51
|
Taussig MJ, Schmidt R, Cook EA, Stoevesandt O. Development of proteome-wide binding reagents for research and diagnostics. Proteomics Clin Appl 2014; 7:756-66. [PMID: 24178846 DOI: 10.1002/prca.201300060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 01/11/2023]
Abstract
Alongside MS, antibodies and other specific protein-binding molecules have a special place in proteomics as affinity reagents in a toolbox of applications for determining protein location, quantitative distribution and function (affinity proteomics). The realisation that the range of research antibodies available, while apparently vast is nevertheless still very incomplete and frequently of uncertain quality, has stimulated projects with an objective of raising comprehensive, proteome-wide sets of protein binders. With progress in automation and throughput, a remarkable number of recent publications refer to the practical possibility of selecting binders to every protein encoded in the genome. Here we review the requirements of a pipeline of production of protein binders for the human proteome, including target prioritisation, antigen design, 'next generation' methods, databases and the approaches taken by ongoing projects in Europe and the USA. While the task of generating affinity reagents for all human proteins is complex and demanding, the benefits of well-characterised and quality-controlled pan-proteome binder resources for biomedical research, industry and life sciences in general would be enormous and justify the effort. Given the technical, personnel and financial resources needed to fulfil this aim, expansion of current efforts may best be addressed through large-scale international collaboration.
Collapse
Affiliation(s)
- Michael J Taussig
- Protein Technology Group, The Babraham Institute, Cambridge, UK; Cambridge Protein Arrays Ltd, Babraham Research Campus, Cambridge, UK
| | | | | | | |
Collapse
|
52
|
Wang J, Gong Q, Maheshwari N, Eisenstein M, Arcila ML, Kosik KS, Soh HT. Particle display: a quantitative screening method for generating high-affinity aptamers. Angew Chem Int Ed Engl 2014; 53:4796-801. [PMID: 24644057 DOI: 10.1002/anie.201309334] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Indexed: 11/08/2022]
Abstract
We report an aptamer discovery technology that reproducibly yields higher affinity aptamers in fewer rounds compared to conventional selection. Our method (termed particle display) transforms libraries of solution-phase aptamers into "aptamer particles", each displaying many copies of a single sequence on its surface. We then use fluorescence-activated cell sorting (FACS) to individually measure the relative affinities of >10(8) aptamer particles and sort them in a high-throughput manner. Through mathematical analysis, we identified experimental parameters that enable optimal screening, and demonstrate enrichment performance that exceeds the theoretical maximum achievable with conventional selection by many orders of magnitude. We used particle display to obtain high-affinity DNA aptamers for four different protein targets in three rounds, including proteins for which previous DNA aptamer selection efforts have been unsuccessful. We believe particle display offers an extraordinarily efficient mechanism for generating high-quality aptamers in a rapid and economic manner, towards accelerated exploration of the human proteome.
Collapse
Affiliation(s)
- Jinpeng Wang
- Department of Mechanical Engineering, Materials and Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA 93106 (USA)
| | | | | | | | | | | | | |
Collapse
|
53
|
Wang J, Gong Q, Maheshwari N, Eisenstein M, Arcila ML, Kosik KS, Soh HT. Particle Display: A Quantitative Screening Method for Generating High-Affinity Aptamers. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309334] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
54
|
Lollo B, Steele F, Gold L. Beyond antibodies: new affinity reagents to unlock the proteome. Proteomics 2014; 14:638-44. [PMID: 24395722 DOI: 10.1002/pmic.201300187] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 11/28/2013] [Accepted: 12/16/2013] [Indexed: 12/20/2022]
Abstract
Antibodies have been the workhorse reagents of protein capture and quantification since their 1959 debut in the RIAs developed by Yalow and Berson. However, there are technical challenges to the use of antibodies in highly multiplexed arrays aimed at measuring hundreds or even thousands of proteins at one time. We describe here a recently developed class of synthetic protein-binding reagents (slow off-rate modified aptamer). We discuss the chemical makeup and protein binding specifications of slow off-rate modified aptamer reagents, compare them to traditional aptamers and antibodies, briefly describe the novel proteomic assay that takes advantage of their unique properties, and provide several examples of their multiple applications to biomarker discovery and validation across a range of biomedical science questions.
Collapse
|
55
|
Yang M, Jiang G, Li W, Qiu K, Zhang M, Carter CM, Al-Quran SZ, Li Y. Developing aptamer probes for acute myelogenous leukemia detection and surface protein biomarker discovery. J Hematol Oncol 2014; 7:5. [PMID: 24405684 PMCID: PMC3895837 DOI: 10.1186/1756-8722-7-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 12/24/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The majority of patients with acute myelogenous leukemia (AML) still die of their disease. In order to improve survival rates in AML patients, new strategies are necessary to discover biomarkers for the detection and targeted therapy of AML. One of the advantages of the aptamer-based technology is the unique cell-based selection process, which allows us to efficiently select for cell-specific aptamers without knowing which target molecules are present on the cell surface. METHODS The NB4 AML cell line was used as the target cell population for selecting single stranded DNA aptamers. After determining the affinity of selected aptamers to leukocytes, the aptamers were used to phenotype human bone marrow leukocytes and AML cells in clinical specimens. Then a biotin-labelled aptamer was used to enrich and identify its target surface protein. RESULTS Three new aptamers were characterized from the selected aptamer pools (JH6, JH19, and K19). All of them can selectively recognize myeloid cells with Kd in the low nanomole range (2.77 to 12.37 nM). The target of the biotin-labelled K19 aptamer probe was identified as Siglec-5, a surface membrane protein in low abundance whose expression can serve as a biomarker of granulocytic maturation and be used to phenotype AML. More importantly, Siglec-5 expression can be used to detect low concentrations of AML cells in human bone marrow specimens, and functions as a potential target for leukemic therapy. CONCLUSIONS We have demonstrated a pipeline approach for developing single stranded DNA aptamer probes, phenotyping AML cells in clinical specimens, and then identifying the aptamer-recognized target protein. The developed aptamer probes and identified Siglec-5 protein may potentially be used for leukemic cell detection and therapy in our future clinical practice.
Collapse
MESH Headings
- Acute Disease
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Aptamers, Nucleotide/genetics
- Aptamers, Nucleotide/metabolism
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- Diagnosis, Differential
- Flow Cytometry
- HL-60 Cells
- Humans
- Lectins/genetics
- Lectins/metabolism
- Leukemia, Myeloid/diagnosis
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/pathology
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Leukocytes/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Polymerase Chain Reaction
- Protein Binding
- Reproducibility of Results
- SELEX Aptamer Technique/methods
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Mingli Yang
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| | - Guohua Jiang
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| | - Wenjing Li
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| | - Kai Qiu
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| | - Min Zhang
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| | - Christopher M Carter
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| | - Samer Z Al-Quran
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| | - Ying Li
- UF/Shands Medical Laboratory at Rocky Point, 4800 35th Drive, Gainesville, FL 32608, USA
| |
Collapse
|
56
|
Label-free detection of gliadin food allergen mediated by real-time apta-PCR. Anal Bioanal Chem 2013; 406:515-24. [PMID: 24247552 DOI: 10.1007/s00216-013-7475-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/20/2013] [Accepted: 10/30/2013] [Indexed: 12/29/2022]
Abstract
Celiac disease is an immune-mediated enteropathy triggered by the ingestion of gluten. The only effective treatment consists in a lifelong gluten-free diet, requiring the food industry to tightly control the gluten contents of their products. To date, several gluten quantification approaches using antibodies are available and recommended by the legal authorities, such as Codex Alimentarius. However, whilst these antibody-based tests exhibit high sensitivity and specificity, the production of antibodies inherently requires the killing of host animals and is time-consuming and relatively expensive. Aptamers are structured single-stranded nucleic acid ligands that bind with high affinity and specificity to their cognate target, and aiming for a cost-effective viable alternative to the use of antibodies. Herein, we report the systematic evolution of ligands by exponential enrichment (SELEX)-based selection of a DNA aptamer against gliadin from a combinatorial DNA library and its application in a novel detection assay. Taking into account the hydrophobic nature of the gliadin target, a microtitre plate format was exploited for SELEX, where the target was immobilised via hydrophobic interactions, thus exposing aptatopes accessible for interaction with the DNA library. Evolution was followed using surface plasmon resonance, and following eight rounds of SELEX, the enriched DNA pool was cloned, sequenced and a clear consensus motif was identified. An apta-PCR assay was developed where competition for the aptamer takes place between the surface-immobilised gliadin and gliadin in the target sample, akin to an ELISA competitive format where the more target present in the sample, the less aptamer will bind to the immobilised gliadin. Following competition, any aptamer bound to the immobilised gliadin was heat-eluted and quantitatively amplified using real-time PCR, achieving a detection limit of approx. 2 nM (100 ng mL(-1)). The specificity of the selected aptamer was demonstrated and no cross-reactivity was observed with streptavidin, bovine serum albumin or anti-gliadin IgG.
Collapse
|
57
|
Abstract
RNA molecules are highly modular components that can be used in a variety of contexts for building new metabolic, regulatory and genetic circuits in cells. The majority of synthetic RNA systems to date predominately rely on two-dimensional modularity. However, a better understanding and integration of three-dimensional RNA modularity at structural and functional levels is critical to the development of more complex, functional bio-systems and molecular machines for synthetic biology applications.
Collapse
Affiliation(s)
- Wade Grabow
- Department of Chemistry and Biochemistry, Seattle Pacific University3307 Third Avenue West, Seattle, WA 98119USA
| | - Luc Jaeger
- Department of Chemistry and Biochemistry, Bio-Molecular Science and Engineering Program, University of CaliforniaSanta Barbara, CA 93106-9510USA
| |
Collapse
|
58
|
Banerjee J, Nilsen-Hamilton M. Aptamers: multifunctional molecules for biomedical research. J Mol Med (Berl) 2013; 91:1333-42. [PMID: 24045702 DOI: 10.1007/s00109-013-1085-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/14/2013] [Accepted: 09/04/2013] [Indexed: 12/28/2022]
Abstract
Aptamers are single-stranded oligonucleotides that fold into well-defined three-dimensional shapes, allowing them to bind their targets with high affinity and specificity. They can be generated through an in vitro process called "Systemic Evolution of Ligands by Exponential Enrichment" and applied for specific detection, inhibition, and characterization of various targets like small organic and inorganic molecules, proteins, and whole cells. Aptamers have also been called chemical antibodies because of their synthetic origin and their similar modes of action to antibodies. They exhibit significant advantages over antibodies in terms of their small size, synthetic accessibility, and ability to be chemically modified and thus endowed with new properties. The first generation of aptamer drug "Macugen" was available for public use within 25 years of the discovery of aptamers. With others in the pipeline for clinical trials, this emerging field of medical biotechnology is raising significant interest. However, aptamers pose different problems for their development than for antibodies that need to be addressed to achieve practical applications. It is likely that current developments in aptamer engineering will be the basis for the evolution of improved future bioanalytical and biomedical applications. The present review discusses the development of aptamers for therapeutics, drug delivery, target validation and imaging, and reviews some of the challenges to fully realizing the promise of aptamers in biomedical applications.
Collapse
Affiliation(s)
- Jayeeta Banerjee
- Biology Department, Indian Institute of Science Education and Research (IISER), 900 NCL Innovation Park, Dr. Homi Bhabha Road, Pune, 411008, India,
| | | |
Collapse
|
59
|
Feng H, Chen P, Zhao F, Nassal M, Hu K. Evidence for multiple distinct interactions between hepatitis B virus P protein and its cognate RNA encapsidation signal during initiation of reverse transcription. PLoS One 2013; 8:e72798. [PMID: 23977352 PMCID: PMC3748129 DOI: 10.1371/journal.pone.0072798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/11/2013] [Indexed: 12/27/2022] Open
Abstract
Replication of hepatitis B virus (HBV) via protein-primed reverse transcription is initiated by binding of the viral P protein to the conserved ε stem-loop on the pregenomic (pg) RNA. This triggers encapsidation of the complex and the ε-templated synthesis of a short P protein-linked DNA oligonucleotide (priming) for subsequent minus-strand DNA extension. ε consists of a lower and upper stem, a bulge containing the priming template, and an apical loop. The nonhelical subelements are considered important for DNA synthesis and pgRNA packaging whereas the role of the upper stem is not well characterized. Priming itself could until recently not be addressed because in vitro generated HBV P - ε complexes showed no activity. Focussing on the four A residues at the base and tip of the upper ε stem and the two U residues in the loop we first investigated the impact of 24 mutations on viral DNA accumulation in transfected cells. While surprisingly many mutations were tolerated, further analyzing the negatively acting mutations, including in a new cell-free priming system, revealed divergent position-related impacts on pgRNA packaging, priming activity and possibly initiation site selection. This genetic separability implies that the ε RNA undergoes multiple distinct interactions with P protein as pgRNA encapsidation and replication initiation progress, and that the strict conservation of ε in nature may reflect its optimal adaptation to comply with all of them. The data further define the most attractive mutants for future studies, including as decoys for interference with HBV replication.
Collapse
Affiliation(s)
- Hui Feng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ping Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Michael Nassal
- University Hospital Freiburg, Department of Internal Medicine II/Molecular Biology, Freiburg, Germany
- * E-mail: (MN); (KH)
| | - Kanghong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Biomedical Center, Hubei University of Technology, Wuhan, China
- * E-mail: (MN); (KH)
| |
Collapse
|
60
|
Radom F, Jurek PM, Mazurek MP, Otlewski J, Jeleń F. Aptamers: molecules of great potential. Biotechnol Adv 2013; 31:1260-74. [PMID: 23632375 DOI: 10.1016/j.biotechadv.2013.04.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/27/2013] [Accepted: 04/19/2013] [Indexed: 01/08/2023]
Abstract
Aptamers emerged over 20 years ago as a class of nucleic acids able to recognize specific targets. Today, aptamer-related studies constitute a large and important field of biotechnology. Functional oligonucleotides have proved to be a versatile tool in biomedical research due to the ease of synthesis, a wide range of potentially recognized molecular targets and the simplicity of selection. Similarly to antibodies, aptamers can be used to detect or isolate specific molecules, as well as to act as targeting and therapeutic agents. In this review we present different approaches to aptamer application in nanobiotechnology, diagnostics and medicine.
Collapse
Affiliation(s)
- Filip Radom
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | | | | | | | | |
Collapse
|
61
|
Germer K, Leonard M, Zhang X. RNA aptamers and their therapeutic and diagnostic applications. INTERNATIONAL JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 4:27-40. [PMID: 23638319 PMCID: PMC3627066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/15/2013] [Indexed: 06/02/2023]
Abstract
RNA Aptamers refer to RNA oligonulceotides that are capable of binding to specific targets with high affinity and specificity. Through a process called Systematic Evolution of Ligands by EXponential enrichment (SELEX), a number of RNA aptamers have been identified against various targets including organic compounds, nucleotides, proteins and even whole cells and organisms. RNA aptamers have proven to be of high therapeutic and diagnostic value with recent FDA approval of the first aptamer drug and additional ones in the clinical pipelines. It has also been found to be a particularly useful tool for cell-type specific delivery of other RNA therapeutics like siRNA. All these establish RNA aptamers as one of the pivotal tools of the emerging RNA nanotechnology field in the fight against human diseases including cancer, viral infections and other diseases. This article summarizes the current advancement in the identification of RNA aptamers and also provides some examples of their therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Katherine Germer
- Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine OH 45267
| | | | | |
Collapse
|
62
|
Šmuc T, Ahn IY, Ulrich H. Nucleic acid aptamers as high affinity ligands in biotechnology and biosensorics. J Pharm Biomed Anal 2013; 81-82:210-7. [PMID: 23666257 DOI: 10.1016/j.jpba.2013.03.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/11/2013] [Accepted: 03/20/2013] [Indexed: 02/07/2023]
Abstract
Aptamers are small nucleic acid molecules capable of binding to a wide range of target molecules with high affinity and specificity. They have been developed and widely used not only as research tools, but also as biosensors, specific antagonists, and diagnostic markers and as protein purification platform for many pharmaceutical and clinical applications. Here, in this paper we will explore biochemical aspects of aptamer-target interactions and show why aptamers rival antibodies in target recognition and purification procedures. This review will focus on strategies of using aptamers as affinity ligands for molecules of therapeutic and pharmaceutical interest including applications in chromatography and capillary electrophoresis for protein and small molecule purification. Moreover, we will also discuss aptamers whose binding parameters can be controlled on demand for diagnostic approaches and used as sensitive receptors in biosensorics. Aptamers have opened up exciting fields in basic and applied research of pharmaceutical and biotechnological interest.
Collapse
Affiliation(s)
- Tina Šmuc
- Laboratory for Bio-instrumentation, Centre of Excellence for Biosensors, Instrumentation and Process Control, Velika pot 22, 5250 Solkan, Slovenia
| | | | | |
Collapse
|
63
|
Colorimetric Sensing of Tetracyclines in Milk Based on the Assembly of Cationic Conjugated Polymer-Aggregated Gold Nanoparticles. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9577-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
64
|
Tonelli RR, Colli W, Alves MJM. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro. Front Immunol 2013; 3:419. [PMID: 23316203 PMCID: PMC3540409 DOI: 10.3389/fimmu.2012.00419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/20/2012] [Indexed: 11/13/2022] Open
Abstract
Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, and Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific parasite and host cell molecules. The large amount of possible involved molecules poses additional difficulties for their identification by the classical biochemical approaches. In this respect, the search for alternative techniques should be pursued. Among them two powerful methodologies can be employed, both relying upon the construction of highly diverse combinatorial libraries of peptides or oligonucleotides that randomly bind with high affinity to targets on the cell surface and are selectively displaced by putative ligands. These are, respectively, the peptide-based phage display and the oligonucleotide-based aptamer techniques. The phage display technique has been extensively employed for the identification of novel ligands in vitro and in vivo in different areas such as cancer, vaccine development, and epitope mapping. Particularly, phage display has been employed in the investigation of pathogen–host interactions. Although this methodology has been used for some parasites with encouraging results, in trypanosomatids its use is, as yet, scanty. RNA and DNA aptamers, developed by the SELEX process (Systematic Evolution of Ligands by Exponential Enrichment), were described over two decades ago and since then contributed to a large number of structured nucleic acids for diagnostic or therapeutic purposes or for the understanding of the cell biology. Similarly to the phage display technique scarce use of the SELEX process has been used in the probing of parasite–host interaction. In this review, an overall survey on the use of both phage display and aptamer technologies in different pathogenic organisms will be discussed. Using these techniques, recent results on the interaction of Trypanosoma cruzi with the host will be highlighted focusing on members of the 85 kDa protein family, a subset of the gp85/TS superfamily.
Collapse
Affiliation(s)
- R R Tonelli
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo São Paulo, Brazil
| | | | | |
Collapse
|
65
|
Lakhin A, Tarantul V, Gening L. Aptamers: problems, solutions and prospects. Acta Naturae 2013; 5:34-43. [PMID: 24455181 PMCID: PMC3890987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aptamers are short single-stranded oligonucleotides that are capable of binding various molecules with high affinity and specificity. When the technology of aptamer selection was developed almost a quarter of a century ago, a suggestion was immediately put forward that it might be a revolutionary start into solving many problems associated with diagnostics and the therapy of diseases. However, multiple attempts to use aptamers in practice, although sometimes successful, have been generally much less efficient than had been expected initially. This review is mostly devoted not to the successful use of aptamers but to the problems impeding the widespread application of aptamers in diagnostics and therapy, as well as to approaches that could considerably expand the range of aptamer application.
Collapse
Affiliation(s)
- A.V. Lakhin
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow, Russia, 123182
| | - V.Z. Tarantul
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow, Russia, 123182
| | - L.V. Gening
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., Moscow, Russia, 123182
| |
Collapse
|
66
|
He L, Luo Y, Zhi W, Wu Y, Zhou P. A Colorimetric Aptamer Biosensor Based on Gold Nanoparticles for the Ultrasensitive and Specific Detection of Tetracycline in Milk. Aust J Chem 2013. [DOI: 10.1071/ch12446] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This paper proposes a sensing strategy which employs an aptamer, unmodified gold nanoparticles (AuNP), and hexadecyltrimethylammonium bromide (CTAB) to detect tetracycline (TET) in raw milk. The method is based on the colorimetric assay of aggregating AuNP. In the absence of TET, the CTAB and aptamer form a complex which allows the aggregation of AuNP. In the presence of TET, the TET aptamer is exhausted first due to the formation of aptamer-TET complexes, which prevents assembly of the CTAB–aptamer supramolecule, causing a colour change and no aggregation of AuNP. This mechanism for the detection of TET proved to be sensitive and convenient. The colorimetric assay has a detection limit of 122 nM TET. This sensor has great potential for the sensitive, colorimetric detection of a wide range of molecular analytes.
Collapse
|
67
|
Ditzler MA, Lange MJ, Bose D, Bottoms CA, Virkler KF, Sawyer AW, Whatley AS, Spollen W, Givan SA, Burke DH. High-throughput sequence analysis reveals structural diversity and improved potency among RNA inhibitors of HIV reverse transcriptase. Nucleic Acids Res 2012; 41:1873-84. [PMID: 23241386 PMCID: PMC3561961 DOI: 10.1093/nar/gks1190] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Systematic evolution of ligands through exponential enrichment (SELEX) is a well-established method for generating nucleic acid populations that are enriched for specified functions. High-throughput sequencing (HTS) enhances the power of comparative sequence analysis to reveal details of how RNAs within these populations recognize their targets. We used HTS analysis to evaluate RNA populations selected to bind type I human immunodeficiency virus reverse transcriptase (RT). The populations are enriched in RNAs of independent lineages that converge on shared motifs and in clusters of RNAs with nearly identical sequences that share common ancestry. Both of these features informed inferences of the secondary structures of enriched RNAs, their minimal structural requirements and their stabilities in RT-aptamer complexes. Monitoring population dynamics in response to increasing selection pressure revealed RNA inhibitors of RT that are more potent than the previously identified pseudoknots. Improved potency was observed for inhibition of both purified RT in enzymatic assays and viral replication in cell-based assays. Structural and functional details of converged motifs that are obscured by simple consensus descriptions are also revealed by the HTS analysis. The approach presented here can readily be generalized for the efficient and systematic post-SELEX development of aptamers for down-stream applications.
Collapse
Affiliation(s)
- Mark A Ditzler
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Sundaram P, Kurniawan H, Byrne ME, Wower J. Therapeutic RNA aptamers in clinical trials. Eur J Pharm Sci 2012; 48:259-71. [PMID: 23142634 DOI: 10.1016/j.ejps.2012.10.014] [Citation(s) in RCA: 194] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/27/2012] [Accepted: 10/25/2012] [Indexed: 01/07/2023]
Abstract
RNA aptamers can fold into complex structures and bind with high affinity and selectivity to various macromolecules, viruses, and cells. They are isolated from a large pool of nucleic acids by a conceptually straightforward iterative selection process called SELEX. Aptamers have enormous potential as therapeutics due to their ability to bind to proteins and specifically inhibit their functions with minimal or no harmful side-effects. The first aptamer therapeutic was FDA approved in 2005 and a number of novel aptamer-based therapeutics are currently undergoing clinical trials for treating diseases such as macular degeneration, choroidal neovascularization, intravascular thrombus, acute coronary syndrome, von Willebrand factor related disorders, von Hippel-Lindau syndrome (VHL), angiomas, acute myeloid leukemia, renal cell carcinoma, non-small cell lung cancer, thrombotic thrombocytopenic purpura, and several others. In this review, we present aptamers in on-going, completed, and terminated clinical studies highlighting their mechanism of action as well as the inherent challenges of aptamer production and use.
Collapse
Affiliation(s)
- Padma Sundaram
- Biomimetic & Biohybrid Materials, Biomedical Devices, and Drug Delivery Laboratories, Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | | | | | | |
Collapse
|
69
|
Ruigrok VJB, Levisson M, Hekelaar J, Smidt H, Dijkstra BW, van der Oost J. Characterization of aptamer-protein complexes by X-ray crystallography and alternative approaches. Int J Mol Sci 2012; 13:10537-10552. [PMID: 22949878 PMCID: PMC3431876 DOI: 10.3390/ijms130810537] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/09/2012] [Accepted: 08/17/2012] [Indexed: 12/11/2022] Open
Abstract
Aptamers are oligonucleotide ligands, either RNA or ssDNA, selected for high-affinity binding to molecular targets, such as small organic molecules, proteins or whole microorganisms. While reports of new aptamers are numerous, characterization of their specific interaction is often restricted to the affinity of binding (K(D)). Over the years, crystal structures of aptamer-protein complexes have only scarcely become available. Here we describe some relevant technical issues about the process of crystallizing aptamer-protein complexes and highlight some biochemical details on the molecular basis of selected aptamer-protein interactions. In addition, alternative experimental and computational approaches are discussed to study aptamer-protein interactions.
Collapse
Affiliation(s)
- Vincent J. B. Ruigrok
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen 6703 HB, The Netherlands; E-Mails: (M.L.); (H.S.)
| | - Mark Levisson
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen 6703 HB, The Netherlands; E-Mails: (M.L.); (H.S.)
| | - Johan Hekelaar
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands; E-Mails: (J.H.); (B.W.D.)
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen 6703 HB, The Netherlands; E-Mails: (M.L.); (H.S.)
| | - Bauke W. Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, Groningen 9747 AG, The Netherlands; E-Mails: (J.H.); (B.W.D.)
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen 6703 HB, The Netherlands; E-Mails: (M.L.); (H.S.)
| |
Collapse
|
70
|
Polyvalent nucleic acid aptamers and modulation of their activity: a focus on the thrombin binding aptamer. Pharmacol Ther 2012; 136:202-15. [PMID: 22850531 DOI: 10.1016/j.pharmthera.2012.07.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 01/29/2023]
Abstract
Nucleic acid-based aptamers can be selected from combinatorial libraries of synthetic oligonucleotides to bind, with affinity and specificity similar to antibodies, a wide range of biomedically relevant targets. Compared to protein therapeutics, aptamers exhibit significant advantages in terms of size, non-immunogenicity and wide synthetic accessibility. Various chemical modifications have been introduced in the natural oligonucleotide backbone of aptamers in order to increase their half-life, as well as their pharmacological properties. Very effective alternative approaches, devised in order to improve both the aptamer activity and stability, were based on the design of polyvalent aptamers, able to establish multivalent interactions with the target: thus, multiple copies of an aptamer can be assembled on the same molecular- or nanomaterial-based scaffold. In the present review, the thrombin binding aptamers (TBAs) are analyzed as a model system to study multiple-aptamer constructs aimed at improving their anticoagulation activity in terms of binding to the target and stability to enzymatic degradation. Indeed - even if the large number of chemically modified TBAs investigated in the last 20 years has led to encouraging results - a significant progress has been obtained only recently with bivalent or engineered dendritic TBA aptamers, or assemblies of TBAs on nanoparticles and DNA nanostructures. Furthermore, the modulation of the aptamers activity by means of tailored drug-active reversal agents, especially in the field of anticoagulant aptamers, as well as the reversibility of the TBA activity through the use of antidotes, such as porphyrins, complementary oligonucleotides or of external stimuli, are discussed.
Collapse
|
71
|
Giambaşu GM, Lee TS, Scott WG, York DM. Mapping L1 ligase ribozyme conformational switch. J Mol Biol 2012; 423:106-22. [PMID: 22771572 DOI: 10.1016/j.jmb.2012.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/21/2012] [Accepted: 06/25/2012] [Indexed: 01/10/2023]
Abstract
L1 ligase (L1L) molecular switch is an in vitro optimized synthetic allosteric ribozyme that catalyzes the regioselective formation of a 5'-to-3' phosphodiester bond, a reaction for which there is no known naturally occurring RNA catalyst. L1L serves as a proof of principle that RNA can catalyze a critical reaction for prebiotic RNA self-replication according to the RNA world hypothesis. L1L crystal structure captures two distinct conformations that differ by a reorientation of one of the stems by around 80Å and are presumed to correspond to the active and inactive state, respectively. It is of great interest to understand the nature of these two states in solution and the pathway for their interconversion. In this study, we use explicit solvent molecular simulation together with a novel enhanced sampling method that utilizes concepts from network theory to map out the conformational transition between active and inactive states of L1L. We find that the overall switching mechanism can be described as a three-state/two-step process. The first step involves a large-amplitude swing that reorients stem C. The second step involves the allosteric activation of the catalytic site through distant contacts with stem C. Using a conformational space network representation of the L1L switch transition, it is shown that the connection between the three states follows different topographical patterns: the stem C swing step passes through a narrow region of the conformational space network, whereas the allosteric activation step covers a much wider region and a more diverse set of pathways through the network.
Collapse
Affiliation(s)
- George M Giambaşu
- BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
72
|
Abstract
There are two RNA worlds. The first is the primordial RNA world, a hypothetical era when RNA served as both information and function, both genotype and phenotype. The second RNA world is that of today's biological systems, where RNA plays active roles in catalyzing biochemical reactions, in translating mRNA into proteins, in regulating gene expression, and in the constant battle between infectious agents trying to subvert host defense systems and host cells protecting themselves from infection. This second RNA world is not at all hypothetical, and although we do not have all the answers about how it works, we have the tools to continue our interrogation of this world and refine our understanding. The fun comes when we try to use our secure knowledge of the modern RNA world to infer what the primordial RNA world might have looked like.
Collapse
Affiliation(s)
- Thomas R Cech
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309-0215, USA.
| |
Collapse
|
73
|
Wang P, Yang Y, Hong H, Zhang Y, Cai W, Fang D. Aptamers as therapeutics in cardiovascular diseases. Curr Med Chem 2012; 18:4169-74. [PMID: 21848510 DOI: 10.2174/092986711797189673] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 05/26/2011] [Accepted: 05/28/2011] [Indexed: 12/18/2022]
Abstract
With many advantages over other therapeutic agents such as monoclonal antibodies, aptamers have recently emerged as a novel and powerful class of ligands with excellent potential for diagnostic and therapeutic applications. Typically generated through Systematic Evolution of Ligands by EXponential enrichment (SELEX), aptamers have been selected against a wide range of targets such as proteins, phospholipids, sugars, nucleic acids, as well as whole cells. DNA/RNA aptamers are single-stranded DNA/RNA oligonucleotides (with a molecular weight of 5-40 kDa) that can fold into well-defined 3D structures and bind to their target molecules with high affinity and specificity. A number of strategies have been adopted to synthesize aptamers with enhanced in vitro/in vivo stability, aiming at potential therapeutic/diagnostic applications in the clinic. In cardiovascular diseases, aptamers can be developed into therapeutic agents as anti-thrombotics, anti-coagulants, among others. This review focuses on aptamers that were selected against various molecular targets involved in cardiovascular diseases: von Willebrand factor (vWF), thrombin, factor IX, phospholamban, P-selectin, platelet-derived growth factor, integrin α(v)β(3), CXCL10, vasopressin, among others. With continued effort in the development of aptamer-based therapeutics, aptamers will find their niches in cardiovascular diseases and significantly impact clinical patient management.
Collapse
Affiliation(s)
- P Wang
- Department of Gastroenterology, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|