virus on the African continent. Relaxed clock analysis demonstrated evidence for simultaneous divergence of YFV into east and west lineages, a finding that differs from previous hypotheses of YFV dispersal from reservoirs located on edges of the endemic range. Using discrete and continuous geographic diffusion models, we provide detailed structure of YFV lineage diversity. Significant transition links between extant East and West African lineages are presented, implying connection between areas of known sylvatic cycling. The results of demographic modeling reinforce the existence of a stably maintained population of YFV with spillover events into human populations occurring periodically. Geographically distinct foci of circulation are reconstructed, which have significant implications for studies of YFV ecology and emergence of human disease. We propose further incorporation of Bayesian phylogeography into formal GIS analyses to augment studies of arboviral disease. Yellow fever virus (YFV) is a mosquito-transmitted pathogen of great public health significance, which is endemic to tropical areas of Africa and South America. Despite the availability of an effective vaccine, and programs that exist in many endemic areas to reduce populations of mosquitoes, YFV continues to circulate and emerge in regions with developing public health infrastructures. Periodic outbreaks of YFV into humans are unpredictable and merit thorough investigation of the ecology and genetic diversity of the virus. Our analyses improve the current understanding of African YFV evolution in several respects. We have included unpublished viral sequence data from Central and East Africa, which is significant because the availability of YFV isolates from these regions is extremely limited. We present a modeled geographic structure of African YFV dispersal, and propose a new model for the spread of YFV based on concurrent historical movement of the virus from reservoirs in central African jungles to both eastern and western regions of the continent. Our results provide evidence for the presence of unique genotypes of the virus in both central and east African circulation. The presented findings not only provide insight to estimations of outbreak risk for the regions in question, but also contribute to rational GIS analysis and approaches to vaccination campaigns.
Collapse
Affiliation(s)
- Andrew Beck
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hilda Guzman
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Li Li
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | - Robert B. Tesh
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alan D. T. Barrett
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, Institute for Human Infections and Immunity, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
56
|
May FJ, Clark DC, Pham K, Diviney SM, Williams DT, Field EJ, Kuno G, Chang GJ, Cheah WY, Setoh YX, Prow NA, Hobson-Peters J, Hall RA. Genetic divergence among members of the Kokobera group of flaviviruses supports their separation into distinct species. J Gen Virol 2013; 94:1462-1467. [PMID: 23426358 DOI: 10.1099/vir.0.049940-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Kokobera virus group comprises mosquito-borne flaviviruses that cluster together phylogenetically. These viruses are unique to Australia and Papua New Guinea, and have been associated with a mild polyarticular disease in humans. Recent isolation of genetically diverse viruses within this group has prompted analysis of their genetic and phenotypic relationships. Phylogenetic analysis based on complete ORF, the envelope gene or the NS5/3' untranslated region supported the separation of the group into distinct species: Kokobera virus (KOKV), Stratford virus, New Mapoon virus, MK7979 and TS5273. Virulence studies in 3-week-old mice also provided the first evidence that a member of the KOKV group (MK7979) was neuroinvasive after intraperitoneal inoculation. In this context, our recent detection of KOKV group-specific antibodies in horses in the field suggests that these viruses should be considered in the epidemiology of flavivirus encephalitis in Australia.
Collapse
Affiliation(s)
- Fiona J May
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - David C Clark
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Kim Pham
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Sinéad M Diviney
- School of Biomedical Sciences, Curtin University, Bentley 6102, Western Australia, Australia
| | - David T Williams
- School of Biomedical Sciences, Curtin University, Bentley 6102, Western Australia, Australia
| | - Emma J Field
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Goro Kuno
- Arboviral Diseases Branch, Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-borne and Enteric Diseases, Centers for Disease Control and Prevention (CDC), Fort Collins 80521, CO, USA
| | - Gwong-Jen Chang
- Arboviral Diseases Branch, Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-borne and Enteric Diseases, Centers for Disease Control and Prevention (CDC), Fort Collins 80521, CO, USA
| | - Wai Yuen Cheah
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Yin X Setoh
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| |
Collapse
|
57
|
|
58
|
Neglected tropical diseases of Namibia: unsolved mysteries. Acta Trop 2013; 125:1-17. [PMID: 23006744 DOI: 10.1016/j.actatropica.2012.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 11/22/2022]
Abstract
Neglected tropical diseases (NTDs) are diseases most commonly found in settings of poverty and are responsible for the morbidity and/or mortality of millions each year. As an upper-middle income country, Namibia is not normally considered to have many NTDs but published reports indicate the possible presence of over 30. Because much of the data is buried in historical studies published before Independence in 1990, there is a risk of losing valuable information on which to build current and future integrated public health strategies. The purpose of this review, therefore, is to bring together these significant fragments to identify existing knowledge gaps which need to be addressed to build effective control, prevention, and even elimination strategies. The review focuses on intestinal helminthes, schistosomes/snail 'vectors', viruses (Rift Valley Fever, Crimean Congo Hemorrhagic Fever, rabies), protozoa (Leishmania, Toxoplasma, Amoeba, Giardia), bacteria (Rickettsia, Ehrlichia, Leptospira, Coxiella, Brucella, and Borrelia), fungi (Pneumocystis) and myiasis. Each NTD speaks to the possible need for surveillance and the creation of integrated disease risk maps, linking prevalence of related NTDs with environmental and ecological factors to assist control and prevention efforts. The predominance of zoonotic disease suggests a need to integrate veterinary and public health components as the national public health surveillance system is established.
Collapse
|
59
|
Quand certains flavivirus remettent en cause nos certitudes. ACTA ACUST UNITED AC 2012; 105:251-5. [DOI: 10.1007/s13149-012-0255-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
|
60
|
Additive protection by antioxidant and apoptosis-inhibiting effects on mosquito cells with dengue 2 virus infection. PLoS Negl Trop Dis 2012; 6:e1613. [PMID: 22530071 PMCID: PMC3328429 DOI: 10.1371/journal.pntd.0001613] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 02/27/2012] [Indexed: 01/18/2023] Open
Abstract
Cytopathic effects (CPEs) in mosquito cells are generally trivial compared to those that occur in mammalian cells, which usually end up undergoing apoptosis during dengue virus (DENV) infection. However, oxidative stress was detected in both types of infected cells. Despite this, the survival of mosquito cells benefits from the upregulation of genes related to antioxidant defense, such as glutathione S transferase (GST). A second defense system, i.e., consisting of antiapoptotic effects, was also shown to play a role in protecting mosquito cells against DENV infection. This system is regulated by an inhibitor of apoptosis (IAP) that is an upstream regulator of caspases-9 and -3. DENV-infected C6/36 cells with double knockdown of GST and the IAP showed a synergistic effect on activation of these two caspases, causing a higher rate of apoptosis (>20%) than those with knockdown of each single gene (∼10%). It seems that the IAP acts as a second line of defense with an additional effect on the survival of mosquito cells with DENV infection. Compared to mammalian cells, residual hydrogen peroxide in DENV-infected C6/36 cells may signal for upregulation of the IAP. This novel finding sheds light on virus/cell interactions and their coevolution that may elucidate how mosquitoes can be a vector of DENV and probably most other arboviruses in nature. This study demonstrated an idea that mosquito cells can survive dengue virus (or other arboviruses) infection through antioxidant defense and an additional effect by induction of IAP expression for protection of infection. It makes mosquito eligible to support virus replication efficiently, leading to a goal which is important to explain how mosquitoes can be a vector even when they have been seriously infected by the virus. Our findings opened an avenue for studies on virus/vector co-evolution that benefits for both virus replication and its transmission to humans or susceptible hosts.
Collapse
|
61
|
Haddow AD, Schuh AJ, Yasuda CY, Kasper MR, Heang V, Huy R, Guzman H, Tesh RB, Weaver SC. Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis 2012; 6:e1477. [PMID: 22389730 PMCID: PMC3289602 DOI: 10.1371/journal.pntd.0001477] [Citation(s) in RCA: 510] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/03/2011] [Indexed: 12/25/2022] Open
Abstract
Background Zika virus (ZIKV) is a mosquito-borne flavivirus distributed throughout much of Africa and Asia. Infection with the virus may cause acute febrile illness that clinically resembles dengue fever. A recent study indicated the existence of three geographically distinct viral lineages; however this analysis utilized only a single viral gene. Although ZIKV has been known to circulate in both Africa and Asia since at least the 1950s, little is known about the genetic relationships between geographically distinct virus strains. Moreover, the geographic origin of the strains responsible for the epidemic that occurred on Yap Island, Federated States of Micronesia in 2007, and a 2010 pediatric case in Cambodia, has not been determined. Methodology/Principal Findings To elucidate the genetic relationships of geographically distinct ZIKV strains and the origin of the strains responsible for the 2007 outbreak on Yap Island and a 2010 Cambodian pediatric case of ZIKV infection, the nucleotide sequences of the open reading frame of five isolates from Cambodia, Malaysia, Nigeria, Uganda, and Senegal collected between 1947 and 2010 were determined. Phylogenetic analyses of these and previously published ZIKV sequences revealed the existence of two main virus lineages (African and Asian) and that the strain responsible for the Yap epidemic and the Cambodian case most likely originated in Southeast Asia. Examination of the nucleotide and amino acid sequence alignments revealed the loss of a potential glycosylation site in some of the virus strains, which may correlate with the passage history of the virus. Conclusions/Significance The basal position of the ZIKV strain isolated in Malaysia in 1966 suggests that the recent outbreak in Micronesia was initiated by a strain from Southeast Asia. Because ZIKV infection in humans produces an illness clinically similar to dengue fever and many other tropical infectious diseases, it is likely greatly misdiagnosed and underreported. Zika virus (ZIKV) is a mosquito-transmitted flavivirus found in both Africa and Asia. Human infection with the virus may result in a febrile illness similar to dengue fever and many other tropical infections found in these regions. Previously, little was known about the genetic relationships between ZIKV strains collected in Africa and those collected in Asia. In addition, the geographic origins of the strains responsible for the recent outbreak of human disease on Yap Island, Federated States of Micronesia, and a human case of ZIKV infection in Cambodia were unknown. Our results indicate that there are two geographically distinct lineages of ZIKV (African and Asian). The virus has circulated in Southeast Asia for at least the past 50 years, whereupon it was introduced to Yap Island resulting in an epidemic of human disease in 2007, and in 2010 was the cause of a pediatric case of ZIKV infection in Cambodia. This study also highlights the danger of ZIKV introduction into new areas and the potential for future epidemics of human disease.
Collapse
Affiliation(s)
- Andrew D Haddow
- Institute for Human Infections and Immunity, Center for Tropical Diseases, Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Abstract
The genus Alphavirus comprises a diverse group of viruses, including some that cause severe disease. Using full-length sequences of all known alphaviruses, we produced a robust and comprehensive phylogeny of the Alphavirus genus, presenting a more complete evolutionary history of these viruses compared to previous studies based on partial sequences. Our phylogeny suggests the origin of the alphaviruses occurred in the southern oceans and spread equally through the Old and New World. Since lice appear to be involved in aquatic alphavirus transmission, it is possible that we are missing a louse-borne branch of the alphaviruses. Complete genome sequencing of all members of the genus also revealed conserved residues forming the structural basis of the E1 and E2 protein dimers.
Collapse
|
63
|
Family level phylogenies reveal modes of macroevolution in RNA viruses. Proc Natl Acad Sci U S A 2010; 108:238-43. [PMID: 21173251 DOI: 10.1073/pnas.1011090108] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite advances in understanding the patterns and processes of microevolution in RNA viruses, little is known about the determinants of viral diversification at the macroevolutionary scale. In particular, the processes by which viral lineages assigned as different "species" are generated remain largely uncharacterized. To address this issue, we use a robust phylogenetic approach to analyze patterns of lineage diversification in five representative families of RNA viruses. We ask whether the process of lineage diversification primarily occurs when viruses infect new host species, either through cross-species transmission or codivergence, and which are defined here as analogous to allopatric speciation in animals, or by acquiring new niches within the same host species, analogous to sympatric speciation. By mapping probable primary host species onto family level viral phylogenies, we reveal a strong clustering among viral lineages that infect groups of closely related host species. Although this is consistent with lineage diversification within individual hosts, we argue that this pattern more likely represents strong biases in our knowledge of viral biodiversity, because we also find that better-sampled human viruses rarely cluster together. Hence, although closely related viruses tend to infect related host species, it is unlikely that they often infect the same host species, such that evolutionary constraints hinder lineage diversification within individual host species. We conclude that the colonization of new but related host species may represent the principle mode of macroevolution in RNA viruses.
Collapse
|
64
|
Bollati M, Alvarez K, Assenberg R, Baronti C, Canard B, Cook S, Coutard B, Decroly E, de Lamballerie X, Gould EA, Grard G, Grimes JM, Hilgenfeld R, Jansson AM, Malet H, Mancini EJ, Mastrangelo E, Mattevi A, Milani M, Moureau G, Neyts J, Owens RJ, Ren J, Selisko B, Speroni S, Steuber H, Stuart DI, Unge T, Bolognesi M. Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res 2010; 87:125-48. [PMID: 19945487 PMCID: PMC3918146 DOI: 10.1016/j.antiviral.2009.11.009] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 09/08/2009] [Accepted: 11/21/2009] [Indexed: 12/28/2022]
Abstract
Flaviviridae are small enveloped viruses hosting a positive-sense single-stranded RNA genome. Besides yellow fever virus, a landmark case in the history of virology, members of the Flavivirus genus, such as West Nile virus and dengue virus, are increasingly gaining attention due to their re-emergence and incidence in different areas of the world. Additional environmental and demographic considerations suggest that novel or known flaviviruses will continue to emerge in the future. Nevertheless, up to few years ago flaviviruses were considered low interest candidates for drug design. At the start of the European Union VIZIER Project, in 2004, just two crystal structures of protein domains from the flaviviral replication machinery were known. Such pioneering studies, however, indicated the flaviviral replication complex as a promising target for the development of antiviral compounds. Here we review structural and functional aspects emerging from the characterization of two main components (NS3 and NS5 proteins) of the flavivirus replication complex. Most of the reviewed results were achieved within the European Union VIZIER Project, and cover topics that span from viral genomics to structural biology and inhibition mechanisms. The ultimate aim of the reported approaches is to shed light on the design and development of antiviral drug leads.
Collapse
Affiliation(s)
- Michela Bollati
- Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Macdonald J, Poidinger M, Mackenzie JS, Russell RC, Doggett S, Broom AK, Phillips D, Potamski J, Gard G, Whelan P, Weir R, Young PR, Gendle D, Maher S, Barnard RT, Hall RA. Molecular phylogeny of edge hill virus supports its position in the yellow Fever virus group and identifies a new genetic variant. Evol Bioinform Online 2010; 6:91-6. [PMID: 20938485 PMCID: PMC2901633 DOI: 10.4137/ebo.s4966] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Edge Hill virus (EHV) is a mosquito-borne flavivirus isolated throughout Australia during mosquito surveillance programs. While not posing an immediate threat to the human population, EHV is a taxonomically interesting flavivirus since it remains the only member of the yellow fever virus (YFV) sub-group to be detected within Australia. Here we present both an antigenic and genetic investigation of collected isolates, and confirm taxonomic classification of the virus within the YFV-group. Isolates were not clustered based on geographical origin or time of isolation, suggesting that minimal genetic evolution of EHV has occurred over geographic distance or time within the EHV cluster. However, two isolates showed significant differences in antigenic reactivity patterns, and had a much larger divergence from the EHV prototype (19% nucleotide and 6% amino acid divergence), indicating a distinct subtype or variant within the EHV subgroup.
Collapse
Affiliation(s)
- Joanne Macdonald
- Centre for Infectious Disease Research, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Qld. 4072, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Zhang S, Bovshik EI, Maillard R, Gromowski GD, Volk DE, Schein CH, Huang CYH, Gorenstein DG, Lee JC, Barrett ADT, Beasley DWC. Role of BC loop residues in structure, function and antigenicity of the West Nile virus envelope protein receptor-binding domain III. Virology 2010; 403:85-91. [PMID: 20447672 DOI: 10.1016/j.virol.2010.03.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/15/2010] [Accepted: 03/23/2010] [Indexed: 12/22/2022]
Abstract
Site-directed mutagenesis of residues in the BC loop (residues 329-333) of the envelope (E) protein domain III in a West Nile virus (WNV) infectious clone and in plasmids encoding recombinant WNV and dengue type 2 virus domain III proteins demonstrated a critical role for residues in this loop in the function and antigenicity of the E protein. This included a strict requirement for the tyrosine at residue 329 of WNV for virus viability and E domain III folding. The absence of an equivalent residue in this region of yellow fever group viruses and most tick-borne flavivirus suggests there is an evolutionary divergence in the molecular mechanisms of domain III folding employed by different flaviviruses.
Collapse
Affiliation(s)
- Shuliu Zhang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|