51
|
Wodak SJ, Pu S, Vlasblom J, Seéraphin B. Challenges and Rewards of Interaction Proteomics. Mol Cell Proteomics 2009; 8:3-18. [DOI: 10.1074/mcp.r800014-mcp200] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
52
|
Abstract
The spliceosome is a large nuclear structure consisting of dynamically interacting RNAs and proteins. This chapter briefly reviews some of the known components and their interactions. Large-scale proteomics and gene expression studies may be required to unravel the many intricate mechanisms involved in splice site recognition and selection.
Collapse
|
53
|
Abstract
In eukaryotes, copying the genetic information from a DNA template into RNA is not sufficient itself to confer functional competence to the DNA-encoded message. mRNAs have to be processed by enzymes and packaged with proteins within nuclei to generate mRNP (messenger ribonucleoprotein) particles, before these can be exported to the cytoplasm. Processing and packaging factors are believed to interact with the nascent mRNA co-transcriptionally, which protects the highly reactive RNA molecule from a presumably aggressive nuclear environment while providing early commitment to its functional fate. In this review, we will describe the factors that are believed to provide the appropriate 'dress code' to the mRNA and the mechanisms underlying the proofreading events that guarantee its quality, focusing on yeast as a model system.
Collapse
|
54
|
Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2008; 105:8795-800. [PMID: 18550839 DOI: 10.1073/pnas.0802493105] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The processing of Arabidopsis thaliana microRNAs (miRNAs) from longer primary transcripts (pri-miRNAs) requires the activity of several proteins, including DICER-LIKE1 (DCL1), the double-stranded RNA-binding protein HYPONASTIC LEAVES1 (HYL1), and the zinc finger protein SERRATE (SE). It has been noted before that the morphological appearance of weak se mutants is reminiscent of plants with mutations in ABH1/CBP80 and CBP20, which encode the two subunits of the nuclear cap-binding complex. We report that, like SE, the cap-binding complex is necessary for proper processing of pri-miRNAs. Inactivation of either ABH1/CBP80 or CBP20 results in decreased levels of mature miRNAs accompanied by apparent stabilization of pri-miRNAs. Whole-genome tiling array analyses reveal that se, abh1/cbp80, and cbp20 mutants also share similar splicing defects, leading to the accumulation of many partially spliced transcripts. This is unlikely to be an indirect consequence of improper miRNA processing or other mRNA turnover pathways, because introns retained in se, abh1/cbp80, and cbp20 mutants are not affected by mutations in other genes required for miRNA processing or for nonsense-mediated mRNA decay. Taken together, our results uncover dual roles in splicing and miRNA processing that distinguish SE and the cap-binding complex from specialized miRNA processing factors such as DCL1 and HYL1.
Collapse
|
55
|
3' end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J 2008; 27:482-98. [PMID: 18256699 DOI: 10.1038/sj.emboj.7601932] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 10/24/2007] [Indexed: 12/27/2022] Open
Abstract
Recent advances in the understanding of the molecular mechanism of mRNA 3' end processing have uncovered a previously unanticipated integrated network of transcriptional and RNA-processing mechanisms. A variety of human diseases impressively reflect the importance of the precision of the complex 3' end-processing machinery and gene specific deregulation of 3' end processing can result from mutations of RNA sequence elements that bind key specific processing factors. Interestingly, more general deregulation of 3' end processing can be caused either by mutations of these processing factors or by the disturbance of the well-coordinated equilibrium between these factors. From a medical perspective, both loss of function and gain of function can be functionally relevant, and an increasing number of different disease entities exemplifies that inappropriate 3' end formation of human mRNAs can have a tremendous impact on health and disease. Here, we review the mechanistic hallmarks of mRNA 3' end processing, highlight the medical relevance of deregulation of this important step of mRNA maturation and illustrate the implications for diagnostic and therapeutic strategies.
Collapse
|
56
|
Wong CM, Qiu H, Hu C, Dong J, Hinnebusch AG. Yeast cap binding complex impedes recruitment of cleavage factor IA to weak termination sites. Mol Cell Biol 2007; 27:6520-31. [PMID: 17636014 PMCID: PMC2099607 DOI: 10.1128/mcb.00733-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear cap binding complex (CBC) is recruited cotranscriptionally and stimulates spliceosome assembly on nascent mRNAs; however, its possible functions in regulating transcription elongation or termination were not well understood. We show that, while CBC appears to be dispensable for normal rates and processivity of elongation by RNA polymerase II (Pol II), it plays a direct role in preventing polyadenylation at weak termination sites. Similarly to Npl3p, with which it interacts, CBC suppresses the weak terminator of the gal10-Delta56 mutant allele by impeding recruitment of termination factors Pcf11p and Rna15p (subunits of cleavage factor IA [CF IA]) and does so without influencing Npl3p occupancy at the termination site. Importantly, deletion of CBC subunits or NPL3 also increases termination at a naturally occurring weak poly(A) site in the RNA14 coding sequences. We also show that CBC is most likely recruited directly to the cap of nascent transcripts rather than interacting first with transcriptional activators or the phosphorylated C-terminal domain of Pol II. Thus, our findings illuminate the mechanism of CBC recruitment and extend its function in Saccharomyces cerevisiae beyond mRNA splicing and degradation of aberrant nuclear mRNAs to include regulation of CF IA recruitment at poly(A) selection sites.
Collapse
Affiliation(s)
- Chi-Ming Wong
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
57
|
Qiu J, Cheng F, Pintel D. Distance-dependent processing of adeno-associated virus type 5 RNA is controlled by 5' exon definition. J Virol 2007; 81:7974-84. [PMID: 17507471 PMCID: PMC1951275 DOI: 10.1128/jvi.00714-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus type 5 (AAV5) is unique among human AAV serotypes in that it uses a polyadenylation site [(pA)p] within the single small intron in the center of the genome. We previously reported that inhibition of polyadenylation at (pA)p, necessary for read-through of P41-generated capsid gene pre-mRNAs which are subsequently spliced, requires binding of U1 snRNP to the upstream donor. Inhibition was reduced as the distance between the cap site and the donor was increased (increasing the size of the 5' exon). Here, we have demonstrated that U1-70K is a key component of U1 snRNP that mediates inhibition of polyadenylation at (pA)p. Furthermore, introduction of a U-rich stretch, predicted to target TIA-1 and thus increase the affinity of U1 snRNP binding to the intervening donor site, significantly augmented inhibition of (pA)p, while depletion of TIA-1 by siRNA increased (pA)p read-through. Finally, artificially tethering the cap binding complex (CBC) components CBP80 and CBP20 upstream of the intron donor increased inhibition of polyadenylation at (pA)p. Our results suggest that interaction with the CBC strengthens U1 snRNP binding to the downstream intron donor in a manner inversely proportional to the size of the 5' exon, thus governing the competition between intron splicing and polyadenylation at (pA)p. This competition must be optimized to program both the levels of polyadenylation of P7- and P19-generated RNA at (pA)p required to produce proper levels of the essential Rep proteins and the splicing of P41-generated RNAs to produce the proper ratio of capsid proteins during AAV5 infection.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Molecular Microbiology and Immunology, University of Missouri--Columbia, School of Medicine, Life Sciences Center, Columbia, Missouri 65212, USA
| | | | | |
Collapse
|
58
|
Abruzzi K, Denome S, Olsen JR, Assenholt J, Haaning LL, Jensen TH, Rosbash M. A novel plasmid-based microarray screen identifies suppressors of rrp6Delta in Saccharomyces cerevisiae. Mol Cell Biol 2007; 27:1044-55. [PMID: 17101774 PMCID: PMC1800678 DOI: 10.1128/mcb.01299-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 08/07/2006] [Accepted: 10/30/2006] [Indexed: 11/20/2022] Open
Abstract
Genetic screens in Saccharomyces cerevisiae provide novel information about interacting genes and pathways. We screened for high-copy-number suppressors of a strain with the gene encoding the nuclear exosome component Rrp6p deleted, with either a traditional plate screen for suppressors of rrp6Delta temperature sensitivity or a novel microarray enhancer/suppressor screening (MES) strategy. MES combines DNA microarray technology with high-copy-number plasmid expression in liquid media. The plate screen and MES identified overlapping, but also different, suppressor genes. Only MES identified the novel mRNP protein Nab6p and the tRNA transporter Los1p, which could not have been identified in a traditional plate screen; both genes are toxic when overexpressed in rrp6Delta strains at 37 degrees C. Nab6p binds poly(A)+ RNA, and the functions of Nab6p and Los1p suggest that mRNA metabolism and/or protein synthesis are growth rate limiting in rrp6Delta strains. Microarray analyses of gene expression in rrp6Delta strains and a number of suppressor strains support this hypothesis.
Collapse
MESH Headings
- Down-Regulation
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- Exosome Multienzyme Ribonuclease Complex
- Gene Deletion
- Gene Expression Regulation, Fungal/genetics
- Genes, Fungal/genetics
- Genes, Suppressor
- Oligonucleotide Array Sequence Analysis/methods
- Plasmids/genetics
- Polyadenylation
- Protein Binding
- RNA Stability
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA-Binding Proteins/metabolism
- Saccharomyces cerevisiae/cytology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Suppression, Genetic
- Temperature
Collapse
Affiliation(s)
- Katharine Abruzzi
- Howard Hughes Medical Institute and Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Maciag K, Altschuler SJ, Slack MD, Krogan NJ, Emili A, Greenblatt JF, Maniatis T, Wu LF. Systems-level analyses identify extensive coupling among gene expression machines. Mol Syst Biol 2006; 2:2006.0003. [PMID: 16738550 PMCID: PMC1681477 DOI: 10.1038/msb4100045] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 12/06/2005] [Indexed: 01/30/2023] Open
Abstract
Here, we develop computational methods to assess and consolidate large, diverse protein interaction data sets, with the objective of identifying proteins involved in the coupling of multicomponent complexes within the yeast gene expression pathway. From among approximately 43 000 total interactions and 2100 proteins, our methods identify known structural complexes, such as the spliceosome and SAGA, and functional modules, such as the DEAD-box helicases, within the interaction network of proteins involved in gene expression. Our process identifies and ranks instances of three distinct, biologically motivated motifs, or patterns of coupling among distinct machineries involved in different subprocesses of gene expression. Our results confirm known coupling among transcription, RNA processing, and export, and predict further coupling with translation and nonsense-mediated decay. We systematically corroborate our analysis with two independent, comprehensive experimental data sets. The methods presented here may be generalized to other biological processes and organisms to generate principled, systems-level network models that provide experimentally testable hypotheses for coupling among biological machines.
Collapse
Affiliation(s)
- Karolina Maciag
- Bauer Center for Genomics Research, Harvard University, Cambridge, MA, USA
| | - Steven J Altschuler
- Department of Pharmacology and Green Comprehensive Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael D Slack
- Department of Pharmacology and Green Comprehensive Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nevan J Krogan
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Emili
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Jack F Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
| | - Tom Maniatis
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Lani F Wu
- Department of Pharmacology and Green Comprehensive Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
60
|
Lall S, Piano F, Davis RE. Caenorhabditis elegans decapping proteins: localization and functional analysis of Dcp1, Dcp2, and DcpS during embryogenesis. Mol Biol Cell 2005; 16:5880-90. [PMID: 16207815 PMCID: PMC1289429 DOI: 10.1091/mbc.e05-07-0622] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/20/2005] [Accepted: 09/26/2005] [Indexed: 02/06/2023] Open
Abstract
Though posttranscriptional regulation is important for early embryogenesis, little is understood regarding control of mRNA decay during development. Previous work defined two major pathways by which normal transcripts are degraded in eukaryotes. However it is not known which pathways are key in mRNA decay during early patterning or whether developmental transcripts are turned over via specific pathways. Here we show that Caenorhabditis elegans Dcp2 is localized to distinct foci during embryogenesis, reminiscent of P-bodies, the sites of mRNA degradation in yeast and mammals. However the decapping enzyme of the 3' to 5' transcript decay system (DcpS) localizes throughout the cytoplasm, suggesting this degradation pathway is not highly organized. In addition we find that Dcp2 is localized to P-granules, showing that Dcp2 is stored and/or active in these structures. However RNAi of these decapping enzymes has no obvious effect on embryogenesis. In contrast we find that nuclear cap binding proteins (CBP-20 and 80), eIF4G, and PAB-1 are absolutely required for development. Together our data provides further evidence that pathways of general mRNA metabolism can be remarkably organized during development, with two different decapping enzymes localized in distinct cytoplasmic domains.
Collapse
Affiliation(s)
- Sabbi Lall
- Department of Biology, City University of New York Graduate Center, College of Staten Island, Staten Island CUNY, New York, NY 10314, USA
| | | | | |
Collapse
|
61
|
Schroder PA, Moore MJ. Association of ribosomal proteins with nascent transcripts in S. cerevisiae. RNA (NEW YORK, N.Y.) 2005; 11:1521-9. [PMID: 16199762 PMCID: PMC1370836 DOI: 10.1261/rna.2134305] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 07/15/2005] [Indexed: 05/04/2023]
Abstract
Although it is generally accepted that transcription and translation are spatially separated in eukaryotes, a number of recent observations have called this belief into question. In particular, several studies have shown that parts of the translation machinery, including ribosomal proteins, can be found associated with sites of active transcription in metazoans. Here we describe results of chromatin immunoprecipitation (ChIP) experiments designed to determine whether ribosomal proteins associate with nascent transcripts in Saccharomyces cerevisiae and whether this association reflects a functional engagement of the translation machinery. We find that HAT-tagged ribosomal proteins can be detected in association with nascent RNAs in budding yeast. However, our data clearly indicate that this binding is independent of transcript translatability, so is therefore not indicative of nuclear translation.
Collapse
Affiliation(s)
- Patricia A Schroder
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, MA 02454-9110, USA
| | | |
Collapse
|
62
|
Görnemann J, Kotovic KM, Hujer K, Neugebauer KM. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol Cell 2005; 19:53-63. [PMID: 15989964 DOI: 10.1016/j.molcel.2005.05.007] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 04/05/2005] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
Coupling between transcription and pre-mRNA splicing is a key regulatory mechanism in gene expression. Here, we investigate cotranscriptional spliceosome assembly in yeast, using in vivo crosslinking to determine the distribution of spliceosome components along intron-containing genes. Accumulation of the U1, U2, and U5 small nuclear ribonucleoprotein particles (snRNPs) and the 3' splice site binding factors Mud2p and BBP was detected in patterns indicative of progressive and complete spliceosome assembly; recruitment of the nineteen complex (NTC) component Prp19p suggests that splicing catalysis is also cotranscriptional. The separate dynamics of the U1, U2, and U5 snRNPs are consistent with stepwise recruitment of individual snRNPs rather than a preformed "penta-snRNP", as recently proposed. Finally, we show that the cap binding complex (CBC) is necessary, but not sufficient, for cotranscriptional spliceosome assembly. Thus, the demonstration of an essential link between CBC and spliceosome assembly in vivo indicates that 5' end capping couples pre-mRNA splicing to transcription.
Collapse
Affiliation(s)
- Janina Görnemann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
63
|
Lacadie SA, Rosbash M. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5'ss base pairing in yeast. Mol Cell 2005; 19:65-75. [PMID: 15989965 DOI: 10.1016/j.molcel.2005.05.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 04/05/2005] [Accepted: 05/09/2005] [Indexed: 11/16/2022]
Abstract
To investigate the mechanism of spliceosome assembly in vivo, we performed chromatin immunoprecipitation (ChIP) analysis of U1, U2, and U5 small nuclear ribonucleoprotein particles (snRNPs) to intron-containing yeast (S. cerevisiae) genes. The snRNPs display patterns that indicate a cotranscriptional assembly model: U1 first, then U2, and the U4/U6*U5 tri-snRNP followed by U1 destabilization. cis-splicing mutations also support a role of U2 and/or the tri-snRNP in U1 destabilization. Moreover, they indicate that splicing efficiency has a major impact on cotranscriptional snRNP recruitment and suggest that cotranscriptional recruitment of U2 or the tri-snRNP is required to commit the pre-mRNA to splicing. Branchpoint (BP) mutations had a major effect on the U1 pattern, whereas 5' splice site (5'ss) mutations had a stronger effect on the U2 pattern. A 5'ss-U1 snRNA complementation experiment suggests that pairing between U1 and the 5'ss occurs after U1 recruitment and contributes to a specific U1:substrate conformation required for efficient U2 and tri-snRNP recruitment.
Collapse
Affiliation(s)
- Scott A Lacadie
- Howard Hughes Medical Institute, Biology Department MS008, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
64
|
Li H, Tschudi C. Novel and essential subunits in the 300-kilodalton nuclear cap binding complex of Trypanosoma brucei. Mol Cell Biol 2005; 25:2216-26. [PMID: 15743819 PMCID: PMC1061625 DOI: 10.1128/mcb.25.6.2216-2226.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the unique aspects of RNA processing in trypanosomatid protozoa is the presence of a cap 4 structure (m7Gpppm2(6)AmpAmpCmpm3Um) at the 5' end of all mRNAs. The cap 4 becomes part of the mRNA through trans-splicing of a 39-nucleotide-long sequence donated by the spliced leader RNA. Although the cap 4 modifications are required for trans-splicing to occur, the underlying mechanism remains to be determined. We now describe an unconventional nuclear cap binding complex (CBC) in Trypanosoma brucei with an apparent molecular mass of 300 kDa and consisting of five protein components: the known CBC subunits CBP20 and importin-alpha and three novel proteins that are only present in organisms featuring a cap 4 structure and trans-splicing. Competitive binding studies are consistent with a specific interaction between the CBC and the cap 4 structure. Downregulation of several individual components of the T. brucei CBC by RNA interference demonstrated an essential function at an early step in trans-splicing. Thus, our studies are consistent with the CBC providing a mechanistic link between cap 4 modifications and trans-splicing.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Epidemiology and Public Health, Yale University Medical School, BCMM 136C, 295 Congress Ave., New Haven, CT 06536-0812, USA
| | | |
Collapse
|
65
|
The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b106365] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
66
|
Papp I, Mur LA, Dalmadi A, Dulai S, Koncz C. A mutation in the Cap Binding Protein 20 gene confers drought tolerance to Arabidopsis. PLANT MOLECULAR BIOLOGY 2004; 55:679-86. [PMID: 15604709 DOI: 10.1007/s11103-004-1680-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In a genetic screen for Arabidopsis mutants displaying pleiotropic alterations in vegetative development and stress responses we have identified a T-DNA insertion mutation in the Cap Binding Protein 20 (CBP20) gene, that encodes the 20kDa subunit of the nuclear mRNA cap binding complex (nCBC). Plants homozygous for the recessive cbp20 mutation show mild developmental abnormalities, such as serrated rosette leaves, delayed development and slightly reduced stature. Loss of the cbp20 function also confers hypersensitivity to abscisic acid during germination, significant reduction of stomatal conductance and greatly enhanced tolerance to drought. Expression of the wild type cDNA by CaMV35S promoter provides full genetic complementation of the pleiotropic cbp20 phenotype. Phenotypic characteristics of the cbp20 mutant are very similar to those of recently described abh1 mutant that is defective in the 80kDa subunit of nCBC. Our data thus confirm that both genes are dedicated to the same function. CBP20 provides a new target for breeding efforts that aim at the improvement of drought tolerance in plants. Our results also show that screening for pleiotropic phenotypes in mutant plant populations may be a fruitful strategy to isolate genes for agronomically important traits.
Collapse
Affiliation(s)
- István Papp
- Agricultural Biotechnology Center, Szent-Györgyi u. 4, 2100 Gödöllõ, Hungary.
| | | | | | | | | |
Collapse
|
67
|
Qiu J, Pintel DJ. Alternative Polyadenylation of Adeno-associated Virus Type 5 RNA within an Internal Intron Is Governed by the Distance between the Promoter and the Intron and Is Inhibited by U1 Small Nuclear RNP Binding to the Intervening Donor. J Biol Chem 2004; 279:14889-98. [PMID: 14749332 DOI: 10.1074/jbc.m312734200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adeno-associated virus type 5 is unique among adeno-associated virus serotypes in that it uses a polyadenylation site in the center of the genome. The great majority of transcripts generated from the upstream P7 and P19 promoters are polyadenylated at a site in the central intron ((pA)p); however, most of the viral transcripts generated by the proximal P41 promoter are polyadenylated at the distal polyadenylation site at the 3' end of the genome (pA)d and subsequently spliced. Polyadenylation at (pA)p increases as the distance between the RNA initiation site and the intron and (pA)p site is increased. The steady-state level of RNAs polyadenylated at (pA)p is independent of the promoter used or of the intervening sequence but is dependent upon competition with splicing, inhibition by U1 snRNP binding to the intron donor, and the intrinsic efficiency of the cleavage/polyadenylation reaction. Each of these determinants shows a marked dependence on the distance between the RNA initiation site and the intron and (pA)p. Finally, unlike other reported systems, inhibition of (pA)p by U1 snRNP binding to the intron donor is decreased as the distance between the donor and (pA)p is increased.
Collapse
Affiliation(s)
- Jianming Qiu
- Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine, Columbia, Missouri 65212, USA
| | | |
Collapse
|
68
|
Krogan NJ, Peng WT, Cagney G, Robinson MD, Haw R, Zhong G, Guo X, Zhang X, Canadien V, Richards DP, Beattie BK, Lalev A, Zhang W, Davierwala AP, Mnaimneh S, Starostine A, Tikuisis AP, Grigull J, Datta N, Bray JE, Hughes TR, Emili A, Greenblatt JF. High-definition macromolecular composition of yeast RNA-processing complexes. Mol Cell 2004; 13:225-39. [PMID: 14759368 DOI: 10.1016/s1097-2765(04)00003-6] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Revised: 11/18/2003] [Accepted: 11/24/2003] [Indexed: 11/29/2022]
Abstract
A remarkably large collection of evolutionarily conserved proteins has been implicated in processing of noncoding RNAs and biogenesis of ribonucleoproteins. To better define the physical and functional relationships among these proteins and their cognate RNAs, we performed 165 highly stringent affinity purifications of known or predicted RNA-related proteins from Saccharomyces cerevisiae. We systematically identified and estimated the relative abundance of stably associated polypeptides and RNA species using a combination of gel densitometry, protein mass spectrometry, and oligonucleotide microarray hybridization. Ninety-two discrete proteins or protein complexes were identified comprising 489 different polypeptides, many associated with one or more specific RNA molecules. Some of the pre-rRNA-processing complexes that were obtained are discrete sub-complexes of those previously described. Among these, we identified the IPI complex required for proper processing of the ITS2 region of the ribosomal RNA primary transcript. This study provides a high-resolution overview of the modular topology of noncoding RNA-processing machinery.
Collapse
Affiliation(s)
- Nevan J Krogan
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Bjork P, Baurén G, Gelius B, Wrange O, Wieslander L. The Chironomus tentans translation initiation factor eIF4H is present in the nucleus but does not bind to mRNA until the mRNA reaches the cytoplasmic perinuclear region. J Cell Sci 2003; 116:4521-32. [PMID: 14576346 DOI: 10.1242/jcs.00766] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the cell nucleus, precursors to mRNA, pre-mRNAs, associate with a large number of proteins and are processed to mRNA-protein complexes, mRNPs. The mRNPs are then exported to the cytoplasm and the mRNAs are translated into proteins. The mRNAs containing in-frame premature stop codons are recognized and degraded in the nonsense-mediated mRNA decay process. This mRNA surveillence may also occur in the nucleus and presumably involves components of the translation machinery. Several translation factors have been detected in the nucleus, but their functional relationship to the dynamic protein composition of pre-mRNPs and mRNPs in the nucleus is still unclear.
Here, we have identified and characterized the translation initiation factor eIF4H in the dipteran Chironomus tentans. In the cytoplasm, Ct-eIF4H is associated with poly(A+) RNA in polysomes. We show that a minor fraction of Ct-eIF4H enters the nucleus. This fraction is independent on the level of transcription. CteIF4H could not be detected in gene-specific pre-mRNPs or mRNPs, nor in bulk mRNPs in the nucleus. Our immunoelectron microscopy data suggest that Ct-eIF4H associates with mRNP in the cytoplasmic perinuclear region, immediately as the mRNP exits from the nuclear pore complex.
Collapse
Affiliation(s)
- Petra Bjork
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
70
|
Kotovic KM, Lockshon D, Boric L, Neugebauer KM. Cotranscriptional recruitment of the U1 snRNP to intron-containing genes in yeast. Mol Cell Biol 2003; 23:5768-79. [PMID: 12897147 PMCID: PMC166328 DOI: 10.1128/mcb.23.16.5768-5779.2003] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence that pre-mRNA processing events are temporally and, in some cases, mechanistically coupled to transcription has led to the proposal that RNA polymerase II (Pol II) recruits pre-mRNA splicing factors to active genes. Here we address two key questions raised by this proposal: (i) whether the U1 snRNP, which binds to the 5' splice site of each intron, is recruited cotranscriptionally in vivo and, (ii) if so, where along the length of active genes the U1 snRNP is concentrated. Using chromatin immunoprecipitation (ChIP) in yeast, we show that elevated levels of the U1 snRNP were specifically detected in gene regions containing introns and downstream of introns but not along the length of intronless genes. In contrast to capping enzymes, which bind directly to Pol II, the U1 snRNP was poorly detected in promoter regions, except in genes harboring promoter-proximal introns. Detection of the U1 snRNP was dependent on RNA synthesis and was abolished by intron removal. Microarray analysis revealed that intron-containing genes were preferentially selected by ChIP with the U1 snRNP. Thus, U1 snRNP accumulation at genes correlated with the presence and position of introns, indicating that introns are necessary for cotranscriptional U1 snRNP recruitment and/or retention.
Collapse
Affiliation(s)
- Kimberly M Kotovic
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
71
|
Abstract
A nuclear mRNA degradation (DRN) system was identified from analysis of mRNA turnover rates in nup116-Delta strains of Saccharomyces cerevisiae lacking the ability to export all RNAs, including poly(A) mRNAs, at the restrictive temperature. Northern blotting, in situ hybridization, and blocking transcription with thiolutin in nup116-delta strains revealed a rapid degradation of mRNAs in the nucleus that was suppressed by the rrp6-delta, rai1-delta, and cbc1-delta deletions, but not by the upf1-delta deletion, suggesting that DRN requires Rrp6p, a 3'-to-5' nuclear exonuclease, the Rat1p, a 5'-to-3' nuclear exonuclease, and Cbc1p, a component of CBC, the nuclear cap binding complex, which may direct the mRNAs to the site of degradation. We propose that certain normal mRNAs retained in the nucleus are degraded by the DRN system, similar to degradation of transcripts with 3' end formation defects in certain mutants.
Collapse
Affiliation(s)
- Biswadip Das
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
72
|
Abstract
Introns are removed from precursor messenger RNAs in the cell nucleus by a large ribonucleoprotein complex called the spliceosome. The spliceosome contains five subcomplexes called snRNPs, each with one RNA and several protein components. Interactions of the snRNPs with each other and the intron are highly dynamic, changing in an ordered progression throughout the splicing process. This allosteric cascade of interactions is programmed into the RNA and protein components of the spliceosome, and is driven by a family of DExD/H-box RNA-dependent ATPases. The dependence of cascade progression on multiple intron-recognition events likely serves to enforce the accuracy of splicing. Here, the progression of the allosteric cascade from the first recognition event to the first catalytic step of splicing is reviewed.
Collapse
Affiliation(s)
- David A Brow
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1532, USA.
| |
Collapse
|
73
|
Abstract
Intense research in recent years has shown that many pre-mRNA processing events are co-transcriptional or at least begin during RNA synthesis by RNA polymerase II (Pol II). But is it important that pre-mRNA processing occurs co-transcriptionally? Whereas Pol II directs 5' capping of mRNA by binding to and recruiting all three capping activities to transcription units, co-transcriptional splicing is not obligatory. In some cases, such as alternative splicing, splicing may occur post-transcriptionally owing to the slower kinetics of splicing unfavorable introns. Despite recent models in which splicing factors are bound directly to the C-terminal domain (CTD) of Pol II, little evidence supports that view. Instead, interactions between snRNPs and transcription elongation factors provide the strongest molecular evidence for a physical link between transcription and splicing. Transcription termination depends on polyadenylation signals, but, like splicing, polyadenylation per se probably begins co-transcriptionally and continues post-transcriptionally. Nascent RNA plays an important role in determining which transcripts are polyadenylated and which alternative terminal exon is used. A recent addition to co-transcriptional RNA processing is a possible RNA surveillance step prior to release of the mRNP from the transcription unit, which appears to coordinate nuclear transport with mRNA processing and may be mediated by components of the nuclear exosome.
Collapse
Affiliation(s)
- Karla M Neugebauer
- Max Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
74
|
Vincent K, Wang Q, Jay S, Hobbs K, Rymond BC. Genetic interactions with CLF1 identify additional pre-mRNA splicing factors and a link between activators of yeast vesicular transport and splicing. Genetics 2003; 164:895-907. [PMID: 12871902 PMCID: PMC1462608 DOI: 10.1093/genetics/164.3.895] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clf1 is a conserved spliceosome assembly factor composed predominately of TPR repeats. Here we show that the TPR elements are not functionally equivalent, with the amino terminus of Clf1 being especially sensitive to change. Deletion and add-back experiments reveal that the splicing defect associated with TPR removal results from the loss of TPR-specific sequence information. Twelve mutants were found that show synthetic growth defects when combined with an allele that lacks TPR2 (i.e., clf1Delta2). The identified genes encode the Mud2, Ntc20, Prp16, Prp17, Prp19, Prp22, and Syf2 splicing factors and four proteins without established contribution to splicing (Bud13, Cet1, Cwc2, and Rds3). Each synthetic lethal with clf1Delta2 (slc) mutant is splicing defective in a wild-type CLF1 background. In addition to the splicing factors, SSD1, BTS1, and BET4 were identified as dosage suppressors of clf1Delta2 or selected slc mutants. These results support Clf1 function through multiple stages of the spliceosome cycle, identify additional genes that promote cellular mRNA maturation, and reveal a link between Rab/Ras GTPase activation and the process of pre-mRNA splicing.
Collapse
Affiliation(s)
- Kevin Vincent
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506-0225, USA
| | | | | | | | | |
Collapse
|
75
|
Baron-Benhamou J, Fortes P, Inada T, Preiss T, Hentze MW. The interaction of the cap-binding complex (CBC) with eIF4G is dispensable for translation in yeast. RNA (NEW YORK, N.Y.) 2003; 9:654-62. [PMID: 12756324 PMCID: PMC1370433 DOI: 10.1261/rna.5100903] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Accepted: 02/20/2003] [Indexed: 05/19/2023]
Abstract
In eukaryotes, the m(7)GpppN cap structure is added to all nascent RNA polymerase II transcripts, and serves important functions at multiple steps of RNA metabolism. The predominantly nuclear cap-binding complex (CBC) binds to the cap during RNA synthesis. The predominantly cytoplasmic eukaryotic initiation factor 4F (eIF4F) is thought to replace CBC after export of mature mRNA to the cytoplasm, and mediates the bulk of cellular translation. Yeast as well as mammalian CBC interacts in vitro with eIF4G, a subunit of eIF4F. In this work, we investigate a potential role of this interaction during translation in yeast. We identify a mutation (DR548/9AA) in Tif4631p, one of two isoforms of yeast eIF4G, that abolishes its binding to CBC. Cells expressing this mutant protein as the sole source of eIF4G grow at wild-type rates, and bulk cellular translation, as assessed by metabolic labeling and polysome profile analysis, is unchanged. Importantly, we find that the DR548/9AA mutation neither diminishes nor delays the translation of newly induced reporter mRNA. Finally, microarray analysis reveals marked transcriptome alterations in CBC subunit deletion strains, whereas eIF4G point mutants have essentially a wild-type transcriptome composition. Collectively, these data suggest that in yeast, the phenotypic consequences of CBC deletions are separable from its interaction with eIF4G, and that the CBC-eIF4G interaction is dispensable for a potential "pioneering round" of translation in yeast.
Collapse
Affiliation(s)
- Julie Baron-Benhamou
- Gene Expression Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
76
|
Zenklusen D, Vinciguerra P, Wyss JC, Stutz F. Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p. Mol Cell Biol 2002; 22:8241-53. [PMID: 12417727 PMCID: PMC134069 DOI: 10.1128/mcb.22.23.8241-8253.2002] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yra1p/REF participates in mRNA export by recruiting the export receptor Mex67p to messenger ribonucleoprotein (mRNP) complexes. Yra1p also binds Sub2p, a DEAD box ATPase/RNA helicase implicated in splicing and required for mRNA export. We identified genetic and physical interactions between Yra1p, Sub2p, and Hpr1p, a protein involved in transcription elongation whose deletion leads to poly(A)(+) RNA accumulation in the nucleus. By chromatin immunoprecipitation (ChIP) experiments, we show that Hpr1p, Sub2p, and Yra1p become associated with active genes during transcription elongation and that Hpr1p is required for the efficient recruitment of Sub2p and Yra1p. The data indicate that transcription and export are functionally linked and that mRNA export defects may be due in part to inefficient loading of essential mRNA export factors on the growing mRNP. We also identified functional interactions between Yra1p and the exosome components Rrp45p and Rrp6p. We show that yra1, sub2, and Deltahpr1 mutants all present defects in mRNA accumulation and that deletion of RRP6 in yra1 mutants restores normal mRNA levels. The data support the hypothesis that an exosome-dependent surveillance mechanism targets improperly assembled mRNPs for degradation.
Collapse
Affiliation(s)
- Daniel Zenklusen
- Institute of Microbiology, University of Lausanne, 1011 Lausanne, Switzerland
| | | | | | | |
Collapse
|
77
|
Howe KJ. RNA polymerase II conducts a symphony of pre-mRNA processing activities. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:308-24. [PMID: 12213660 DOI: 10.1016/s0167-4781(02)00460-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
RNA polymerase II (RNAP II) and its associated factors interact with a diverse collection of nuclear proteins during the course of precursor messenger RNA synthesis. This growing list of known contacts provides compelling evidence for the existence of large multifunctional complexes, a.k.a. transcriptosomes, within which the biosynthesis of mature mRNAs is coordinated. Recent studies have demonstrated that the unique carboxy-terminal domain (CTD) of the largest subunit of RNAP II plays an important role in recruiting many of these activities to the transcriptional machinery. Throughout the transcription cycle the CTD undergoes a variety of covalent and structural modifications which can, in turn, modulate the interactions and functions of processing factors during transcription initiation, elongation and termination. New evidence suggests that the possibility that interaction of some of these processing factors with the polymerase can affect its elongation rate. Besides the CTD, proteins involved in pre-mRNA processing can interact with general transcription factors (GTFs) and transcriptional activators, which associate with polymerase at promoters. This suggests a mechanism for the recruitment of specific processing activities to different transcription units. This harmonic integration of transcriptional and post-transcriptional activities, many of which once were considered to be functionally isolated within the cell, supports a general model for the coordination of gene expression by RNAP II within the nucleus.
Collapse
Affiliation(s)
- Kenneth James Howe
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
78
|
Tasic B, Nabholz CE, Baldwin KK, Kim Y, Rueckert EH, Ribich SA, Cramer P, Wu Q, Axel R, Maniatis T. Promoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing. Mol Cell 2002; 10:21-33. [PMID: 12150904 DOI: 10.1016/s1097-2765(02)00578-6] [Citation(s) in RCA: 233] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A family of mammalian protocadherin (Pcdh) proteins is encoded by three closely linked gene clusters (alpha, beta, and gamma). Multiple alpha and gamma Pcdh mRNAs are expressed in distinct patterns in the nervous system and are generated by alternative pre-mRNA splicing between different "variable" exons and three "constant" exons within each cluster. We show that each Pcdh variable exon is preceded by a promoter and that promoter choice determines which variable exon is included in a Pcdh mRNA. In addition, we provide evidence that alternative splicing of variable exons within a gene cluster occurs via a cis-splicing mechanism. However, virtually every variable exon can engage in trans-splicing with constant exons from another cluster, albeit at a far lower level.
Collapse
Affiliation(s)
- Bosiljka Tasic
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Clark TA, Sugnet CW, Ares M. Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science 2002; 296:907-10. [PMID: 11988574 DOI: 10.1126/science.1069415] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Introns interrupt almost every eukaryotic protein-coding gene, yet how the splicing apparatus interprets the genome during messenger RNA (mRNA) synthesis is poorly understood. We designed microarrays to distinguish spliced from unspliced RNA for each intron-containing yeast gene and measured genomewide effects on splicing caused by loss of 18 different mRNA processing factors. After accommodating changes in transcription and decay by using gene-specific indexes, functional relationships between mRNA processing factors can be identified through their common effects on spliced and unspliced RNA. Groups of genes with different dependencies on mRNA processing factors are also apparent. Quantitative polymerase chain reactions confirm the array-based finding that Prp17p and Prp18p are not dispensable for removal of introns with short branchpoint-to-3' splice site distances.
Collapse
Affiliation(s)
- Tyson A Clark
- Department of Molecular, Cell, and Developmental Biology, Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
80
|
Abstract
Gene expression in eukaryotes requires several multi-component cellular machines. Each machine carries out a separate step in the gene expression pathway, which includes transcription, several pre-messenger RNA processing steps and the export of mature mRNA to the cytoplasm. Recent studies lead to the view that, in contrast to a simple linear assembly line, a complex and extensively coupled network has evolved to coordinate the activities of the gene expression machines. The extensive coupling is consistent with a model in which the machines are tethered to each other to form 'gene expression factories' that maximize the efficiency and specificity of each step in gene expression.
Collapse
Affiliation(s)
- Tom Maniatis
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
81
|
Zieler H, Huynh CQ. Intron-dependent stimulation of marker gene expression in cultured insect cells. INSECT MOLECULAR BIOLOGY 2002; 11:87-95. [PMID: 11841506 DOI: 10.1046/j.0962-1075.2001.00312.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We tested in a systematic fashion the effect of an intron on the level of luciferase expression in cultured C6/36 Aedes albopictus cells. The intron was inserted in both orientations, upstream and downstream of the luciferase coding region in two different luciferase expression vectors. The two parental luciferase expression vectors differed only in their promoters, one containing the Drosophila melanogaster actin5C promoter and the other the Autographa californica nuclear polyhedrosis virus hr5/ie1 enhancer/promoter. All resulting intron-containing constructs were tested for their ability to express luciferase in transient assays following electroporation into C6/36 cells. We found that the introns stimulate luciferase expression between twelve and sixtyfold, depending on the promoter. Enhanced expression was only seen when the intron was present in the correct orientation upstream of the luciferase ORF. When the 3' splice sites of the enhanced intron-containing constructs were mutated, the expression level dropped back to below the level of the intronless parental constructs, suggesting that the intron-dependent stimulation of luciferase expression is depending on splicing and is not due to other effects the intron may have on transcription or translation. The luciferase transcripts of all constructs were analysed by reverse transcription, PCR amplification and sequencing, and the results show a perfect correlation between efficient splicing of the intron and elevated levels of luciferase expression. Our findings have the potential to be very useful for boosting expression of foreign proteins in the widely used baculoviral or non-viral systems in insect cells.
Collapse
Affiliation(s)
- H Zieler
- Medical Entomology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
82
|
Abstract
Within the yeast commitment complex, SmB, SmD1, and SmD3 make direct contact with the pre-mRNA substrate, close to the 5' splice site. Only these three Sm proteins have long and highly charged C-terminal tails, in metazoa as well as in yeast. We replaced these proteins with tail-truncated versions. Genetic assays demonstrate that the tails contribute to similar and overlapping functions, and cross-linking assays show that the tails make direct contact with the pre-mRNA in a largely sequence-independent manner. Other biochemical assays indicate that they function at least in part to stabilize the U1 snRNP-pre-mRNA interaction. We speculate that this role may be general, and may have even evolved to aid weak intermolecular nucleic acid interactions of only a few base pairs.
Collapse
Affiliation(s)
- D Zhang
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA 02254, USA
| | | | | |
Collapse
|
83
|
Shen EC, Stage-Zimmermann T, Chui P, Silver PA. 7The yeast mRNA-binding protein Npl3p interacts with the cap-binding complex. J Biol Chem 2000; 275:23718-24. [PMID: 10823828 DOI: 10.1074/jbc.m002312200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of RNA-binding proteins are associated with mRNAs in both the nucleus and the cytoplasm. One of these, Npl3p, is a heterogeneous nuclear ribonucleoprotein-like protein with some similarity to SR proteins and is essential for growth in the yeast S. cerevisiae. Temperature-sensitive alleles have defects in the export of mRNA out of the nucleus (1). In this report, we define a genetic relationship between NPL3 and the nonessential genes encoding the subunits of the cap-binding complex (CBP80 and CBP20). Deletion of CBP80 or CBP20 in combination with certain temperature-sensitive npl3 mutant alleles fail to grow and thus display a synthetic lethal relationship. Further evidence of an interaction between Npl3p and the cap-binding complex was revealed by co-immunoprecipitation experiments; Cbp80p and Cbp20p specifically co-precipitate with Npl3p. However, the interaction of Npl3p with Cbp80p depends on both the presence of Cbp20p and RNA. In addition, we show that Cbp80p is capable of shuttling between the nucleus and the cytoplasm in a manner dependent on the ongoing synthesis of RNA. Taken together, these data support a model whereby mRNAs are co-transcriptionally packaged by proteins including Npl3p and cap-binding complex for export out of the nucleus.
Collapse
Affiliation(s)
- E C Shen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and the Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
84
|
Kuhn AN, Brow DA. Suppressors of a cold-sensitive mutation in yeast U4 RNA define five domains in the splicing factor Prp8 that influence spliceosome activation. Genetics 2000; 155:1667-82. [PMID: 10924465 PMCID: PMC1461211 DOI: 10.1093/genetics/155.4.1667] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The highly conserved splicing factor Prp8 has been implicated in multiple stages of the splicing reaction. However, assignment of a specific function to any part of the 280-kD U5 snRNP protein has been difficult, in part because Prp8 lacks recognizable functional or structural motifs. We have used a large-scale screen for Saccharomyces cerevisiae PRP8 alleles that suppress the cold sensitivity caused by U4-cs1, a mutant U4 RNA that blocks U4/U6 unwinding, to identify with high resolution five distinct regions of PRP8 involved in the control of spliceosome activation. Genetic interactions between two of these regions reveal a potential long-range intramolecular fold. Identification of a yeast two-hybrid interaction, together with previously reported results, implicates two other regions in direct and indirect contacts to the U1 snRNP. In contrast to the suppressor mutations in PRP8, loss-of-function mutations in the genes for two other splicing factors implicated in U4/U6 unwinding, Prp44 (Brr2/Rss1/Slt22/Snu246) and Prp24, show synthetic enhancement with U4-cs1. On the basis of these results we propose a model in which allosteric changes in Prp8 initiate spliceosome activation by (1) disrupting contacts between the U1 snRNP and the U4/U6-U5 tri-snRNP and (2) orchestrating the activities of Prp44 and Prp24.
Collapse
MESH Headings
- Amino Acid Sequence
- Cold Temperature
- Conserved Sequence
- Eukaryotic Initiation Factor-4E
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Molecular Sequence Data
- Mutation
- Oligonucleotides/genetics
- Peptide Initiation Factors/chemistry
- Peptide Initiation Factors/genetics
- Plasmids/genetics
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA Helicases
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA-Binding Proteins/metabolism
- Repressor Proteins/metabolism
- Ribonucleoprotein, U1 Small Nuclear/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear
- Ribonucleoprotein, U5 Small Nuclear
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Sequence Homology, Amino Acid
- Spliceosomes/metabolism
- Suppression, Genetic
- Temperature
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- A N Kuhn
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin 53706-1532, USA
| | | |
Collapse
|
85
|
The Yeast Nuclear Cap Binding Complex Can Interact with Translation Factor eIF4G and Mediate Translation Initiation. Mol Cell 2000. [DOI: 10.1016/s1097-2765(05)00003-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
86
|
Abstract
The MSL5 gene, which codes for the splicing factor BBP/ScSF1, is essential in Saccharomyces cerevisiae, yet previous analyses failed to reveal a defect in assembly of (pre)-spliceosomes or in vitro splicing associated with its depletion. We generated 11 temperature-sensitive (ts) mutants and one cold-sensitive (cs) mutant in the corresponding gene and analyzed their phenotypes. While all mutants were blocked in the formation of commitment complex 2 (CC2) at non-permissive and permissive temperature, the ts mutants showed no defect in spliceosome formation and splicing in vitro. The cs mutant was defective in (pre)-spliceosome formation, but residual splicing activity could be detected. In vivo splicing of reporters carrying introns weakened by mutations in the 5' splice site and/or in the branchpoint region was affected in all mutants. Pre-mRNA leakage to the cytoplasm was strongly increased (up to 40-fold) in the mutants. A combination of ts mutants with a disruption of upf1, a gene involved in nonsense-mediated decay, resulted in a specific synthetic growth phenotype, suggesting that the essential function of SF1 in yeast could be related to the retention of pre-mRNA in the nucleus.
Collapse
Affiliation(s)
- B Rutz
- EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
87
|
Das B, Guo Z, Russo P, Chartrand P, Sherman F. The role of nuclear cap binding protein Cbc1p of yeast in mRNA termination and degradation. Mol Cell Biol 2000; 20:2827-38. [PMID: 10733586 PMCID: PMC85501 DOI: 10.1128/mcb.20.8.2827-2838.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cyc1-512 mutation in Saccharomyces cerevisiae causes a 90% reduction in the level of iso-1-cytochrome c because of the lack of a proper 3'-end-forming signal, resulting in low levels of eight aberrantly long cyc1-512 mRNAs which differ in length at their 3' termini. cyc1-512 can be suppressed by deletion of either of the nonessential genes CBC1 and CBC2, which encode the CBP80 and CBP20 subunits of the nuclear cap binding complex, respectively, or by deletion of the nonessential gene UPF1, which encodes a major component of the mRNA surveillance complex. The upf1-Delta deletion suppressed the cyc1-512 defect by diminishing degradation of the longer subset of cyc1-512 mRNAs, suggesting that downstream elements or structures occurred in the extended 3' region, similar to the downstream elements exposed by transcripts bearing premature nonsense mutations. On the other hand, suppression of cyc1-512 defects by cbc1-Delta occurred by two different mechanisms. The levels of the shorter cyc1-512 transcripts were enhanced in the cbc1-Delta mutants by promoting 3'-end formation at otherwise-weak sites, whereas the levels of the longer cyc1-512 transcripts, as well as of all mRNAs, were slightly enhanced by diminishing degradation. Furthermore, cbc1-Delta greatly suppressed the degradation of mRNAs and other phenotypes of a rat7-1 strain which is defective in mRNA export. We suggest that Cbc1p defines a novel degradation pathway that acts on mRNAs partially retained in nuclei.
Collapse
Affiliation(s)
- B Das
- Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
88
|
Vagner S, Vagner C, Mattaj IW. The carboxyl terminus of vertebrate poly(A) polymerase interacts with U2AF 65 to couple 3′-end processing and splicing. Genes Dev 2000. [DOI: 10.1101/gad.14.4.403] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although it has been established that the processing factors involved in pre-mRNA splicing and 3′-end formation can influence each other positively, the molecular basis of this coupling interaction was not known. Stimulation of pre-mRNA splicing by an adjacentcis-linked cleavage and polyadenylation site in HeLa cell nuclear extract is shown to occur at an early step in splicing, the binding of U2AF 65 to the pyrimidine tract of the intron 3′ splice site. The carboxyl terminus of poly(A) polymerase (PAP) previously has been implicated indirectly in the coupling process. We demonstrate that a fusion protein containing the 20 carboxy-terminal amino acids of PAP, when tethered downstream of an intron, increases splicing efficiency and, like the entire 3′-end formation machinery, stimulates U2AF 65 binding to the intron. The carboxy-terminal domain of PAP makes a direct and specific interaction with residues 17–47 of U2AF 65, implicating this interaction in the coupling of splicing and 3′-end formation.
Collapse
|
89
|
Abstract
This chapter focuses on the history of the discovery of cap and an update of research on viral and cellular-messenger RNA (mRNA) capping. Cap structures of the type m7 GpppN(m)pN(m)p are present at the 5′ ends of nearly all eukaryotic cellular and viral mRNAs. A cap is added to cellular mRNA precursors and to the transcripts of viruses that replicate in the nucleus during the initial phases of transcription and before other processing events, including internal N6A methylation, 3′-poly (A) addition, and exon splicing. Despite the variations on the methylation theme, the important biological consequences of a cap structure appear to correlate with the N7-methyl on the 5′-terminal G and the two pyrophosphoryl bonds that connect m7G in a 5′–5′ configuration to the first nucleotide of mRNA. In addition to elucidating the biochemical mechanisms of capping and the downstream effects of this 5′- modification on gene expression, the advent of gene cloning has made available an ever-increasing amount of information on the proteins responsible for producing caps and the functional effects of other cap-related interactions. Genetic approaches have demonstrated the lethal consequences of cap failure in yeasts, and complementation studies have shown the evolutionary functional conservation of capping from unicellular to metazoan organisms.
Collapse
Affiliation(s)
- Y Furuichi
- AGENE Research Institute, Kamakura, Japan
| | | |
Collapse
|
90
|
Fortes P, Kufel J, Fornerod M, Polycarpou-Schwarz M, Lafontaine D, Tollervey D, Mattaj IW. Genetic and physical interactions involving the yeast nuclear cap-binding complex. Mol Cell Biol 1999; 19:6543-53. [PMID: 10490594 PMCID: PMC84624 DOI: 10.1128/mcb.19.10.6543] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/1999] [Accepted: 07/12/1999] [Indexed: 11/20/2022] Open
Abstract
Yeast strains lacking the yeast nuclear cap-binding complex (yCBC) are viable, although impaired in growth. We have taken advantage of this observation to carry out a genetic screen for components that show synthetic lethality (SL) with a cbp20-Delta cbp80-Delta double mutation. One set of SL interactions was due to mutations that were complemented by components of U1 small nuclear RNP (snRNP) and the yeast splicing commitment complex. These interactions confirm the role of yCBC in commitment complex formation. Physical interaction of yCBC with the commitment complex components Mud10p and Mud2p, which may directly mediate yCBC function, was demonstrated. Unexpectedly, we identified multiple SL mutations that were complemented by Cbf5p and Nop58p. These are components of the two major classes of yeast small nucleolar RNPs, which function in the maturation of rRNA precursors. Mutants lacking yCBC were found to be defective in rRNA processing. Analysis of the yCBC deletion phenotype suggests that this is likely to be due to a defect in the splicing of a subset of ribosomal protein mRNA precursors.
Collapse
Affiliation(s)
- P Fortes
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
91
|
Fortes P, Bilbao-Cortés D, Fornerod M, Rigaut G, Raymond W, Séraphin B, Mattaj IW. Luc7p, a novel yeast U1 snRNP protein with a role in 5' splice site recognition. Genes Dev 1999; 13:2425-38. [PMID: 10500099 PMCID: PMC317023 DOI: 10.1101/gad.13.18.2425] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The characterization of a novel yeast-splicing factor, Luc7p, is presented. The LUC7 gene was identified by a mutation that causes lethality in a yeast strain lacking the nuclear cap-binding complex (CBC). Luc7p is similar in sequence to metazoan proteins that have arginine-serine and arginine-glutamic acid repeat sequences characteristic of a family of splicing factors. We show that Luc7p is a component of yeast U1 snRNP and is essential for vegetative growth. The composition of yeast U1 snRNP is altered in luc7 mutant strains. Extracts of these strains are unable to support any of the defined steps of splicing unless recombinant Luc7p is added. Although the in vivo defect in splicing wild-type reporter introns in a luc7 mutant strain is comparatively mild, splicing of introns with nonconsensus 5' splice site or branchpoint sequences is more defective in the mutant strain than in wild-type strains. By use of reporters that have two competing 5' splice sites, a loss of efficient splicing to the cap proximal splice site is observed in luc7 cells, analogous to the defect seen in strains lacking CBC. CBC can be coprecipitated with U1 snRNP from wild-type, but not from luc7, yeast strains. These data suggest that the loss of Luc7p disrupts U1 snRNP-CBC interaction, and that this interaction contributes to normal 5' splice site recognition.
Collapse
Affiliation(s)
- P Fortes
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
92
|
Luukkonen BG, Séraphin B. A conditional U5 snRNA mutation affecting pre-mRNA splicing and nuclear pre-mRNA retention identifies SSD1/SRK1 as a general splicing mutant suppressor. Nucleic Acids Res 1999; 27:3455-65. [PMID: 10446233 PMCID: PMC148587 DOI: 10.1093/nar/27.17.3455] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A combination of point mutations disrupting both stem 1 and stem 2 of U5 snRNA (U5AI) was found to confer a thermosensitive phenotype in vivo. In a strain expressing U5AI, pre-mRNA splicing was blocked before the first step through an inability of the mutant U5 snRNA to efficiently associate with the U4/U6 di-snRNP. Formation of early splicing complexes was not affected in extracts prepared from U5 snRNA mutant cells, while the capacity of these extracts to splice a pre-mRNA in vitro was greatly diminished. In addition, significant levels of a translation product derived from intron containing pre-mRNAs could be detected in vivo. The SSD1/SRK1 gene was identified as a multi-copy suppressor of the U5AI snRNA mutant. Single copy expression of SSD1/SRK1 was sufficient to suppress the thermosensitive phenotype, and high copy expression partially suppressed the splicing and U4/U6.U5 tri-snRNP assembly pheno-types. SSD1/SRK1 also suppressed thermosensitive mutations in the Prp18p and U1-70K proteins, while inhibiting growth of the cold sensitive U1-4U snRNA mutant at 30 degrees C. Thus we have identified SSD1/SRK1 as a general suppressor of splicing mutants.
Collapse
Affiliation(s)
- B G Luukkonen
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
93
|
Abstract
Biochemical evidence indicates that pre-mRNA splicing factors physically interact with the C-terminal domain of the largest subunit of RNA polymerase II. We have investigated the in vivo function of this interaction. In mammalian cells, truncation of the CTD of RNA pol II LS prevents the targeting of the splicing machinery to a transcription site. In the absence of the CTD, pre-mRNA splicing is severely reduced. The presence of unspliced RNA alone is not sufficient for the accumulation of splicing factors at the transcription site, nor for its efficient splicing. Our results demonstrate a critical role for the CTD of RNA pol II LS in the intranuclear targeting of splicing factors to transcription sites in vivo.
Collapse
Affiliation(s)
- T Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
94
|
Zhao J, Hyman L, Moore C. Formation of mRNA 3' ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999; 63:405-45. [PMID: 10357856 PMCID: PMC98971 DOI: 10.1128/mmbr.63.2.405-445.1999] [Citation(s) in RCA: 808] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of mRNA 3' ends in eukaryotes requires the interaction of transacting factors with cis-acting signal elements on the RNA precursor by two distinct mechanisms, one for the cleavage of most replication-dependent histone transcripts and the other for cleavage and polyadenylation of the majority of eukaryotic mRNAs. Most of the basic factors have now been identified, as well as some of the key protein-protein and RNA-protein interactions. This processing can be regulated by changing the levels or activity of basic factors or by using activators and repressors, many of which are components of the splicing machinery. These regulatory mechanisms act during differentiation, progression through the cell cycle, or viral infections. Recent findings suggest that the association of cleavage/polyadenylation factors with the transcriptional complex via the carboxyl-terminal domain of the RNA polymerase II (Pol II) large subunit is the means by which the cell restricts polyadenylation to Pol II transcripts. The processing of 3' ends is also important for transcription termination downstream of cleavage sites and for assembly of an export-competent mRNA. The progress of the last few years points to a remarkable coordination and cooperativity in the steps leading to the appearance of translatable mRNA in the cytoplasm.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Biology and Microbiology, School of Medicine, Tufts University, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
95
|
Chen HR, Tsao TY, Chen CH, Tsai WY, Her LS, Hsu MM, Cheng SC. Snt309p modulates interactions of Prp19p with its associated components to stabilize the Prp19p-associated complex essential for pre-mRNA splicing. Proc Natl Acad Sci U S A 1999; 96:5406-11. [PMID: 10318896 PMCID: PMC21872 DOI: 10.1073/pnas.96.10.5406] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The SNT309 gene was identified via a mutation that causes lethality of cells in combination with a prp19 mutation. We showed previously that Snt309p is a component of the Prp19p-associated complex and that Snt309p, like Prp19p, is associated with the spliceosome immediately after or concomitantly with dissociation of U4 from the spliceosome. We show here that extracts prepared from the SNT309-deleted strain (DeltaSNT309) were defective in splicing but could be complemented by addition of the purified Prp19p-associated complex. Isolation of the Prp19p-associated complex from DeltaSNT309 extracts indicated that the complex was destabilized in the absence of Snt309p and dissociated on affinity chromatography, suggesting a role of Snt309p in stabilization of the Prp19p-associated complex. Addition of the affinity-purified Prp19p-Snt309p binary complex to DeltaSNT309 extracts could reconstitute the Prp19p-associated complex. Genetic analysis further suggests that Snt309p plays a role in modulating interactions of Prp19p with other associated components to facilitate formation of the Prp19p-associated complex. A model for how Snt309p modulates such interactions is proposed.
Collapse
Affiliation(s)
- H R Chen
- Institute of Microbiology and Immunology, National Yang-Ming University, Shih-Pai, Taiwan 112
| | | | | | | | | | | | | |
Collapse
|
96
|
Uemura H, Nakamoto K, Sugioka S, Tadenuma M. Isolation and sequence of the GCR3 homologue from Candida albicans by complementation of (delta)gcr3 strain of Saccharomyces cerevisiae. Yeast 1999; 15:323-7. [PMID: 10206191 DOI: 10.1002/(sici)1097-0061(19990315)15:4<323::aid-yea363>3.0.co;2-l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
To study the function of GCR3, a gene involved in the expression of glycolytic genes in Saccharomyces cerevisiae, a Candida albicans gene which complements the growth defect of the (delta)gcr3 mutant was isolated. Transformants of this gene also recovered the glycolytic enzyme activities. Its DNA sequencing predicted an 886 amino acid protein with 30.4% identity to the Gcr3p of S. cerevisiae.
Collapse
Affiliation(s)
- H Uemura
- Department of Molecular Biology, National Institute of Bioscience and Human-Technology, Tsukuba, Ibaraki, Japan.
| | | | | | | |
Collapse
|
97
|
Puig O, Gottschalk A, Fabrizio P, Séraphin B. Interaction of the U1 snRNP with nonconserved intronic sequences affects 5' splice site selection. Genes Dev 1999; 13:569-80. [PMID: 10072385 PMCID: PMC316504 DOI: 10.1101/gad.13.5.569] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intron definition and splice site selection occur at an early stage during assembly of the spliceosome, the complex mediating pre-mRNA splicing. Association of U1 snRNP with the pre-mRNA is required for these early steps. We report here that the yeast U1 snRNP-specific protein Nam8p is a component of the commitment complexes, the first stable complexes assembled on pre-mRNA. In vitro and in vivo, Nam8p becomes indispensable for efficient 5' splice site recognition when this process is impaired as a result of the presence of noncanonical 5' splice sites or the absence of a cap structure. Nam8p stabilizes commitment complexes in the latter conditions. Consistent with this, Nam8p interacts with the pre-mRNA downstream of the 5' splice site, in a region of nonconserved sequence. Substitutions in this region affect splicing efficiency and alternative splice site choice in a Nam8p-dependent manner. Therefore, Nam8p is involved in a novel mechanism by which a snRNP component can affect splice site choice and regulate intron removal through its interaction with a nonconserved sequence. This supports a model where early 5' splice recognition results from a network of interactions established by the splicing machinery with various regions of the pre-mRNA.
Collapse
Affiliation(s)
- O Puig
- Gene Expression Program, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
98
|
Zhang D, Rosbash M. Identification of eight proteins that cross-link to pre-mRNA in the yeast commitment complex. Genes Dev 1999; 13:581-92. [PMID: 10072386 PMCID: PMC316503 DOI: 10.1101/gad.13.5.581] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the yeast commitment complex and the mammalian E complex, there is an important base-pairing interaction between the 5' end of U1 snRNA and the conserved 5' splice site region of pre-mRNA. But no protein contacts between splicing proteins and the pre-mRNA substrate have been defined in or near this region of early splicing complexes. To address this issue, we used 4-thiouridine-substituted 5' splice site-containing RNAs as substrates and identified eight cross-linked proteins, all of which were identified previously as commitment complex components. The proteins were localized to three domains: the exon, the six nucleotides of the 5' ss region, and the downstream intron. The results indicate that the 5' splice site region and environs are dense with protein contacts in the commitment complex and suggest that some of them make important contributions to formation or stability of the U1 snRNP-pre-mRNA complex.
Collapse
Affiliation(s)
- D Zhang
- Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
99
|
O'Mullane L, Eperon IC. The pre-mRNA 5' cap determines whether U6 small nuclear RNA succeeds U1 small nuclear ribonucleoprotein particle at 5' splice sites. Mol Cell Biol 1998; 18:7510-20. [PMID: 9819436 PMCID: PMC109331 DOI: 10.1128/mcb.18.12.7510] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Efficient splicing of the 5'-most intron of pre-mRNA requires a 5' m7G(5')ppp(5')N cap, which has been implicated in U1 snRNP binding to 5' splice sites. We demonstrate that the cap alters the kinetic profile of U1 snRNP binding, but its major effect is on U6 snRNA binding. With two alternative wild-type splice sites in an adenovirus pre-mRNA, the cap selectively alters U1 snRNA binding at the site to which cap-independent U1 snRNP binding is stronger and that is used predominantly in splicing; with two consensus sites, the cap acts on both, even though one is substantially preferred for splicing. However, the most striking quantitative effect of the 5' cap is neither on U1 snRNP binding nor on the assembly of large complexes but on the replacement of U1 snRNP by U6 snRNA at the 5' splice site. Inhibition of splicing by a cap analogue is correlated with the loss of U6 interactions at the 5' splice site and not with any loss of U1 snRNP binding.
Collapse
Affiliation(s)
- L O'Mullane
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | |
Collapse
|
100
|
Abstract
Active transport between the nucleus and cytoplasm involves primarily three classes of macromolecules: substrates, adaptors, and receptors. Some transport substrates bind directly to an import or an export receptor while others require one or more adaptors to mediate formation of a receptor-substrate complex. Once assembled, these transport complexes are transferred in one direction across the nuclear envelope through aqueous channels that are part of the nuclear pore complexes (NPCs). Dissociation of the transport complex must then take place, and both adaptors and receptors must be recycled through the NPC to allow another round of transport to occur. Directionality of either import or export therefore depends on association between a substrate and its receptor on one side of the nuclear envelope and dissociation on the other. The Ran GTPase is critical in generating this asymmetry. Regulation of nucleocytoplasmic transport generally involves specific inhibition of the formation of a transport complex; however, more global forms of regulation also occur.
Collapse
Affiliation(s)
- I W Mattaj
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | | |
Collapse
|