51
|
A systems-biology approach to yeast actin cables. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 736:325-35. [PMID: 22161338 DOI: 10.1007/978-1-4419-7210-1_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We focus on actin cables in yeast as a model system for understanding cytoskeletal organization and the workings of actin itself. In particular, we highlight quantitative approaches on the kinetics of actin-cable assembly and methods of measuring their morphology by image analysis. Actin cables described by these studies can span greater lengths than a thousand end-to-end actin-monomers. Because of this difference in length scales, control of the actin-cable system constitutes a junction between short-range interactions - among actin-monomers and nucleating, polymerization-facilitating, side-binding, severing, and cross-linking proteins - and the emergence of cell-scale physical form as embodied by the actin cables themselves.
Collapse
|
52
|
Merino-Puerto V, Mariscal V, Schwarz H, Maldener I, Mullineaux CW, Herrero A, Flores E. FraH is required for reorganization of intracellular membranes during heterocyst differentiation in Anabaena sp. strain PCC 7120. J Bacteriol 2011; 193:6815-23. [PMID: 21949079 PMCID: PMC3232833 DOI: 10.1128/jb.05995-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/16/2011] [Indexed: 11/20/2022] Open
Abstract
In the filamentous, heterocyst-forming cyanobacteria, two different cell types, the CO(2)-fixing vegetative cells and the N(2)-fixing heterocysts, exchange nutrients and regulators for diazotrophic growth. In the model organism Anabaena sp. strain PCC 7120, inactivation of fraH produces filament fragmentation under conditions of combined nitrogen deprivation, releasing numerous isolated heterocysts. Transmission electron microscopy of samples prepared by either high-pressure cryo-fixation or chemical fixation showed that the heterocysts of a ΔfraH mutant lack the intracellular membrane system structured close to the heterocyst poles, known as the honeycomb, that is characteristic of wild-type heterocysts. Using a green fluorescent protein translational fusion to the carboxyl terminus of FraH (FraH-C-GFP), confocal microscopy showed spots of fluorescence located at the periphery of the vegetative cells in filaments grown in the presence of nitrate. After incubation in the absence of combined nitrogen, localization of FraH-C-GFP changed substantially, and the GFP fluorescence was conspicuously located at the cell poles in the heterocysts. Fluorescence microscopy and deconvolution of images showed that GFP fluorescence originated mainly from the region next to the cyanophycin plug present at the heterocyst poles. Intercellular transfer of the fluorescent tracers calcein (622 Da) and 5-carboxyfluorescein (374 Da) was either not impaired or only partially impaired in the ΔfraH mutant, suggesting that FraH is not important for intercellular molecular exchange. Location of FraH close to the honeycomb membrane structure and lack of such structure in the ΔfraH mutant suggest a role of FraH in reorganization of intracellular membranes, which may involve generation of new membranes, during heterocyst differentiation.
Collapse
Affiliation(s)
- Victoria Merino-Puerto
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Vicente Mariscal
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Heinz Schwarz
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Iris Maldener
- IMIT, Microbiology/Organismic Interactions, Department of Biology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Conrad W. Mullineaux
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Enrique Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| |
Collapse
|
53
|
Ingerson-Mahar M, Gitai Z. A growing family: the expanding universe of the bacterial cytoskeleton. FEMS Microbiol Rev 2011; 36:256-66. [PMID: 22092065 DOI: 10.1111/j.1574-6976.2011.00316.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/02/2011] [Accepted: 11/10/2011] [Indexed: 12/16/2022] Open
Abstract
Cytoskeletal proteins are important mediators of cellular organization in both eukaryotes and bacteria. In the past, cytoskeletal studies have largely focused on three major cytoskeletal families, namely the eukaryotic actin, tubulin, and intermediate filament (IF) proteins and their bacterial homologs MreB, FtsZ, and crescentin. However, mounting evidence suggests that these proteins represent only the tip of the iceberg, as the cellular cytoskeletal network is far more complex. In bacteria, each of MreB, FtsZ, and crescentin represents only one member of large families of diverse homologs. There are also newly identified bacterial cytoskeletal proteins with no eukaryotic homologs, such as WACA proteins and bactofilins. Furthermore, there are universally conserved proteins, such as the metabolic enzyme CtpS, that assemble into filamentous structures that can be repurposed for structural cytoskeletal functions. Recent studies have also identified an increasing number of eukaryotic cytoskeletal proteins that are unrelated to actin, tubulin, and IFs, such that expanding our understanding of cytoskeletal proteins is advancing the understanding of the cell biology of all organisms. Here, we summarize the recent explosion in the identification of new members of the bacterial cytoskeleton and describe a hypothesis for the evolution of the cytoskeleton from self-assembling enzymes.
Collapse
|
54
|
Bibi E. Is there a twist in the Escherichia coli signal recognition particle pathway? Trends Biochem Sci 2011; 37:1-6. [PMID: 22088262 DOI: 10.1016/j.tibs.2011.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/24/2011] [Accepted: 09/28/2011] [Indexed: 11/28/2022]
Abstract
Integral membrane proteins (IMPs) are usually synthesized by membrane-bound ribosomes, and this process requires proper localization of ribosomes and IMP-encoding transcripts. However, the underlying molecular mechanism of the pathway has not yet been fully established in vivo. The prevailing hypothesis is that ribosomes and transcripts are delivered to the membrane together during IMP translation by the signal recognition particle (SRP) and its receptor. Here, I discuss an alternative hypothesis that posits that ribosomes and transcripts are targeted separately. Ribosome targeting to the membrane might be mediated by the SRP receptor, rather than by SRP, and IMP-encoding transcripts might be targeted to the membrane in a translation-independent manner. According to this scenario, the SRP executes its essential function on the membrane at a later stage of the targeting pathway.
Collapse
Affiliation(s)
- Eitan Bibi
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
55
|
Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, Westermann B, Schuldiner M, Weissman JS, Nunnari J. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. ACTA ACUST UNITED AC 2011; 195:323-40. [PMID: 21987634 PMCID: PMC3198156 DOI: 10.1083/jcb.201107053] [Citation(s) in RCA: 346] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Statement MITO-MAP, a high-density genetic interaction map in budding yeast, identifies a mitochondrial inner membrane–associated complex that promotes normal mitochondrial membrane organization and morphology. To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP also reveals a large inner membrane–associated complex, which we term MitOS for mitochondrial organizing structure, comprised of Fcj1/Mitofilin, a conserved inner membrane protein, and five additional components. MitOS physically and functionally interacts with both outer and inner membrane components and localizes to extended structures that wrap around the inner membrane. We show that MitOS acts in concert with ATP synthase dimers to organize the inner membrane and promote normal mitochondrial morphology. We propose that MitOS acts as a conserved mitochondrial skeletal structure that differentiates regions of the inner membrane to establish the normal internal architecture of mitochondria.
Collapse
Affiliation(s)
- Suzanne Hoppins
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Draper O, Byrne ME, Li Z, Keyhani S, Barrozo JC, Jensen G, Komeili A. MamK, a bacterial actin, forms dynamic filaments in vivo that are regulated by the acidic proteins MamJ and LimJ. Mol Microbiol 2011; 82:342-54. [PMID: 21883528 DOI: 10.1111/j.1365-2958.2011.07815.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bacterial actins, in contrast to their eukaryotic counterparts, are highly divergent proteins whose wide-ranging functions are thought to correlate with their evolutionary diversity. One clade, represented by the MamK protein of magnetotactic bacteria, is required for the subcellular organization of magnetosomes, membrane-bound organelles that aid in navigation along the earth's magnetic field. Using a fluorescence recovery after photobleaching assay in Magnetospirillum magneticum AMB-1, we find that, like traditional actins, MamK forms dynamic filaments that require an intact NTPase motif for their turnover in vivo. We also uncover two proteins, MamJ and LimJ, which perform a redundant function to promote the dynamic behaviour of MamK filaments in wild-type cells. The absence of both MamJ and LimJ leads to static filaments, a disrupted magnetosome chain, and an anomalous build-up of cytoskeletal filaments between magnetosomes. Our results suggest that MamK filaments, like eukaryotic actins, are intrinsically stable and rely on regulators for their dynamic behaviour, a feature that stands in contrast to some classes of bacterial actins characterized to date.
Collapse
Affiliation(s)
- Olga Draper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Morozova AV, Khaitlina SY, Malinin AY. Heat shock protein DnaK--substrate of actin-specific bacterial protease ECP32. BIOCHEMISTRY (MOSCOW) 2011; 76:455-61. [PMID: 21585321 DOI: 10.1134/s0006297911040080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It has been found that actin-specific bacterial protease ECP32 cleaves prokaryotic heat shock protein DnaK, which belongs to the family of heat shock proteins with molecular weight 70 kDa. We propose a new one-step method for DnaK purification using heat treatment. The technique yields ~1 mg of partially purified DnaK from 25 g of wet bacterial biomass. Polyclonal antibodies against DnaK were obtained. The degree of ECP32 catalyzed proteolysis of partially purified DnaK and that of DnaK in initial cell extracts was compared.
Collapse
Affiliation(s)
- A V Morozova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| | | | | |
Collapse
|
58
|
The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc Natl Acad Sci U S A 2011; 108:15822-7. [PMID: 21903929 DOI: 10.1073/pnas.1108999108] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yet-unidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis.
Collapse
|
59
|
Foss MH, Eun YJ, Weibel DB. Chemical-biological studies of subcellular organization in bacteria. Biochemistry 2011; 50:7719-34. [PMID: 21823588 DOI: 10.1021/bi200940d] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The subcellular organization of biological molecules is a critical determinant of many bacterial processes, including growth, replication of the genome, and division, yet the details of many mechanisms that control intracellular organization remain unknown. Decoding this information will impact the field of bacterial physiology and can provide insight into eukaryotic biology, including related processes in mitochondria and chloroplasts. Small molecule probes provide unique advantages in studying these mechanisms and manipulating the organization of biomolecules in live bacterial cells. In this review, we describe small molecules that are available for investigating subcellular organization in bacteria, specifically targeting FtsZ, MreB, peptidoglycan, and lipid bilayers. We discuss how these probes have been used to study microbiological questions and conclude by providing suggestions about important areas in which chemical-biological approaches will have a revolutionary impact on the study of bacterial physiology.
Collapse
Affiliation(s)
- Marie H Foss
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | | | |
Collapse
|
60
|
Functioning nanomachines seen in real-time in living bacteria using single-molecule and super-resolution fluorescence imaging. Int J Mol Sci 2011; 12:2518-42. [PMID: 21731456 PMCID: PMC3127132 DOI: 10.3390/ijms12042518] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 11/19/2022] Open
Abstract
Molecular machines are examples of “pre-established” nanotechnology, driving the basic biochemistry of living cells. They encompass an enormous range of function, including fuel generation for chemical processes, transport of molecular components within the cell, cellular mobility, signal transduction and the replication of the genetic code, amongst many others. Much of our understanding of such nanometer length scale machines has come from in vitro studies performed in isolated, artificial conditions. Researchers are now tackling the challenges of studying nanomachines in their native environments. In this review, we outline recent in vivo investigations on nanomachines in model bacterial systems using state-of-the-art genetics technology combined with cutting-edge single-molecule and super-resolution fluorescence microscopy. We conclude that single-molecule and super-resolution fluorescence imaging provide powerful tools for the biochemical, structural and functional characterization of biological nanomachines. The integrative spatial, temporal, and single-molecule data obtained simultaneously from fluorescence imaging open an avenue for systems-level single-molecule cellular biophysics and in vivo biochemistry.
Collapse
|
61
|
Abstract
A protective organelle that is essential for viability under most conditions, the cell wall is a dynamic structure that is continuously remodelled with the growth of the bacterial cell. Because the cell wall also moulds the bacterium, the mechanisms of cell wall homeostasis can be deciphered using cell shape as a convenient proxy. In this issue of Molecular Microbiology, Foulquier et al. illuminate a connection between cell shape regulation and metabolism in Bacillus subtilis. They find that the putative NAD(P)-binding enzyme YvcK organizes into helical subcellular structures that exert shape control by directing the cell wall biosynthetic enzyme PBP1 along the cell cylinder and to the septum, a function shared with the MreB actin cytoskeleton. Unlike MreB, however, the role of YvcK in cell shape control is manifested only on certain carbon sources, presumably by way of a previously unknown metabolic feed that taps into cell morphogenesis.
Collapse
Affiliation(s)
- Johann Mignolet
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
62
|
Abstract
We present a cryo-electron tomographic analysis of the three-dimensional architecture of a strain of the Gram-negative bacterium Bdellovibrio bacteriovorus in which endogenous MreB2 was replaced with monomeric teal fluorescent protein (mTFP)-labeled MreB2. In contrast to wild-type Bdellovibrio cells that predominantly displayed a compact nucleoid region, cells expressing mTFP-labeled MreB2 displayed a twisted spiral organization of the nucleoid. The more open structure of the MreB2-mTFP nucleoids enabled clear in situ visualization of ribosomes decorating the periphery of the nucleoid. Ribosomes also bordered the edges of more compact nucleoids from both wild-type cells and mutant cells. Surprisingly, MreB2-mTFP localized to the interface between the spiral nucleoid and the cytoplasm, suggesting an intimate connection between nucleoid architecture and MreB arrangement. Further, in contrast to wild-type cells, where a single tight chemoreceptor cluster localizes close to the single polar flagellum, MreB2-mTFP cells often displayed extended chemoreceptor arrays present at one or both poles and displayed multiple or inaccurately positioned flagella. Our findings provide direct structural evidence for spiral organization of the bacterial nucleoid and suggest a possible role for MreB in regulation of nucleoid architecture and localization of the chemotaxis apparatus.
Collapse
|
63
|
What is type VI secretion doing in all those bugs? Trends Microbiol 2010; 18:531-7. [PMID: 20961764 DOI: 10.1016/j.tim.2010.09.001] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 11/23/2022]
Abstract
The identification of bacterial secretion systems capable of translocating substrates into eukaryotic cells via needle-like appendages has opened fruitful and exciting areas of microbial pathogenesis research. The recent discovery of the type VI secretion system (T6SS) was met with early speculation that it too acts as a 'needle' that pathogens aim at host cells. New reports demonstrate that certain T6SSs are potent mediators of interbacterial interactions. In light of these findings, we examined earlier data indicating its role in pathogenesis. We conclude that although T6S can, in rare instances, directly influence interactions with higher organisms, the broader physiological significance of the system is likely to provide defense against simple eukaryotic cells and other bacteria in the environment. The crucial role of T6S in bacterial interactions, along with its presence in many organisms relevant to disease, suggests that it might be a key determinant in the progression and outcome of certain human polymicrobial infections.
Collapse
|
64
|
Abstract
Bacterial chromosomes are generally approximately 1000 times longer than the cells in which they reside, and concurrent replication, segregation, and transcription/translation of this crowded mass of DNA poses a challenging organizational problem. Recent advances in cell-imaging technology with subdiffraction resolution have revealed that the bacterial nucleoid is reliably oriented and highly organized within the cell. Such organization is transmitted from one generation to the next by progressive segregation of daughter chromosomes and anchoring of DNA to the cell envelope. Active segregation by a mitotic machinery appears to be common; however, the mode of chromosome segregation varies significantly from species to species.
Collapse
Affiliation(s)
- Esteban Toro
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | |
Collapse
|