51
|
Parimi S, Rauw JM, Ko JJ. Systemic Therapies for Metastatic Testicular Germ Cell Tumors: Past, Present and Future. CURRENT CANCER THERAPY REVIEWS 2019. [DOI: 10.2174/1573394714666180706150427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Testicular germ cell tumors (TGCTs) are unique to that of most other solid tumors because
they are highly curable in the metastatic setting. While the use of cisplatin-based chemotherapy
continues to drive cure in this patient population, important improvements in the delivery
of therapy, creation of risk-adjusted treatment paradigms, and salvage-therapy options have further
enhanced survival as well. The future holds promise for a more multidisciplinary approach to
care, through advancements in biochemical markers and a better understanding of how surgical
and radiotherapy approaches can integrate into our existing management strategies.
Collapse
Affiliation(s)
- Sunil Parimi
- BC Cancer Agency, 2410 Lee Avenue, Victoria, BC, V8R 4X1, Canada
| | - Jennifer M. Rauw
- BC Cancer Agency, 2410 Lee Avenue, Victoria, BC, V8R 4X1, Canada
| | - Jenny J. Ko
- BC Cancer Agency, 32900 Marshall Rd, Abbotsford, BC, V2S 0C2, Canada
| |
Collapse
|
52
|
Ge Y, Wu S, Zhang Z, Li X, Li F, Yan S, Liu H, Huang J, Zhao Y. Inhibition of p53 and/or AKT as a new therapeutic approach specifically targeting ALT cancers. Protein Cell 2019; 10:808-824. [PMID: 31115790 PMCID: PMC6834538 DOI: 10.1007/s13238-019-0634-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023] Open
Abstract
While the majority of all human cancers counteract telomere shortening by expressing telomerase, ~15% of all cancers maintain telomere length by a telomerase-independent mechanism known as alternative lengthening of telomeres (ALT). Here, we show that high load of intrinsic DNA damage is present in ALT cancer cells, leading to apoptosis stress by activating p53-independent, but JNK/c-Myc-dependent apoptotic pathway. Notably, ALT cells expressing wild-type p53 show much lower apoptosis than p53-deficient ALT cells. Mechanistically, we find that intrinsic DNA damage in ALT cells induces low level of p53 that is insufficient to initiate the transcription of apoptosis-related genes, but is sufficient to stimulate the expression of key components of mTORC2 (mTOR and Rictor), which in turn leads to phosphorylation of AKT. Activated AKT (p-AKT) thereby stimulates downstream anti-apoptotic events. Therefore, p53 and AKT are the key factors that suppress spontaneous apoptosis in ALT cells. Indeed, inhibition of p53 or AKT selectively induces rapid death of ALT cells in vitro, and p53 inhibitor severely suppresses the growth of ALT-cell xenograft tumors in mice. These findings reveal a previously unrecognized function of p53 in anti-apoptosis and identify that the inhibition of p53 or AKT has a potential as therapeutics for specifically targeting ALT cancers.
Collapse
Affiliation(s)
- Yuanlong Ge
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, 410073, China
| | - Shu Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, 410073, China
| | - Zepeng Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, 410073, China
| | - Xiaocui Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, 410073, China
| | - Feng Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Siyu Yan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China.,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, 410073, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China. .,Collaborative Innovation Center of High Performance Computing, National University of Defense Technology, Changsha, 410073, China.
| |
Collapse
|
53
|
Candido S, Abrams SL, Steelman LS, Lertpiriyapong K, Martelli AM, Cocco L, Ratti S, Follo MY, Murata RM, Rosalen PL, Bueno-Silva B, de Alencar SM, Lombardi P, Mao W, Montalto G, Cervello M, Rakus D, Gizak A, Lin HL, Libra M, Akula SM, McCubrey JA. Effects of the MDM-2 inhibitor Nutlin-3a on PDAC cells containing and lacking WT-TP53 on sensitivity to chemotherapy, signal transduction inhibitors and nutraceuticals. Adv Biol Regul 2019; 72:22-40. [PMID: 30898612 DOI: 10.1016/j.jbior.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Mutations at the TP53 gene are readily detected (approximately 50-75%) in pancreatic ductal adenocarcinoma (PDAC) patients. TP53 was previously thought to be a difficult target as it is often mutated, deleted or inactivated on both chromosomes in certain cancers. In the following study, the effects of restoration of wild-type (WT) TP53 activity on the sensitivities of MIA-PaCa-2 pancreatic cancer cells to the MDM2 inhibitor nutlin-3a in combination with chemotherapy, targeted therapy, as well as, nutraceuticals were examined. Upon introduction of the WT-TP53 gene into MIA-PaCa-2 cells, which contain a TP53 gain of function (GOF) mutation, the sensitivity to the MDM2 inhibitor increased. However, effects of nutlin-3a were also observed in MIA-PaCa-2 cells lacking WT-TP53, as upon co-treatment with nutlin-3a, the sensitivity to certain inhibitors, chemotherapeutic drugs and nutraceuticals increased. Interestingly, co-treatment with nutlin-3a and certain chemotherapeutic drug such as irinotecan and oxaliplatin resulted in antagonistic effects in cells both lacking and containing WT-TP53 activity. These studies indicate the sensitizing abilities that WT-TP53 activity can have in PDAC cells which normally lack WT-TP53, as well as, the effects that the MDM2 inhibitor nutlin-3a can have in both cells containing and lacking WT-TP53 to various therapeutic agents.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834
| | - Kvin Lertpiriyapong
- Weill Cornell Medicine and the Hospital for Special Surgery, New York City, New York, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Ramiro M Murata
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Bruno Bueno-Silva
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil; Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | | | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese, 20026, Italy
| | - Weifeng Mao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Giuseppe Montalto
- Dipartimento di Promozione Della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy; Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Agnieska Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw, Poland
| | - Heng-Liang Lin
- Catholic Fu Jen University Hospital, New Taipei City, Taiwan
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer (PreDiCT), University of Catania, Catania, Italy
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834.
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA, 27834.
| |
Collapse
|
54
|
Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol 2019; 20:199-210. [DOI: 10.1038/s41580-019-0110-x] [Citation(s) in RCA: 726] [Impact Index Per Article: 121.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
55
|
Moon SH, Huang CH, Houlihan SL, Regunath K, Freed-Pastor WA, Morris JP, Tschaharganeh DF, Kastenhuber ER, Barsotti AM, Culp-Hill R, Xue W, Ho YJ, Baslan T, Li X, Mayle A, de Stanchina E, Zender L, Tong DR, D'Alessandro A, Lowe SW, Prives C. p53 Represses the Mevalonate Pathway to Mediate Tumor Suppression. Cell 2018; 176:564-580.e19. [PMID: 30580964 DOI: 10.1016/j.cell.2018.11.011] [Citation(s) in RCA: 314] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 08/24/2018] [Accepted: 11/09/2018] [Indexed: 12/14/2022]
Abstract
There are still gaps in our understanding of the complex processes by which p53 suppresses tumorigenesis. Here we describe a novel role for p53 in suppressing the mevalonate pathway, which is responsible for biosynthesis of cholesterol and nonsterol isoprenoids. p53 blocks activation of SREBP-2, the master transcriptional regulator of this pathway, by transcriptionally inducing the ABCA1 cholesterol transporter gene. A mouse model of liver cancer reveals that downregulation of mevalonate pathway gene expression by p53 occurs in premalignant hepatocytes, when p53 is needed to actively suppress tumorigenesis. Furthermore, pharmacological or RNAi inhibition of the mevalonate pathway restricts the development of murine hepatocellular carcinomas driven by p53 loss. Like p53 loss, ablation of ABCA1 promotes murine liver tumorigenesis and is associated with increased SREBP-2 maturation. Our findings demonstrate that repression of the mevalonate pathway is a crucial component of p53-mediated liver tumor suppression and outline the mechanism by which this occurs.
Collapse
Affiliation(s)
- Sung-Hwan Moon
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Chun-Hao Huang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell and Developmental Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Shauna L Houlihan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kausik Regunath
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - John P Morris
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Darjus F Tschaharganeh
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edward R Kastenhuber
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anthony M Barsotti
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Wen Xue
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Timour Baslan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiang Li
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cell and Developmental Biology Program, Weill Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Allison Mayle
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lars Zender
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David R Tong
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
56
|
A novel all-trans retinoic acid derivative inhibits proliferation and induces apoptosis of myelodysplastic syndromes cell line SKM-1 cells via up-regulating p53. Int Immunopharmacol 2018; 65:561-570. [DOI: 10.1016/j.intimp.2018.10.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022]
|
57
|
Jeay S, Ferretti S, Holzer P, Fuchs J, Chapeau EA, Wartmann M, Sterker D, Romanet V, Murakami M, Kerr G, Durand EY, Gaulis S, Cortes-Cros M, Ruetz S, Stachyra TM, Kallen J, Furet P, Würthner J, Guerreiro N, Halilovic E, Jullion A, Kauffmann A, Kuriakose E, Wiesmann M, Jensen MR, Hofmann F, Sellers WR. Dose and Schedule Determine Distinct Molecular Mechanisms Underlying the Efficacy of the p53-MDM2 Inhibitor HDM201. Cancer Res 2018; 78:6257-6267. [PMID: 30135191 DOI: 10.1158/0008-5472.can-18-0338] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/31/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022]
Abstract
Activation of p53 by inhibitors of the p53-MDM2 interaction is being pursued as a therapeutic strategy in p53 wild-type cancers. Here, we report distinct mechanisms by which the novel, potent, and selective inhibitor of the p53-MDM2 interaction HDM201 elicits therapeutic efficacy when applied at various doses and schedules. Continuous exposure of HDM201 led to induction of p21 and delayed accumulation of apoptotic cells. By comparison, high-dose pulses of HDM201 were associated with marked induction of PUMA and a rapid onset of apoptosis. shRNA screens identified PUMA as a mediator of the p53 response specifically in the pulsed regimen. Consistent with this, the single high-dose HDM201 regimen resulted in rapid and marked induction of PUMA expression and apoptosis together with downregulation of Bcl-xL in vivo Knockdown of Bcl-xL was identified as the top sensitizer to HDM201 in vitro, and Bcl-xL was enriched in relapsing tumors from mice treated with intermittent high doses of HDM201. These findings define a regimen-dependent mechanism by which disruption of MDM2-p53 elicits therapeutic efficacy when given with infrequent dosing. In an ongoing HDM201 trial, the observed exposure-response relationship indicates that the molecular mechanism elicited by pulse dosing is likely reproducible in patients. These data support the clinical comparison of daily and intermittent regimens of p53-MDM2 inhibitors.Significance: Pulsed high doses versus sustained low doses of the p53-MDM2 inhibitor HDM201 elicit a proapoptotic response from wild-type p53 cancer cells, offering guidance to current clinical trials with this and other drugs that exploit the activity of p53. Cancer Res; 78(21); 6257-67. ©2018 AACR.
Collapse
Affiliation(s)
- Sébastien Jeay
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stéphane Ferretti
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | - Philipp Holzer
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jeanette Fuchs
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Emilie A Chapeau
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Markus Wartmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Dario Sterker
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Vincent Romanet
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Masato Murakami
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Grainne Kerr
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Eric Y Durand
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Swann Gaulis
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Marta Cortes-Cros
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Stephan Ruetz
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Joerg Kallen
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Pascal Furet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jens Würthner
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nelson Guerreiro
- PK Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Ensar Halilovic
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Audrey Kauffmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Emil Kuriakose
- Translational Clinical Oncology, Novartis Institutes for BioMedical Research, East Hanover, New Jersey
| | - Marion Wiesmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Michael R Jensen
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Francesco Hofmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | - William R Sellers
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| |
Collapse
|
58
|
Abrams SL, Lertpiriyapong K, Yang LV, Martelli AM, Cocco L, Ratti S, Falasca M, Murata RM, Rosalen PL, Lombardi P, Libra M, Candido S, Montalto G, Cervello M, Steelman LS, McCubrey JA. Introduction of WT-TP53 into pancreatic cancer cells alters sensitivity to chemotherapeutic drugs, targeted therapeutics and nutraceuticals. Adv Biol Regul 2018; 69:16-34. [PMID: 29980405 DOI: 10.1016/j.jbior.2018.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10%. Mutations at the TP53 gene are readily detected in pancreatic tumors isolated from PDAC patients. We have investigated the effects of restoration of wild-type (WT) TP53 activity on the sensitivity of pancreatic cancer cells to: chemotherapy, targeted therapy, as well as, nutraceuticals. Upon introduction of the WT-TP53 gene into the MIA-PaCa-2 pancreatic cancer cell line, the sensitivity to drugs used to treat pancreatic cancer cells such as: gemcitabine, fluorouracil (5FU), cisplatin, irinotecan, oxaliplatin, and paclitaxel increased significantly. Likewise, the sensitivity to drugs used to treat other cancers such as: doxorubicin, mitoxantrone, and 4 hydroxy tamoxifen (4HT) also increased upon introduction of WT-TP53 into MIA-PaCa-2 cells. Furthermore, the sensitivity to certain inhibitors which target: PI3K/mTORC1, PDK1, SRC, GSK-3, and biochemical processes such as proteasomal degradation and the nutraceutical berberine as increased upon introduction of WT-TP53. Furthermore, in some cases, cells with WT-TP53 were more sensitive to the combination of drugs and suboptimal doses of the MDM2 inhibitor nutlin-3a. However, TP53-independent effects of nutlin-3a were observed upon treatment with either a proteasomal or a PI3K/mTOR inhibitor. These studies indicate the sensitizing effects that WT-TP53 can have in PDAC cells which normally lack WT-TP53 to various therapeutic agents and suggest approaches to improve PDAC therapy.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Marco Falasca
- Metabolic Signalling Group, School of Pharmacy & Biomedical Sciences, Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, Western Australia 6102, Australia
| | - Ramiro M Murata
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy; Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
59
|
Bischoff I, Tsaryk R, Chai F, Fürst R, Kirkpatrick CJ, Unger RE. In vitro evaluation of a biomaterial-based anticancer drug delivery system as an alternative to conventional post-surgery bone cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:115-124. [PMID: 30274043 DOI: 10.1016/j.msec.2018.07.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/30/2018] [Accepted: 07/20/2018] [Indexed: 01/19/2023]
Abstract
Patients diagnosed with osteosarcoma are currently treated with intravenous injections of anticancer agents after tumor resection. However, due to remaining neoplastic cells at the site of tumor removal, cancer recurrence often occurs. Successful bone regeneration combined with the control of residual cancer cells presents a challenge for tissue engineering. Cyclodextrins loaded with chemotherapeutic drugs reversibly release the drugs over time. Hydroxyapatite bone biomaterials coated with doxorubicin-loaded cyclodextrin should release the drug with time after implantation directly at the original tumor site and may be a way to eliminate residual neoplastic cells. In the present study, we have carried out in vitro studies to evaluate such a drug-delivery system and have shown that doxorubicin released from cyclodextrin-coated hydroxyapatite retained biological activity and exhibited longer and higher cytotoxic effects on both cancer (osteosarcoma cells) and healthy cells (primary osteoblasts and endothelial cells) compared to biomaterials without cyclodextrin loaded with doxorubicin. Furthermore, doxorubicin released from biomaterials with cyclodextrin moderately induced the expression of tumor suppressor protein p53 whereas p21 expression was similar to control cells. In addition, hypoxic conditions, which occur after implantation until blood-flow to the area is regenerated, protected endothelial cells and primary osteoblasts from doxorubicin-induced cytotoxicity. This chemo-protective effect was far less prominent for the osteosarcoma cells. These findings indicate that a hydroxyapatite-cyclodextrin-doxorubicin chemotherapeutic strategy may enhance the drug-targeting effect on tumor cells while protecting the more sensitive healthy cells for a period of time after implantation. A successful integration of such a drug delivery system might allow healthy cells to initially survive during the doxorubicin exposure period, while eliminating residual neoplastic cells.
Collapse
Affiliation(s)
- Iris Bischoff
- Institute of Pathology, Johannes Gutenberg University, Mainz, Germany.
| | - Roman Tsaryk
- Institute of Pathology, Johannes Gutenberg University, Mainz, Germany
| | - Feng Chai
- Faculty of Medicine, University of Lille, France
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt, Germany
| | | | - Ronald E Unger
- Institute of Pathology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
60
|
Ellis M, Stern O, Ashur-Fabian O. The double benefit of Spalax p53: surviving underground hypoxia while defying lung cancer cells in vitro via autophagy and caspase-dependent cell death. Oncotarget 2018; 7:63242-63251. [PMID: 27557517 PMCID: PMC5325360 DOI: 10.18632/oncotarget.11443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/15/2016] [Indexed: 01/19/2023] Open
Abstract
The blind subterranean mole rat, Spalax ehrenbergi, is a model organism for hypoxia tolerance. This superspecies have adapted to severe environment by altering an array of hypoxia-mediated genes, among which an alteration in the p53 DNA binding domain (corresponding to R174K in humans) that hinders its transcriptional activity towards apoptotic genes. It is well accepted that apoptosis is not the only form of programmed cell death and that mechanisms that depend on autophagy are also involved. In the current work we have extended our research and investigated the possibility that Spalax p53 can activate autophagy. Using two complementary assays, we have established that over-expression of the Spalax p53 in p53-null cells (human lung cancer cells, H1299), potently induces autophagy. As Spalax is considered highly resistant to cancer, we further studied the relative contribution of autophagy on the outcome of H1299 cells, following transfection with Spalax p53. Results indicate that Spalax p53 acts as a tumor suppressor in lung cancer cells, inducing cell death that involves autophagy and caspases and inhibiting cell number, which is exclusively caspase-dependent. To conclude, the Spalax p53 protein was evolutionary adapted to survive severe underground hypoxia while retaining the ability to defy lung cancer.
Collapse
Affiliation(s)
- Martin Ellis
- Translational Hemato-Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, 4428164, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Orly Stern
- Translational Hemato-Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, 4428164, Israel
| | - Osnat Ashur-Fabian
- Translational Hemato-Oncology Laboratory, Hematology Institute and Blood Bank, Meir Medical Center, Kfar-Saba, 4428164, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.,The Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
61
|
Kurozumi S, Joseph C, Sonbul S, Gorringe KL, Pigera M, Aleskandarany MA, Diez-Rodriguez M, Nolan CC, Fujii T, Shirabe K, Kuwano H, Storr S, Martin SG, Ellis IO, Green AR, Rakha EA. Clinical and biological roles of Kelch-like family member 7 in breast cancer: a marker of poor prognosis. Breast Cancer Res Treat 2018; 170:525-533. [DOI: 10.1007/s10549-018-4777-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 02/07/2023]
|
62
|
Tano K, Onoguchi-Mizutani R, Yeasmin F, Uchiumi F, Suzuki Y, Yada T, Akimitsu N. Identification of Minimal p53 Promoter Region Regulated by MALAT1 in Human Lung Adenocarcinoma Cells. Front Genet 2018; 8:208. [PMID: 29632545 PMCID: PMC5879451 DOI: 10.3389/fgene.2017.00208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022] Open
Abstract
The MALAT1 long noncoding RNA is strongly linked to cancer progression. Here we report a MALAT1 function in repressing the promoter of p53 (TP53) tumor suppressor gene. p21 and FAS, well-known p53 targets, were upregulated by MALAT1 knockdown in A549 human lung adenocarcinoma cells. We found that these upregulations were mediated by transcriptional activation of p53 through MALAT1 depletion. In addition, we identified a minimal MALAT1-responsive region in the P1 promoter of p53 gene. Flow cytometry analysis revealed that MALAT1-depleted cells exhibited G1 cell cycle arrest. These results suggest that MALAT1 affects the expression of p53 target genes through repressing p53 promoter activity, leading to influence the cell cycle progression.
Collapse
Affiliation(s)
- Keiko Tano
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | | | - Fouzia Yeasmin
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Chiba-ken, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Tetsushi Yada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Kitakyushu, Japan
| | | |
Collapse
|
63
|
Zhang L, Wang Z, Zhang J, Luo X, Du Q, Chang L, Zhao X, Huang Y, Tong D. Porcine parvovirus infection impairs progesterone production in luteal cells through mitogen-activated protein kinases, p53, and mitochondria-mediated apoptosis†. Biol Reprod 2018; 98:558-569. [DOI: 10.1093/biolre/ioy014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/17/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- Liang Zhang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, People's Republic of China
| | - Zhenyu Wang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, People's Republic of China
| | - Jie Zhang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, People's Republic of China
| | - Xiaomao Luo
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, People's Republic of China
| | - Qian Du
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, People's Republic of China
| | - Lingling Chang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, People's Republic of China
| | - Xiaomin Zhao
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, People's Republic of China
| | - Yong Huang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, People's Republic of China
| | - Dewen Tong
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
64
|
Valentijn FA, Falke LL, Nguyen TQ, Goldschmeding R. Cellular senescence in the aging and diseased kidney. J Cell Commun Signal 2017; 12:69-82. [PMID: 29260442 PMCID: PMC5842195 DOI: 10.1007/s12079-017-0434-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
Abstract
The program of cellular senescence is involved in both the G1 and G2 phase of the cell cycle, limiting G1/S and G2/M progression respectively, and resulting in prolonged cell cycle arrest. Cellular senescence is involved in normal wound healing. However, multiple organs display increased senescent cell numbers both during natural aging and after injury, suggesting that senescent cells can have beneficial as well as detrimental effects in organismal aging and disease. Also in the kidney, senescent cells accumulate in various compartments with advancing age and renal disease. In experimental studies, forced apoptosis induction through the clearance of senescent cells leads to better preservation of kidney function during aging. Recent groundbreaking studies demonstrate that senescent cell depletion through INK-ATTAC transgene-mediated or cell-penetrating FOXO4-DRI peptide induced forced apoptosis, reduced age-associated damage and dysfunction in multiple organs, in particular the kidney, and increased performance and lifespan. Senescence is also involved in oncology and therapeutic depletion of senescent cells by senolytic drugs has been studied in experimental and human cancers. Although studies with senolytic drugs in models of kidney injury are lacking, their dose limiting side effects on other organs suggest that targeted delivery might be needed for successful application of senolytic drugs for treatment of kidney disease. In this review, we discuss (i) current understanding of the mechanisms and associated pathways of senescence, (ii) evidence of senescence occurrence and causality with organ injury, and (iii) therapeutic strategies for senescence depletion (senotherapy) including targeting, all in the context of renal aging and disease.
Collapse
Affiliation(s)
- F A Valentijn
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 110, 3584, CX, Utrecht, The Netherlands
| | - L L Falke
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 110, 3584, CX, Utrecht, The Netherlands
- Department of Internal Medicine, Diakonessenhuis, Utrecht, The Netherlands
| | - T Q Nguyen
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 110, 3584, CX, Utrecht, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 110, 3584, CX, Utrecht, The Netherlands.
| |
Collapse
|
65
|
Pan R, Ruvolo V, Mu H, Leverson JD, Nichols G, Reed JC, Konopleva M, Andreeff M. Synthetic Lethality of Combined Bcl-2 Inhibition and p53 Activation in AML: Mechanisms and Superior Antileukemic Efficacy. Cancer Cell 2017; 32:748-760.e6. [PMID: 29232553 PMCID: PMC5730338 DOI: 10.1016/j.ccell.2017.11.003] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 09/16/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
Evasion of apoptosis is a hallmark of cancer. Bcl-2 and p53 represent two important nodes in apoptosis signaling pathways. We find that concomitant p53 activation and Bcl-2 inhibition overcome apoptosis resistance and markedly prolong survival in three mouse models of resistant acute myeloid leukemia (AML). Mechanistically, p53 activation negatively regulates the Ras/Raf/MEK/ERK pathway and activates GSK3 to modulate Mcl-1 phosphorylation and promote its degradation, thus overcoming AML resistance to Bcl-2 inhibition. Moreover, Bcl-2 inhibition reciprocally overcomes apoptosis resistance to p53 activation by switching cellular response from G1 arrest to apoptosis. The efficacy, together with the mechanistic findings, reveals the potential of simultaneously targeting these two apoptosis regulators and provides a rational basis for clinical testing of this therapeutic approach.
Collapse
Affiliation(s)
- Rongqing Pan
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vivian Ruvolo
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Mu
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Gwen Nichols
- Roche Pharmaceutical Research & Early Development, Roche Innovation Center New York, New York, NY 10016, USA
| | - John C Reed
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Marina Konopleva
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
66
|
Xu R, Garcia-Barros M, Wen S, Li F, Lin CL, Hannun YA, Obeid LM, Mao C. Tumor suppressor p53 links ceramide metabolism to DNA damage response through alkaline ceramidase 2. Cell Death Differ 2017; 25:841-856. [PMID: 29229990 PMCID: PMC5943524 DOI: 10.1038/s41418-017-0018-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 09/20/2017] [Accepted: 10/18/2017] [Indexed: 01/18/2023] Open
Abstract
p53 mediates the DNA damage response (DDR) by regulating the expression of genes implicated in cell cycle arrest, senescence, programmed cell death (PCD), and metabolism. Herein we demonstrate that human alkaline ceramidase 2 (ACER2) is a novel transcriptional target of p53 and that its transactivation by p53 mediates the DDR. We found that p53 overexpression or its activation by ionizing radiation (IR) upregulated ACER2 in cells. Two putative p53 responsive elements (p53REs) were found in its first intron of the ACER2 gene, and Chromatin Immunoprecipitation (ChIP) assays in combination with promoter activity assays demonstrated that these p53REs are the bona fide p53 binding sites that mediate ACER2 transactivation by p53. As ACER2 catalyzes the hydrolysis of ceramides into sphingosine, which in turn is phosphorylated to form sphingosine-1-phosphate (S1P), ACER2 upregulation increased the levels of both sphingosine and S1P while decreasing the levels of ceramides in cells. A moderate upregulation of ACER2 inhibited cell cycle arrest and cellular senescence in response to low-level expression of p53 or low-dose IR by elevating S1P, a pro-proliferative and pro-survival bioactive lipid, and/or decreasing ceramides whereas its robust upregulation mediated PCD in response to high-level expression of p53 or high-dose IR likely by accumulating cellular sphingosine, a pro-death bioactive lipid. ACER2 is frequently inactivated in various cancers due to its deletion or mutations, and restoring its expression inhibited the growth of tumor xenografts in mice. These results suggest that p53 mediates DDR and exerts its tumor suppressive role in part by regulating the expression of ACER2, which in turn regulates the bioactive sphingolipid lipids.
Collapse
Affiliation(s)
- Ruijuan Xu
- Department of Medicine, State University of New York (SUNY), Stony Brook, NY, 11794, USA.,Cancer Center at State University of New York (SUNY) at Stony Brook, Stony Brook, NY, 11794, USA
| | - Monica Garcia-Barros
- Department of Medicine, State University of New York (SUNY), Stony Brook, NY, 11794, USA.,Cancer Center at State University of New York (SUNY) at Stony Brook, Stony Brook, NY, 11794, USA
| | - Sally Wen
- Department of Medicine, State University of New York (SUNY), Stony Brook, NY, 11794, USA.,Cancer Center at State University of New York (SUNY) at Stony Brook, Stony Brook, NY, 11794, USA
| | - Fang Li
- Department of Medicine, State University of New York (SUNY), Stony Brook, NY, 11794, USA.,Cancer Center at State University of New York (SUNY) at Stony Brook, Stony Brook, NY, 11794, USA.,Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Chih-Li Lin
- Department of Medicine, State University of New York (SUNY), Stony Brook, NY, 11794, USA.,Cancer Center at State University of New York (SUNY) at Stony Brook, Stony Brook, NY, 11794, USA
| | - Yusuf A Hannun
- Department of Medicine, State University of New York (SUNY), Stony Brook, NY, 11794, USA.,Cancer Center at State University of New York (SUNY) at Stony Brook, Stony Brook, NY, 11794, USA
| | - Lina M Obeid
- Department of Medicine, State University of New York (SUNY), Stony Brook, NY, 11794, USA.,Cancer Center at State University of New York (SUNY) at Stony Brook, Stony Brook, NY, 11794, USA.,Northport Veterans Administration Hospital, Northport, NY, 11768, USA
| | - Cungui Mao
- Department of Medicine, State University of New York (SUNY), Stony Brook, NY, 11794, USA. .,Cancer Center at State University of New York (SUNY) at Stony Brook, Stony Brook, NY, 11794, USA.
| |
Collapse
|
67
|
Liao X, Huang J, Lin W, Long Z, Xie Y, Ma W. APTM, a Thiophene Heterocyclic Compound, Inhibits Human Colon Cancer HCT116 Cell Proliferation Through p53-Dependent Induction of Apoptosis. DNA Cell Biol 2017; 37:70-77. [PMID: 29215922 PMCID: PMC5804089 DOI: 10.1089/dna.2017.3962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To evaluate the in vitro anticancer activity and to investigate the mechanism of action of a thiophene heterocyclic compound, [3-Amino-5-[(2,6-dimethylphenyl)amino]-4-(phenylsulfonyl)-2-thienyl](4-fluorophenyl)methanone (APTM) against human colon cancer HCT116 cells. Sulforhodamine B assay and colony formation assay for cell proliferation assay; propidium iodide (PI) staining for cell cycle profile analysis; Hoechst staining; annexin V-FITC/PI double staining and Western blotting for apoptosis assay. APTM inhibits the growth of HCT116 cells dose and time dependently. The growth inhibitory effect of APTM on HCT116 cells was associated with induction of apoptosis but not cell cycle arrest. Also, the isogenic cell depletion of p53 was resistant to APTM-induced apoptosis and thus grows relatively better than the wild-type cells. The anticancer effect of APTM resulted from p53-dependent induction of apoptosis. Also, APTM is a promising lead compound for the treatment of human colon cancer.
Collapse
Affiliation(s)
- Xiaolin Liao
- 1 State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, China .,2 Department of Pharmacy, People's Hospital of Yicheng , Hubei, China
| | - Jiajun Huang
- 1 State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, China
| | - Wanjun Lin
- 1 State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, China
| | - Ze Long
- 1 State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, China
| | - Ying Xie
- 1 State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, China
| | - Wenzhe Ma
- 1 State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Macau, China
| |
Collapse
|
68
|
Wendel SO, Wallace NA. Loss of Genome Fidelity: Beta HPVs and the DNA Damage Response. Front Microbiol 2017; 8:2250. [PMID: 29187845 PMCID: PMC5694782 DOI: 10.3389/fmicb.2017.02250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/31/2017] [Indexed: 12/28/2022] Open
Abstract
While the role of genus alpha human papillomaviruses in the tumorigenesis and tumor maintenance of anogenital and oropharyngeal cancers is well-established, the role of genus beta human papilloviruses (β-HPVs) in non-melanoma skin cancers (NMSCs) is less certain. Persistent β-HPV infections cause NMSCs in sun-exposed skin of people with a rare genetic disorder, epidermodysplasia verruciformis. However, β-HPV infections in people without epidermodysplasia verruciformis are typically transient. Further, β-HPV gene expression is not necessary for tumor maintenance in the general population as on average there is fewer than one copy of the β-HPV genome per cell in NMSC tumor biopsies. Cell culture, epidemiological, and mouse model experiments support a role for β-HPV infections in the initiation of NMSCs through a "hit and run" mechanism. The virus is hypothesized to act as a cofactor, augmenting the genome destabilizing effects of UV. Supporting this idea, two β-HPV proteins (β-HPV E6 and E7) disrupt the cellular response to UV exposure and other genome destabilizing events by abrogating DNA repair and deregulating cell cycle progression. The aberrant damage response increases the likelihood of oncogenic mutations capable of driving tumorigenesis independent of a sustained β-HPV infection or continued viral protein expression. This review summarizes what is currently known about the deleterious effects of β-HPV on genome maintenance in the context of the virus's putative role in NMSC initiation.
Collapse
|
69
|
Facchini G, Rossetti S, Cavaliere C, D'Aniello C, Di Franco R, Iovane G, Grimaldi G, Piscitelli R, Muto P, Botti G, Perdonà S, Veneziani BM, Berretta M, Montanari M. Exploring the molecular aspects associated with testicular germ cell tumors: a review. Oncotarget 2017; 9:1365-1379. [PMID: 29416701 PMCID: PMC5787445 DOI: 10.18632/oncotarget.22373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 11/25/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) represent the most common solid tumors affecting young men. They constitute a distinct entity because of their embryonic origin and their unique biological behavior. Recent preclinical data regarding biological signaling machinery as well as genetic and epigenetic mechanisms associated with molecular patterns of tumors have contribute to explain the pathogenesis and the differentiation of TGCTs and to understand the mechanisms responsible for the development of resistance to treatment. In this review, we discuss the main genetic and epigenetic events associated with TGCTs development in order to better define their role in the pathogenesis of these tumors and in cisplatin-acquired resistance.
Collapse
Affiliation(s)
- Gaetano Facchini
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corp-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Sabrina Rossetti
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corp-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Carla Cavaliere
- Medical Oncology Unit, ASL NA 3 SUD, Ospedali Riuniti Area Nolana, Nola, Italy
| | - Carmine D'Aniello
- Division of Medical Oncology, A.O.R.N. dei COLLI "Ospedali Monaldi-Cotugno-CTO", Naples, Italy
| | - Rossella Di Franco
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Gelsomina Iovane
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,S.S.D Oncologia Clinica Sperimentale Uro-Andrologica, Dipartimento Corp-S Assistenziale dei Percorsi Oncologici Uro-Genitale, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Giovanni Grimaldi
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Raffaele Piscitelli
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy
| | - Paolo Muto
- Radiation Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy.,Scientific Management, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Sisto Perdonà
- Division of Urology, Department of Uro-Gynaecological Oncology, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Bianca Maria Veneziani
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Massimiliano Berretta
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, Aviano, Italy
| | - Micaela Montanari
- Progetto ONCONET2.0, Linea Progettuale 14 per l'Implementazione della Prevenzione e Diagnosi Precoce del Tumore alla Prostata e Testicolo, Regione Campania, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy.,Department of Biology, College of Science and Technology, Temple University, Philadelphia, USA
| |
Collapse
|
70
|
Interplay Between Microenvironmental Abnormalities and Infectious Agents in Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017. [PMID: 29052143 DOI: 10.1007/978-981-10-5765-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Emerging evidence has shown that the cell of microenvironmental abnormalities is a key factor that controls many cellular physiological processes including cellular communication, homing, proliferation, and survival. Given its central regulatory role, it is therefore not surprising that it is widely exploited by infectious agents for inducing pathogenesis. In the past decade, a number of oncogenic pathogens including viruses, bacteria, and parasites are demonstrated to take advantage of the tumor microenvironmental factors including hypoxia, oxidative stress, and cytokines, to create an extracellular environment more favorable for pathogen survival and propagation and escape from the host immune surveillance. Here we summarize and highlight the current understanding of the interplay between common tumor microenvironmental factors and oncogenic pathogens in promoting tumorigenesis.
Collapse
|
71
|
Kariminik A, Kheirkhah B. Tumor growth factor-β is an important factor for immunosuppression and tumorgenesis in Polyoma BK virus infection; a systematic review article. Cytokine 2017; 95:64-69. [PMID: 28237875 DOI: 10.1016/j.cyto.2017.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/07/2017] [Accepted: 02/12/2017] [Indexed: 02/07/2023]
Abstract
Polyoma BK virus (PBK) is a prevalent human specific virus and the cause of several malignancies in human. The main mechanisms used by PBK to induce/stimulate human cancers are yet to be clarified but it has been proposed that PBK may use several mechanisms to induce/stimulate cancers in human including attenuation of immune responses via up-regulation of immunosuppressor molecules. Transforming growth factor beta (TGF-β) is a key multifunctional factor from modulation of immunosurveillance to angiogenesis. The key roles of TGF-β in the progression of Th17 and T regulatory subsets, the most important immune cells involved in development of cancers, have been demonstrated. Thus, this review article aims to describe the mechanisms used by PBK in induction/stimulation of human cancers in TGF-β dependent manner..
Collapse
Affiliation(s)
- Ashraf Kariminik
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran.
| | - Babak Kheirkhah
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran
| |
Collapse
|
72
|
Bidou L, Bugaud O, Belakhov V, Baasov T, Namy O. Characterization of new-generation aminoglycoside promoting premature termination codon readthrough in cancer cells. RNA Biol 2017; 14:378-388. [PMID: 28145797 DOI: 10.1080/15476286.2017.1285480] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nonsense mutations, generating premature termination codons (PTCs), account for 10% to 30% of the mutations in tumor suppressor genes. Nonsense translational suppression, induced by small molecules including gentamicin and G418, has been suggested as a potential therapy to counteract the deleterious effects of nonsense mutations in several genetic diseases and cancers. We describe here that NB124, a synthetic aminoglycoside derivative recently developed especially for PTC suppression, strongly induces apoptosis in human tumor cells by promoting high level of PTC readthrough. Using a reporter system, we showed that NB124 suppressed several of the PTCs encountered in tumor suppressor genes, such as the p53 and APC genes. We also showed that NB124 counteracted p53 mRNA degradation by nonsense-mediated decay (NMD). Both PTC suppression and mRNA stabilization contributed to the production of a full-length p53 protein capable of activating p53-dependent genes, thereby specifically promoting high levels of apoptosis. This new-generation aminoglycoside thus outperforms the only clinically available readthrough inducer (gentamicin). These results have important implications for the development of personalised treatments of PTC-dependent diseases and for the development of new drugs modifying translation fidelity.
Collapse
Affiliation(s)
- Laure Bidou
- a Université Pierre et Marie Curie , Paris , France.,b Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette cedex , France
| | - Olivier Bugaud
- b Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette cedex , France
| | - Valery Belakhov
- c Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry Technion IIT , Haifa , Israel
| | - Timor Baasov
- c Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry Technion IIT , Haifa , Israel
| | - Olivier Namy
- b Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris Sud, Université Paris-Saclay, Gif sur Yvette cedex , France
| |
Collapse
|
73
|
Raj N, Attardi LD. The Transactivation Domains of the p53 Protein. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026047. [PMID: 27864306 DOI: 10.1101/cshperspect.a026047] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The p53 tumor suppressor is a transcriptional activator, with discrete domains that participate in sequence-specific DNA binding, tetramerization, and transcriptional activation. Mutagenesis and reporter studies have delineated two distinct activation domains (TADs) and specific hydrophobic residues within these TADs that are critical for their function. Knockin mice expressing p53 mutants with alterations in either or both of the two TADs have revealed that TAD1 is critical for responses to acute DNA damage, whereas both TAD1 and TAD2 participate in tumor suppression. Biochemical and structural studies have identified factors that bind either or both TADs, including general transcription factors (GTFs), chromatin modifiers, and negative regulators, helping to elaborate a model through which p53 activates transcription. Posttranslational modifications (PTMs) of the p53 TADs through phosphorylation also regulate TAD activity. Together, these studies on p53 TADs provide great insight into how p53 serves as a tumor suppressor.
Collapse
Affiliation(s)
- Nitin Raj
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
74
|
Abstract
The treatment of microbial infections has suffered greatly in this present century of pathogen dominance. Inspite of extensive research efforts and scientific advancements, the worldwide emergence of microbial tolerance continues to plague survivability. The innate property of microbe to resist any antibiotic due to evolution is the virtue of intrinsic resistance. However, the classical genetic mutations and extrachromosomal segments causing gene exchange attribute to acquired tolerance development. Rampant use of antimicrobials causes certain selection pressure which increases the resistance frequency. Genomic duplication, enzymatic site modification, target alteration, modulation in membrane permeability, and the efflux pump mechanism are the major contributors of multidrug resistance (MDR), specifically antibiotic tolerance development. MDRs will lead to clinical failures for treatment and pose health crisis. The molecular mechanisms of antimicrobial resistance are diverse as well as complex and still are exploited for new discoveries in order to prevent the surfacing of “superbugs.” Antimicrobial chemotherapy has diminished the threat of infectious diseases to some extent. To avoid the indiscriminate use of antibiotics, the new ones licensed for use have decreased with time. Additionally, in vitro assays and genomics for anti-infectives are novel approaches used in resolving the issues of microbial resistance. Proper use of drugs can keep it under check and minimize the risk of MDR spread.
Collapse
|
75
|
Zhang X, Li CF, Zhang L, Wu CY, Han L, Jin G, Rezaeian AH, Han F, Liu C, Xu C, Xu X, Huang CY, Tsai FJ, Tsai CH, Watabe K, Lin HK. TRAF6 Restricts p53 Mitochondrial Translocation, Apoptosis, and Tumor Suppression. Mol Cell 2016; 64:803-814. [PMID: 27818144 PMCID: PMC5541903 DOI: 10.1016/j.molcel.2016.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/02/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Mitochondrial p53 is involved in apoptosis and tumor suppression. However, its regulation is not well studied. Here, we show that TRAF6 E3 ligase is a crucial factor to restrict mitochondrial translocation of p53 and spontaneous apoptosis by promoting K63-linked ubiquitination of p53 at K24 in cytosol, and such ubiquitination limits the interaction between p53 and MCL-1/BAK. Genotoxic stress reduces this ubiquitination in cytosol by S13/T330 phosphorylation-dependent translocation of TRAF6 from cytosol to nucleus, where TRAF6 also facilitates the K63-linked ubiquitination of nuclear p53 and its transactivation by recruiting p300 for p53 acetylation. Functionally, K63-linked ubiquitination of p53 compromised p53-mediated apoptosis and tumor suppression. Colorectal cancer samples with WT p53 reveal that TRAF6 overexpression negatively correlates with apoptosis and predicts poor response to chemotherapy and radiotherapy. Together, our study identifies TRAF6 as a critical gatekeeper to restrict p53 mitochondrial translocation, and such mechanism may contribute to tumor development and drug resistance.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chien-Feng Li
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan; Department of Pathology, Chi-Mei Foundational Medical Center, Tainan 710, Taiwan
| | - Ling Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, 1#, Yixueyuan Road, Chongqing, 400016, China
| | - Ching-Yuan Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Chinese Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Lixia Han
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Guoxiang Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abdol Hossein Rezaeian
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fei Han
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Chunfang Liu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chuan Xu
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaohong Xu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Fuu-Jen Tsai
- College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Department of Medical Genetics, Pediatrics, and Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chang-Hai Tsai
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan; Center of Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan; Department of Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
76
|
Liu H, Fang S, Wang W, Cheng Y, Zhang Y, Liao H, Yao H, Chao J. Macrophage-derived MCPIP1 mediates silica-induced pulmonary fibrosis via autophagy. Part Fibre Toxicol 2016; 13:55. [PMID: 27782836 PMCID: PMC5078901 DOI: 10.1186/s12989-016-0167-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022] Open
Abstract
Background Silicosis is characterized by accumulation of fibroblasts and excessive deposition of extracellular matrix. Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) plays a critical role in fibrosis induced by SiO2. However, the details of the downstream events of MCPIP1 activity in pulmonary fibrosis remain unclear. To elucidate the role of MCPIP1-induced autophagy in SiO2-induced fibrosis, both the upstream molecular mechanisms and the functional effects of SiO2 on cell apoptosis, proliferation and migration were investigated. Results Experiments using primary cultures of alveolar macrophages from healthy donors and silicosis patients as well as differentiated U937 macrophages demonstrated the following results: 1) SiO2 induced macrophage autophagy in association with enhanced expression of MCPIP1; 2) autophagy promoted apoptosis and activation of macrophages exposed to SiO2, and these events induced the development of silicosis; 3) MCPIP1 facilitated macrophage apoptosis and activation via p53 signaling-mediated autophagy; and 4) SiO2-activated macrophages promoted the proliferation and migration of fibroblasts via the MCPIP1/p53-mediated autophagy pathway. Conclusions Our results elucidated a link between SiO2-induced fibrosis and MCPIP1/p53 signaling-mediated autophagy. These findings provide novel insight into the potential targeting of MCPIP1 or autophagy in the development of potential therapeutic strategies for silicosis. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0167-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Physiology, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, Jiangsu, 210009, China.,Neurobiology Laboratory, New Drug Screening Centre, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Shencun Fang
- Nine Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu, 210029, China
| | - Wei Wang
- Nine Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu, 210029, China
| | - Yusi Cheng
- Department of Physiology, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, Jiangsu, 210009, China
| | - Yingming Zhang
- Nine Department of Respiratory Medicine, Nanjing Chest Hospital, Nanjing, Jiangsu, 210029, China
| | - Hong Liao
- Neurobiology Laboratory, New Drug Screening Centre, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, Jiangsu, 210009, China. .,Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, Jiangsu, 210009, China. .,Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China. .,Department of Respiration, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
77
|
Brighenti E, Treré D, Derenzini M. Targeted cancer therapy with ribosome biogenesis inhibitors: a real possibility? Oncotarget 2016; 6:38617-27. [PMID: 26415219 PMCID: PMC4770724 DOI: 10.18632/oncotarget.5775] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/04/2015] [Indexed: 12/13/2022] Open
Abstract
The effects of many chemotherapeutic drugs on ribosome biogenesis have been underestimated for a long time. Indeed, many drugs currently used for cancer treatment--and which are known to either damage DNA or hinder DNA synthesis--have been shown to exert their toxic action mainly by inhibiting rRNA synthesis or maturation. Moreover, there are new drugs that have been proposed recently for cancer chemotherapy, which only hinder ribosome biogenesis without any genotoxic activity. Even though ribosome biogenesis occurs in both normal and cancer cells, whether resting or proliferating, there is evidence that the selective inhibition of ribosome biogenesis may, in some instances, result in a selective damage to neoplastic cells. The higher sensitivity of cancer cells to inhibitors of rRNA synthesis appears to be the consequence of either the loss of the mechanisms controlling the cell cycle progression or the acquisition of activating oncogene and inactivating tumor suppressor gene mutations that up-regulate the ribosome biogenesis rate. This article reviews those cancer cell characteristics on which the selective cancer cell cytotoxicity induced by the inhibitors of ribosome biogenesis is based.
Collapse
Affiliation(s)
- Elisa Brighenti
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, Bologna, Italy
| | - Davide Treré
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, Bologna, Italy
| | - Massimo Derenzini
- Department of Experimental, Diagnostic and Specialty Medicine, Bologna University, Bologna, Italy
| |
Collapse
|
78
|
Extended Abstracts. Toxicol Pathol 2016. [DOI: 10.1177/019262339702500633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
79
|
Perz E, Kuhn JG. Review : p53 in the pathogenesis, diagnosis, and treatment of cancer. J Oncol Pharm Pract 2016. [DOI: 10.1177/107815529800400201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective. The cellular functions of p53, the conse quences of the loss of p53 function, and the potential impact of p53 in oncology are reviewed within the framework of an overview of the molecular basis of cancer and cell cycle control. Data Sources. A MEDLINE search of articles from 1976 to the present was conducted using the terms p53 protein and p53 gene. The search was restricted to the English language. Oncology and molecular biology textbooks were used as additional references. Data Extraction. We reviewed the literature to discuss the cellular function of p53, the mechanisms of p53 inactivation, the cellular consequences of the loss of p53 function, the role of p53 loss in tumori genesis, and the potential applications of this knowl edge. Data Synthesis. p53 mutations are found in ~ 50% of human cancers. Knowledge of p53 functions and defects provides the basis for potential applica tions in the areas of cancer epidemiology, cancer diagnosis, and determination of prognosis. An under standing of the functions and defects of p53 also presents a host of opportunities for the design of novel cancer therapies. Therapeutic approaches be ing studied include the restoration of p53 by gene therapy, the alteration of mutant p53 expression by antisense therapy, and the use of p53 mutations as a target for directing therapy to cancer cells; some of these approaches are already under phase I investiga tion. As knowledge of p53 unfolds, additional thera peutic approaches will certainly be developed. The story of p53 illustrates that the manipulation of mo lecular interactions is a new frontier in therapeutics and offers an additional role for oncology pharmacy specialists.
Collapse
Affiliation(s)
- Elizabeth Perz
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - John G. Kuhn
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
80
|
A Homogeneous Polysaccharide from Fructus Schisandra chinensis (Turz.) Baill Induces Mitochondrial Apoptosis through the Hsp90/AKT Signalling Pathway in HepG2 Cells. Int J Mol Sci 2016; 17:ijms17071015. [PMID: 27367669 PMCID: PMC4964391 DOI: 10.3390/ijms17071015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/10/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023] Open
Abstract
According to the potential anti-hepatoma therapeutic effect of Schisandra chinensis polysaccharides presented in previous studies, a bioactive constituent, homogeneous Schisandra chinensis polysaccharide-0-1 (SCP-0-1), molecular weight (MW) circa 69.980 kDa, was isolated and purified. We assessed the efficacy of SCP-0-1 against human hepatocellular liver carcinoma (HepG2) cells to investigate the effects of its antitumour activity and molecular mechanisms. Anticancer activity was evaluated using microscopy, 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyltetrazolium bromide (MTT) assay, Hoechst 33258 staining, acridine orange (AO) staining, flow cytometry (FCM), and cell-cycle analysis. SCP-0-1 inhibited the HepG2 cells’ growth via inducing apoptosis and second gap/mitosis (G2/M) arrest dose-dependently, with a half maximal inhibitory concentration (IC50) value of 479.63 µg/mL. Western blotting of key proteins revealed the apoptotic and autophagic potential of SCP-0-1. Besides, SCP-0-1 upregulated Bcl-2 Associated X Protein (Bax) and downregulated B-cell leukemia/lymphoma 2 (Bcl-2) in the HepG2 cells. The expression of caspase-3, -8, and -9; poly (ADP-ribose) polymerase (PARP); cytochrome c (Cyt C); tumor protein 53 (p53); survivin; sequestosome 1 (p62); microtubule-associated protein 1 light chain-3B (LC3B); mitogen-activated protein kinase p38 (p38); extracellular regulated protein kinases (ERK); c-Jun N-terminal kinase (JNK); protein kinase B (AKT); and heat shock protein 90 (Hsp90) were evaluated using Western blotting. Our findings demonstrate a novel mechanism through which SCP-0-1 exerts its antiproliferative activity and induces mitochondrial apoptosis rather than autophagy. The induction of mitochondrial apoptosis was attributed to the inhibition of the Hsp90/AKT signalling pathway in an extracellular signal-regulated kinase-independent manner. The results also provide initial evidence on a molecular basis that SCP-0-1 can be used as an anti-hepatocellular carcinoma therapeutic agent in the future.
Collapse
|
81
|
Beckerman R, Yoh K, Mattia-Sansobrino M, Zupnick A, Laptenko O, Karni-Schmidt O, Ahn J, Byeon IJ, Keezer S, Prives C. Lysines in the tetramerization domain of p53 selectively modulate G1 arrest. Cell Cycle 2016; 15:1425-38. [PMID: 27210019 DOI: 10.1080/15384101.2016.1170270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Functional in a tetrameric state, the protein product of the p53 tumor suppressor gene confers its tumor-suppressive activity by transactivating genes which promote cell-cycle arrest, senescence, or programmed cell death. How p53 distinguishes between these divergent outcomes is still a matter of considerable interest. Here we discuss the impact of 2 mutations in the tetramerization domain that confer unique properties onto p53. By changing lysines 351 and 357 to arginine, thereby blocking all post-translational modifications of these residues, DNA binding and transcriptional regulation by p53 remain virtually unchanged. On the other hand, by changing these lysines to glutamine (2KQ-p53), thereby neutralizing their positive charge and potentially mimicking acetylation, p53 is impaired in the induction of cell cycle arrest and yet can still effectively induce cell death. Surprisingly, when 2KQ-p53 is expressed at high levels in H1299 cells, it can bind to and transactivate numerous p53 target genes including p21, but not others such as miR-34a and cyclin G1 to the same extent as wild-type p53. Our findings show that strong induction of p21 is not sufficient to block H1299 cells in G1, and imply that modification of one or both of the lysines within the tetramerization domain may serve as a mechanism to shunt p53 from inducing cell cycle arrest.
Collapse
Affiliation(s)
| | - Kathryn Yoh
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | | | | | - Oleg Laptenko
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - Orit Karni-Schmidt
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - Jinwoo Ahn
- b Department of Structural Biology , University of Pittsburgh , Pittsburgh , PA , USA
| | - In-Ja Byeon
- b Department of Structural Biology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Susan Keezer
- c Cell Signaling Technology, Inc. , Danvers , MA , USA
| | - Carol Prives
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| |
Collapse
|
82
|
Laptenko O, Shiff I, Freed-Pastor W, Zupnick A, Mattia M, Freulich E, Shamir I, Kadouri N, Kahan T, Manfredi J, Simon I, Prives C. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol Cell 2016; 57:1034-1046. [PMID: 25794615 DOI: 10.1016/j.molcel.2015.02.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/23/2014] [Accepted: 02/06/2015] [Indexed: 11/19/2022]
Abstract
DNA binding by numerous transcription factors including the p53 tumor suppressor protein constitutes a vital early step in transcriptional activation. While the role of the central core DNA binding domain (DBD) of p53 in site-specific DNA binding has been established, the contribution of the sequence-independent C-terminal domain (CTD) is still not well understood. We investigated the DNA-binding properties of a series of p53 CTD variants using a combination of in vitro biochemical analyses and in vivo binding experiments. Our results provide several unanticipated and interconnected findings. First, the CTD enables DNA binding in a sequence-dependent manner that is drastically altered by either its modification or deletion. Second, dependence on the CTD correlates with the extent to which the p53 binding site deviates from the canonical consensus sequence. Third, the CTD enables stable formation of p53-DNA complexes to divergent binding sites via DNA-induced conformational changes within the DBD itself.
Collapse
Affiliation(s)
- Oleg Laptenko
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Idit Shiff
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - Will Freed-Pastor
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Andrew Zupnick
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Melissa Mattia
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ella Freulich
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Inbal Shamir
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - Noam Kadouri
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - Tamar Kahan
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - James Manfredi
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel.
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
83
|
Paek AL, Liu JC, Loewer A, Forrester WC, Lahav G. Cell-to-Cell Variation in p53 Dynamics Leads to Fractional Killing. Cell 2016; 165:631-42. [PMID: 27062928 DOI: 10.1016/j.cell.2016.03.025] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 11/25/2015] [Accepted: 03/16/2016] [Indexed: 12/21/2022]
Abstract
Many chemotherapeutic drugs kill only a fraction of cancer cells, limiting their efficacy. We used live-cell imaging to investigate the role of p53 dynamics in fractional killing of colon cancer cells in response to chemotherapy. We found that both surviving and dying cells reach similar levels of p53, indicating that cell death is not determined by a fixed p53 threshold. Instead, a cell's probability of death depends on the time and levels of p53. Cells must reach a threshold level of p53 to execute apoptosis, and this threshold increases with time. The increase in p53 apoptotic threshold is due to drug-dependent induction of anti-apoptotic genes, predominantly in the inhibitors of apoptosis (IAP) family. Our study underlines the importance of measuring the dynamics of key players in response to chemotherapy to determine mechanisms of resistance and optimize the timing of combination therapy.
Collapse
Affiliation(s)
- Andrew L Paek
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Julia C Liu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander Loewer
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - William C Forrester
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
84
|
Alsafadi S, Tourpin S, Bessoltane N, Salomé-Desnoulez S, Vassal G, André F, Ahomadegbe JC. Nuclear localization of the caspase-3-cleaved form of p73 in anoikis. Oncotarget 2016; 7:12331-43. [PMID: 26575022 PMCID: PMC4914288 DOI: 10.18632/oncotarget.6329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/13/2015] [Indexed: 11/25/2022] Open
Abstract
The transcription factor p73 is a homologue of p53 that can be expressed as pro- or anti-apoptotic isoforms. Unlike p53, p73 is rarely mutated or lost in cancers and it is found to replace defective p53 inducing apoptosis. Here, we investigated the p73 involvement in anoikis, a type of apoptosis caused by inadequate cell-matrix interactions. Breast cancer cell lines with different p53 status were treated with doxorubicin (DOX) or docetaxel (DOC) and cells detached from the extracellular matrix were analyzed. We demonstrate for the first time that DOX-induced cell detachment is associated with p73 cleavage and caspase activation, independently of the p53 status. However, we did not detect p73 cleavage or caspase activation in detached cells under DOC treatment. Overexpressing the apoptotic isoform of p73 led to cell detachment associated with p73 cleavage and caspase activation. Interestingly, p73 cleaved forms localize to the nucleus during the late phase of cell death indicating an increase in the transcriptional activity. Our study suggests that the cleavage of p73 on specific sites may release its pro-apoptotic function and contribute to cell death.
Collapse
Affiliation(s)
- Samar Alsafadi
- Gustave Roussy, INSERM U981, Univ Paris-Sud, F 94805 Villejuif, France.,IRCIV, Univ Paris-Sud, F 94805 Villejuif, France
| | - Sophie Tourpin
- Department of Biopathology, Gustave Roussy, F 94805 Villejuif, France.,IRCIV, Univ Paris-Sud, F 94805 Villejuif, France
| | - Nadia Bessoltane
- Gustave Roussy, INSERM U981, Univ Paris-Sud, F 94805 Villejuif, France.,IRCIV, Univ Paris-Sud, F 94805 Villejuif, France
| | | | | | - Fabrice André
- Gustave Roussy, INSERM U981, Univ Paris-Sud, F 94805 Villejuif, France.,IRCIV, Univ Paris-Sud, F 94805 Villejuif, France
| | - Jean-Charles Ahomadegbe
- Gustave Roussy, INSERM U981, Univ Paris-Sud, F 94805 Villejuif, France.,IRCIV, Univ Paris-Sud, F 94805 Villejuif, France.,Faculté de Pharmacie, Université de Picardie Jules Vernes, 80000 Amiens, France
| |
Collapse
|
85
|
Chen J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med 2016; 6:a026104. [PMID: 26931810 DOI: 10.1101/cshperspect.a026104] [Citation(s) in RCA: 794] [Impact Index Per Article: 88.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
P53 is a transcription factor highly inducible by many stress signals such as DNA damage, oncogene activation, and nutrient deprivation. Cell-cycle arrest and apoptosis are the most prominent outcomes of p53 activation. Many studies showed that p53 cell-cycle and apoptosis functions are important for preventing tumor development. p53 also regulates many cellular processes including metabolism, antioxidant response, and DNA repair. Emerging evidence suggests that these noncanonical p53 activities may also have potent antitumor effects within certain context. This review focuses on the cell-cycle arrest and apoptosis functions of p53, their roles in tumor suppression, and the regulation of cell fate decision after p53 activation.
Collapse
Affiliation(s)
- Jiandong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida 33612
| |
Collapse
|
86
|
Oei AL, van Leeuwen CM, ten Cate R, Rodermond HM, Buist MR, Stalpers LJA, Crezee J, Kok HP, Medema JP, Franken NAP. Hyperthermia Selectively Targets Human Papillomavirus in Cervical Tumors via p53-Dependent Apoptosis. Cancer Res 2015; 75:5120-9. [PMID: 26573798 DOI: 10.1158/0008-5472.can-15-0816] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/04/2015] [Indexed: 01/17/2023]
Abstract
Human papillomavirus (HPV) is associated with cervical cancer, the third most common cancer in women. The high-risk HPV types 16 and 18 are found in over 70% of cervical cancers and produce the oncoprotein, early protein 6 (E6), which binds to p53 and mediates its ubiquitination and degradation. Targeting E6 has been shown to be a promising treatment option to eliminate HPV-positive tumor cells. In addition, combined hyperthermia with radiation is a very effective treatment strategy for cervical cancer. In this study, we examined the effect of hyperthermia on HPV-positive cells using cervical cancer cell lines infected with HPV 16 and 18, in vivo tumor models, and ex vivo-treated patient biopsies. Strikingly, we demonstrate that a clinically relevant hyperthermia temperature of 42 °C for 1 hour resulted in E6 degradation, thereby preventing the formation of the E6-p53 complex and enabling p53-dependent apoptosis and G2-phase arrest. Moreover, hyperthermia combined with p53 depletion restored both the cell-cycle distribution and apoptosis to control levels. Collectively, our findings provide new insights into the treatment of HPV-positive cervical cancer and suggest that hyperthermia therapy could improve patient outcomes.
Collapse
Affiliation(s)
- Arlene L Oei
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands. Department of Radiotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Caspar M van Leeuwen
- Department of Radiotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rosemarie ten Cate
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands. Department of Radiotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Hans M Rodermond
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands. Department of Radiotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marrije R Buist
- Department of Gynecologic Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Lukas J A Stalpers
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands. Department of Radiotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes Crezee
- Department of Radiotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - H Petra Kok
- Department of Radiotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands. Department of Radiotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Nicolaas A P Franken
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam, the Netherlands. Department of Radiotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
87
|
Jones CL, Gearheart CM, Fosmire S, Delgado-Martin C, Evensen NA, Bride K, Waanders AJ, Pais F, Wang J, Bhatla T, Bitterman DS, de Rijk SR, Bourgeois W, Dandekar S, Park E, Burleson TM, Madhusoodhan PP, Teachey DT, Raetz EA, Hermiston ML, Müschen M, Loh ML, Hunger SP, Zhang J, Garabedian MJ, Porter CC, Carroll WL. MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood 2015; 126:2202-12. [PMID: 26324703 PMCID: PMC4635116 DOI: 10.1182/blood-2015-04-639138] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022] Open
Abstract
The outcome for pediatric acute lymphoblastic leukemia (ALL) patients who relapse is dismal. A hallmark of relapsed disease is acquired resistance to multiple chemotherapeutic agents, particularly glucocorticoids. In this study, we performed a genome-scale short hairpin RNA screen to identify mediators of prednisolone sensitivity in ALL cell lines. The incorporation of these data with an integrated analysis of relapse-specific genetic and epigenetic changes allowed us to identify the mitogen-activated protein kinase (MAPK) pathway as a mediator of prednisolone resistance in pediatric ALL. We show that knockdown of the specific MAPK pathway members MEK2 and MEK4 increased sensitivity to prednisolone through distinct mechanisms. MEK4 knockdown increased sensitivity specifically to prednisolone by increasing the levels of the glucocorticoid receptor. MEK2 knockdown increased sensitivity to all chemotherapy agents tested by increasing the levels of p53. Furthermore, we demonstrate that inhibition of MEK1/2 with trametinib increased sensitivity of ALL cells and primary samples to chemotherapy in vitro and in vivo. To confirm a role for MAPK signaling in patients with relapsed ALL, we measured the activation of the MEK1/2 target ERK in matched diagnosis-relapse primary samples and observed increased phosphorylated ERK levels at relapse. Furthermore, relapse samples have an enhanced response to MEK inhibition compared to matched diagnosis samples in xenograft models. Together, our data indicate that inhibition of the MAPK pathway increases chemosensitivity to glucocorticoids and possibly other agents and that the MAPK pathway is an attractive target for prevention and/or treatment of relapsed disease.
Collapse
Affiliation(s)
- Courtney L Jones
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Christy M Gearheart
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Susan Fosmire
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | | | - Nikki A Evensen
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Karen Bride
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Angela J Waanders
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Faye Pais
- Department of Pediatrics, University of California School of Medicine, San Francisco, CA
| | - Jinhua Wang
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY; Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, New York, NY
| | - Teena Bhatla
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Danielle S Bitterman
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Simone R de Rijk
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Wallace Bourgeois
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Smita Dandekar
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| | - Eugene Park
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Tamara M Burleson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | | | - David T Teachey
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth A Raetz
- Division of Pediatric Hematology and Oncology, University of Utah, Salt Lake City, UT
| | - Michelle L Hermiston
- Department of Pediatrics, University of California School of Medicine, San Francisco, CA
| | - Markus Müschen
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Mignon L Loh
- Department of Pediatrics, University of California School of Medicine, San Francisco, CA
| | - Stephen P Hunger
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jinghui Zhang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, TN; and
| | - Michael J Garabedian
- Department of Microbiology, New York University Langone Medical Center, New York, NY
| | | | - William L Carroll
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY
| |
Collapse
|
88
|
Novel Implications of DNA Damage Response in Drug Resistance of Malignant Cancers Obtained from the Functional Interaction between p53 Family and RUNX2. Biomolecules 2015; 5:2854-76. [PMID: 26512706 PMCID: PMC4693260 DOI: 10.3390/biom5042854] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/17/2015] [Accepted: 10/16/2015] [Indexed: 12/31/2022] Open
Abstract
During the lifespan of cells, their genomic DNA is continuously exposed to the endogenous and exogenous DNA insults. Thus, the appropriate cellular response to DNA damage plays a pivotal role in maintaining genomic integrity and also acts as a molecular barrier towards DNA legion-mediated carcinogenesis. The tumor suppressor p53 participates in an integral part of proper regulation of DNA damage response (DDR). p53 is frequently mutated in a variety of human cancers. Since mutant p53 displays a dominant-negative behavior against wild-type p53, cancers expressing mutant p53 sometimes acquire drug-resistant phenotype, suggesting that mutant p53 prohibits the p53-dependent cell death pathway following DNA damage, and thereby contributing to the acquisition and/or maintenance of drug resistance of malignant cancers. Intriguingly, we have recently found that silencing of pro-oncogenic RUNX2 enhances drug sensitivity of aggressive cancer cells regardless of p53 status. Meanwhile, cancer stem cells (CSCs) have stem cell properties such as drug resistance. Therefore, the precise understanding of the biology of CSCs is quite important to overcome their drug resistance. In this review, we focus on molecular mechanisms behind DDR as well as the serious drug resistance of malignant cancers and discuss some attractive approaches to improving the outcomes of patients bearing drug-resistant cancers.
Collapse
|
89
|
Marbach-Bar N, Bahat A, Ashkenazi S, Golan-Mashiach M, Haimov O, Wu SY, Chiang CM, Puzio-Kuter A, Hirshfield KM, Levine AJ, Dikstein R. DTIE, a novel core promoter element that directs start site selection in TATA-less genes. Nucleic Acids Res 2015; 44:1080-94. [PMID: 26464433 PMCID: PMC4756809 DOI: 10.1093/nar/gkv1032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/26/2015] [Indexed: 12/16/2022] Open
Abstract
The transcription start site (TSS) determines the length and composition of the 5′ UTR and therefore can have a profound effect on translation. Yet, little is known about the mechanism underlying start site selection, particularly from promoters lacking conventional core elements such as TATA-box and Initiator. Here we report a novel mechanism of start site selection in the TATA- and Initiator-less promoter of miR-22, through a strictly localized downstream element termed DTIE and an upstream distal element. Changing the distance between them reduced promoter strength, altered TSS selection and diminished Pol II recruitment. Biochemical assays suggest that DTIE does not serve as a docking site for TFIID, the major core promoter-binding factor. TFIID is recruited to the promoter through DTIE but is dispensable for TSS selection. We determined DTIE consensus and found it to be remarkably prevalent, present at the same TSS downstream location in ≈20.8% of human promoters, the vast majority of which are TATA-less. Analysis of DTIE in the tumor suppressor p53 confirmed a similar function. Our findings reveal a novel mechanism of transcription initiation from TATA-less promoters.
Collapse
Affiliation(s)
- Nadav Marbach-Bar
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anat Bahat
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shaked Ashkenazi
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Golan-Mashiach
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ora Haimov
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anna Puzio-Kuter
- Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Kim M Hirshfield
- Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Arnold J Levine
- Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Rivka Dikstein
- Dept. of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
90
|
Zhang L, Zhang F, Zhang W, Chen L, Gao N, Men Y, Xu X, Jiang Y. Harmine suppresses homologous recombination repair and inhibits proliferation of hepatoma cells. Cancer Biol Ther 2015; 16:1585-92. [PMID: 26382920 DOI: 10.1080/15384047.2015.1078021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To avoid cell cycle arrest or apoptosis, rapidly proliferating cancer cells have to promote DNA double strand break (DSB) repair to fix replication stress induced DSBs. Therefore, developing drugs blocking homologous recombination (HR) and nonhomologous end joining (NHEJ) - 2 major DSB repair pathways - holds great potential for cancer therapy. Over the last few decades, much attention has been paid to explore drugs targeting DSB repair pathways for cancer therapy. Here, using 2 well-established reporters for analyzing HR and NHEJ efficiency, we found that both HR and NHEJ are elevated in hepatoma cell lines Hep3B and HuH7 compared with normal liver cell lines Chang liver and QSG-7701. Our further study found that Harmine, a natural compound, negatively regulates HR but not NHEJ by interfering Rad51 recruitment, resulting in severe cytotoxicity in hepatoma cells. Furthermore, NHEJ inhibitor Nu7441 markedly sensitizes Hep3B cells to the anti-proliferative effects of Harmine. Taken together, our study suggested that Harmine holds great promise as an oncologic drug and combination of Harmine with a NHEJ inhibitor might be an effective strategy for anti-cancer treatment.
Collapse
Affiliation(s)
- Lei Zhang
- a Department of Clinical Laboratory Medicine ; Shanghai Tenth People's Hospital; School of Life Sciences and Technology; Tongji University ; Shanghai , China
| | - Fan Zhang
- a Department of Clinical Laboratory Medicine ; Shanghai Tenth People's Hospital; School of Life Sciences and Technology; Tongji University ; Shanghai , China
| | - Wenjun Zhang
- a Department of Clinical Laboratory Medicine ; Shanghai Tenth People's Hospital; School of Life Sciences and Technology; Tongji University ; Shanghai , China.,b Department of Plastic Surgery ; Shanghai Changzheng Hospital ; Shanghai , China
| | - Lu Chen
- a Department of Clinical Laboratory Medicine ; Shanghai Tenth People's Hospital; School of Life Sciences and Technology; Tongji University ; Shanghai , China
| | - Neng Gao
- a Department of Clinical Laboratory Medicine ; Shanghai Tenth People's Hospital; School of Life Sciences and Technology; Tongji University ; Shanghai , China
| | - Yulong Men
- a Department of Clinical Laboratory Medicine ; Shanghai Tenth People's Hospital; School of Life Sciences and Technology; Tongji University ; Shanghai , China
| | - Xiaojun Xu
- c State Key Laboratory of Natural Medicines; China Pharmaceutical University ; Nanjing , China
| | - Ying Jiang
- a Department of Clinical Laboratory Medicine ; Shanghai Tenth People's Hospital; School of Life Sciences and Technology; Tongji University ; Shanghai , China
| |
Collapse
|
91
|
Choudhury S, Ghosh S, Gupta P, Mukherjee S, Chattopadhyay S. Inflammation-induced ROS generation causes pancreatic cell death through modulation of Nrf2/NF-κB and SAPK/JNK pathway. Free Radic Res 2015; 49:1371-83. [PMID: 26189548 DOI: 10.3109/10715762.2015.1075016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic pancreatitis is characterized by progressive loss of exocrine and endocrine functions of the pancreas and is considered to be the single most important cause for development of pancreatic cancer. Recent evidence suggests that inflammation and oxidative stress play pivotal roles in the development of clinical conditions like pancreatitis, type 2 diabetes mellitus, and metabolic syndrome. Nonetheless, molecular signaling pathways linking inflammation, oxidative stress, and pancreatic cell death are not yet well defined. In this study, bacterial lipopolysaccharide (LPS) was used (injected twice a week for three weeks) to emulate a chronic systemic inflammatory state in experimental Swiss albino mice. Using this model, we traced the genesis of inflammation-induced pancreatic dysfunction and mapped the signaling events which contribute to the induction of this state. Histopathological studies revealed the appearance of cell injuries and increased collagen content in LPS-exposed group, indicative of fibrosis. Assays for intraperitoneal glucose tolerance, insulin levels, and insulin receptor mRNA expression signified inflammation-induced insulin insensitivity. For the first time we present evidence that cellular inflammation and subsequent oxidative stress modulate the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)/NF-E2-related factor 2 or Nuclear factor (erythroid-derived 2)-like 2 pathway and initiates pancreatic cell death by activation of stress-responsive Rho/stress-activated protein kinase or SAPK/Jun-N-terminal kinase (JNK) pathway. Scavenging of intracellular reactive oxygen species (ROS) by a standard antioxidant N-acetyl cysteine led to pancreatic cell survival. The data obtained strongly indicates that the LPS/toll-like receptor-4 or TLR-4/ROS/NF-κB pathway is critically involved in the initiation of inflammation, oxidative stress, and pancreatic cell death and might prove to be an excellent choice as a target for novel therapeutic strategies in the management of metabolic disorders.
Collapse
Affiliation(s)
- S Choudhury
- a Department of Physiology , University of Calcutta , Kolkata , India
| | - S Ghosh
- a Department of Physiology , University of Calcutta , Kolkata , India
| | - P Gupta
- a Department of Physiology , University of Calcutta , Kolkata , India
| | - S Mukherjee
- a Department of Physiology , University of Calcutta , Kolkata , India
| | - S Chattopadhyay
- a Department of Physiology , University of Calcutta , Kolkata , India.,b Centre for Research in Nanoscience and Nanotechnology, University of Calcutta , Kolkata , India
| |
Collapse
|
92
|
Li YY, Wu H, Dong YG, Lin BO, Xu G, Ma YB. Application of eupatilin in the treatment of osteosarcoma. Oncol Lett 2015; 10:2505-2510. [PMID: 26622880 DOI: 10.3892/ol.2015.3563] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 05/22/2015] [Indexed: 02/01/2023] Open
Abstract
5,7-dihydroxy-3',4',6-trimethoxyflavone, commonly known as eupatilin, is a traditional Asian medicinal plant, which is mainly used for the treatment of gastritis, as well as its use as an anti-inflammatory agent. Eupatilin is a bioactive compound; however, its effects on osteosarcoma (OS) have remained to be elucidated. Therefore, the present study aimed to investigate the effects of eupatilin on this malignant bone tumor, using the U-2 OS cell line. The experimental results revealed that eupatilin inhibited U-2 OS cell growth in a concentration-dependent manner and induced G2/M phase cell cycle arrest and apoptosis. Additionally, western blot analysis indicated that eupatilin was able to trigger the mitochondrial apoptotic pathway, demonstrated by the enhanced Bax/B cell lymphoma-2 ratio, decrease in mitochondrial membrane potential, release of cytochrome c, caspase-3 and -9 activation and poly(ADP-ribose)polymerase cleavage detected in the U-2 OS cells. These results indicated that eupatilin was able to inhibit U-2 OS cancer cell proliferation by the induction of apoptosis via the mitochondrial intrinsic pathway. Eupatilin may therefore represent a novel anticancer drug for use in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Neurology, The Second People's Hospital of Mudanjiang, Mudanjiang, Heilongjiang 157013, P.R. China
| | - Hao Wu
- Department of Orthopedics, Sengong Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Yi-Guo Dong
- Department of Orthopedics, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - B O Lin
- Department of Orthopedics, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Gang Xu
- Department of Orthopedics, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yu-Bo Ma
- Department of Orthopedics, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
93
|
Weisberg E, Halilovic E, Cooke VG, Nonami A, Ren T, Sanda T, Simkin I, Yuan J, Antonakos B, Barys L, Ito M, Stone R, Galinsky I, Cowens K, Nelson E, Sattler M, Jeay S, Wuerthner JU, McDonough SM, Wiesmann M, Griffin JD. Inhibition of Wild-Type p53-Expressing AML by the Novel Small Molecule HDM2 Inhibitor CGM097. Mol Cancer Ther 2015. [PMID: 26206331 DOI: 10.1158/1535-7163.mct-15-0429] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor suppressor p53 is a key regulator of apoptosis and functions upstream in the apoptotic cascade by both indirectly and directly regulating Bcl-2 family proteins. In cells expressing wild-type (WT) p53, the HDM2 protein binds to p53 and blocks its activity. Inhibition of HDM2:p53 interaction activates p53 and causes apoptosis or cell-cycle arrest. Here, we investigated the ability of the novel HDM2 inhibitor CGM097 to potently and selectively kill WT p53-expressing AML cells. The antileukemic effects of CGM097 were studied using cell-based proliferation assays (human AML cell lines, primary AML patient cells, and normal bone marrow samples), apoptosis, and cell-cycle assays, ELISA, immunoblotting, and an AML patient-derived in vivo mouse model. CGM097 potently and selectively inhibited the proliferation of human AML cell lines and the majority of primary AML cells expressing WT p53, but not mutant p53, in a target-specific manner. Several patient samples that harbored mutant p53 were comparatively unresponsive to CGM097. Synergy was observed when CGM097 was combined with FLT3 inhibition against oncogenic FLT3-expressing cells cultured both in the absence as well as the presence of cytoprotective stromal-secreted cytokines, as well as when combined with MEK inhibition in cells with activated MAPK signaling. Finally, CGM097 was effective in reducing leukemia burden in vivo. These data suggest that CGM097 is a promising treatment for AML characterized as harboring WT p53 as a single agent, as well as in combination with other therapies targeting oncogene-activated pathways that drive AML.
Collapse
Affiliation(s)
- Ellen Weisberg
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| | - Ensar Halilovic
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts
| | - Vesselina G Cooke
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts
| | - Atsushi Nonami
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Tao Ren
- National Screening Laboratory for the Regional Centers of Excellence in Biodefense and Emerging Infectious Diseases Research, Harvard Medical School, Boston, Massachusetts
| | - Takaomi Sanda
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Irene Simkin
- Molecular Genetics Core, Boston University School of Medicine, Boston, Massachusetts
| | - Jing Yuan
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts
| | - Brandon Antonakos
- Novartis Institutes of Biomedical Research, Cambridge, Massachusetts
| | - Louise Barys
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Moriko Ito
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Richard Stone
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ilene Galinsky
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kristen Cowens
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Erik Nelson
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Martin Sattler
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sebastien Jeay
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | | | - Sean M McDonough
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Marion Wiesmann
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - James D Griffin
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
94
|
Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 2015; 16:393-405. [PMID: 26122615 DOI: 10.1038/nrm4007] [Citation(s) in RCA: 817] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The function of p53 as a tumour suppressor has been attributed to its ability to promote cell death or permanently inhibit cell proliferation. However, in recent years, it has become clear that p53 can also contribute to cell survival. p53 regulates various metabolic pathways, helping to balance glycolysis and oxidative phosphorylation, limiting the production of reactive oxygen species, and contributing to the ability of cells to adapt to and survive mild metabolic stresses. Although these activities may be integrated into the tumour suppressive functions of p53, deregulation of some elements of the p53-induced response might also provide tumours with a survival advantage.
Collapse
Affiliation(s)
- Flore Kruiswijk
- 1] Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK. [2]
| | | | - Karen H Vousden
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
95
|
Direct relationship between the level of p53 stabilization induced by rRNA synthesis-inhibiting drugs and the cell ribosome biogenesis rate. Oncogene 2015; 35:977-89. [PMID: 25961931 DOI: 10.1038/onc.2015.147] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/16/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023]
Abstract
Many drugs currently used in chemotherapy work by hindering the process of ribosome biogenesis. In tumors with functional p53, the inhibition of ribosome biogenesis may contribute to the efficacy of this treatment by inducing p53 stabilization. As the level of stabilized p53 is critical for the induction of cytotoxic effects, it seems useful to highlight those cancer cell characteristics that can predict the degree of p53 stabilization following the treatment with inhibitors of ribosome biogenesis. In the present study we exposed a series of p53 wild-type human cancer cell lines to drugs such as actinomycin D (ActD), doxorubicin, 5-fluorouracil and CX-5461, which hinder ribosomal RNA (rRNA) synthesis. We found that the amount of stabilized p53 was directly related to the level of ribosome biogenesis in cells before the drug treatment. This was due to different levels of inactivation of the ribosomal proteins-MDM2 pathway of p53 digestion. Inhibition of rRNA synthesis always caused cell cycle arrest, independent of the ribosome biogenesis rate of the cells, whereas apoptosis occurred only in cells with a high rDNA transcription rate. The level of p53 stabilization induced by drugs acting in different ways from the inhibition of ribosome biogenesis, such as hydroxyurea (HU) and nutlin-3, was independent of the level of ribosome biogenesis in cells and always lower than that occurring after the inhibition of rRNA synthesis. Interestingly, in cells with a low ribosome biogenesis rate, the combined treatment with ActD and HU exerted an additive effect on p53 stabilization. These results indicated that (i) drugs inhibiting ribosome biogenesis may be highly effective in p53 wild-type cancers with a high ribosome biogenesis rate, as they induce apoptotic cell death, and (ii) the combination of drugs capable of stabilizing p53 through different mechanisms may be useful for treating cancers with a low ribosome biogenesis rate.
Collapse
|
96
|
Tentler JJ, Ionkina AA, Tan AC, Newton TP, Pitts TM, Glogowska MJ, Kabos P, Sartorius CA, Sullivan KD, Espinosa JM, Eckhardt SG, Diamond JR. p53 Family Members Regulate Phenotypic Response to Aurora Kinase A Inhibition in Triple-Negative Breast Cancer. Mol Cancer Ther 2015; 14:1117-29. [PMID: 25758253 DOI: 10.1158/1535-7163.mct-14-0538-t] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 02/24/2015] [Indexed: 12/17/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease with a poor prognosis. Advances in the treatment of TNBC have been hampered by the lack of novel effective targeted therapies. The primary goal of this study was to evaluate the efficacy of targeting Aurora kinase A (AurA), a key regulator of mitosis, in TNBC models. A secondary objective was to determine the role of the p53 family of transcriptional regulators, commonly mutated in TNBC, in determining the phenotypic response to the AurA inhibitor alisertib (MLN8237). Alisertib exhibited potent antiproliferative and proapoptotic activity in a subset of TNBC models. The induction of apoptosis in response to alisertib exposure was dependent on p53 and p73 activity. In the absence of functional p53 or p73, there was a shift in the phenotypic response following alisertib exposure from apoptosis to cellular senescence. In addition, senescence was observed in patient-derived tumor xenografts with acquired resistance to alisertib treatment. AurA inhibitors are a promising class of novel therapeutics in TNBC. The role of p53 and p73 in mediating the phenotypic response to antimitotic agents in TNBC may be harnessed to develop an effective biomarker selection strategy in this difficult to target disease.
Collapse
Affiliation(s)
- John J Tentler
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anastasia A Ionkina
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aik Choon Tan
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Timothy P Newton
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Todd M Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Magdalena J Glogowska
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter Kabos
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Carol A Sartorius
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kelly D Sullivan
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Joaquin M Espinosa
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - S Gail Eckhardt
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer R Diamond
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
97
|
Speidel D. The role of DNA damage responses in p53 biology. Arch Toxicol 2015; 89:501-17. [PMID: 25618545 DOI: 10.1007/s00204-015-1459-z] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/08/2015] [Indexed: 12/16/2022]
Abstract
The tumour suppressor p53 is a central player in cellular DNA damage responses. P53 is upregulated and activated by genotoxic stress and induces a transcriptional programme with effectors promoting apoptosis, cell cycle arrest, senescence and DNA repair. For the best part of the last three decades, these DNA damage-related programmes triggered by p53 were unequivocally regarded as the major if not sole mechanism by which p53 exerts its tumour suppressor function. However, this interpretation has been challenged by a number of recent in vivo studies, demonstrating that mice which are defective in inducing p53-dependent apoptosis, cell cycle arrest and senescence suppress thymic lymphoma as well as wild-type p53 expressing animals. Consequently, the importance of DNA damage responses for p53-mediated tumour suppression has been questioned. In this review, I summarize current knowledge on p53-controlled DNA damage responses and argue that these activities, while their role has certainly changed, remain an important feature of p53 biology with relevance for cancer therapy and tumour suppression.
Collapse
Affiliation(s)
- Daniel Speidel
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia,
| |
Collapse
|
98
|
Wong TN, Ramsingh G, Young AL, Miller CA, Touma W, Welch JS, Lamprecht TL, Shen D, Hundal J, Fulton RS, Heath S, Baty JD, Klco JM, Ding L, Mardis ER, Westervelt P, DiPersio JF, Walter MJ, Graubert TA, Ley TJ, Druley T, Link DC, Wilson RK. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 2014; 518:552-555. [PMID: 25487151 PMCID: PMC4403236 DOI: 10.1038/nature13968] [Citation(s) in RCA: 664] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 10/13/2014] [Indexed: 12/23/2022]
Abstract
Therapy-related acute myeloid leukaemia (t-AML) and therapy-related myelodysplastic syndrome (t-MDS) are well-recognized complications of cytotoxic chemotherapy and/or radiotherapy. There are several features that distinguish t-AML from de novo AML, including a higher incidence of TP53 mutations, abnormalities of chromosomes 5 or 7, complex cytogenetics and a reduced response to chemotherapy. However, it is not clear how prior exposure to cytotoxic therapy influences leukaemogenesis. In particular, the mechanism by which TP53 mutations are selectively enriched in t-AML/t-MDS is unknown. Here, by sequencing the genomes of 22 patients with t-AML, we show that the total number of somatic single-nucleotide variants and the percentage of chemotherapy-related transversions are similar in t-AML and de novo AML, indicating that previous chemotherapy does not induce genome-wide DNA damage. We identified four cases of t-AML/t-MDS in which the exact TP53 mutation found at diagnosis was also present at low frequencies (0.003-0.7%) in mobilized blood leukocytes or bone marrow 3-6 years before the development of t-AML/t-MDS, including two cases in which the relevant TP53 mutation was detected before any chemotherapy. Moreover, functional TP53 mutations were identified in small populations of peripheral blood cells of healthy chemotherapy-naive elderly individuals. Finally, in mouse bone marrow chimaeras containing both wild-type and Tp53(+/-) haematopoietic stem/progenitor cells (HSPCs), the Tp53(+/-) HSPCs preferentially expanded after exposure to chemotherapy. These data suggest that cytotoxic therapy does not directly induce TP53 mutations. Rather, they support a model in which rare HSPCs carrying age-related TP53 mutations are resistant to chemotherapy and expand preferentially after treatment. The early acquisition of TP53 mutations in the founding HSPC clone probably contributes to the frequent cytogenetic abnormalities and poor responses to chemotherapy that are typical of patients with t-AML/t-MDS.
Collapse
Affiliation(s)
- Terrence N Wong
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO
| | - Giridharan Ramsingh
- Department of Medicine, Jane Anne Nohl Division of Hematology, University of Southern California, Los Angeles, CA
| | - Andrew L Young
- Department of Pediatrics, Division of Hematology/Oncology, Washington University in St. Louis, St. Louis, MO
| | | | - Waseem Touma
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO
| | - John S Welch
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - Tamara L Lamprecht
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO
| | | | - Jasreet Hundal
- The Genome Institute, Washington University in St. Louis, St. Louis, MO
| | - Robert S Fulton
- The Genome Institute, Washington University in St. Louis, St. Louis, MO
| | - Sharon Heath
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO
| | - Jack D Baty
- Division of Biostatistics, Washington University, St. Louis, MO
| | - Jeffery M Klco
- Department of Pathology and Immunology, Washington University, St Louis, MO
| | - Li Ding
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - Elaine R Mardis
- The Genome Institute, Washington University in St. Louis, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO.,Department of Genetics, Washington University, St. Louis, MO
| | - Peter Westervelt
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - John F DiPersio
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - Matthew J Walter
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - Timothy A Graubert
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - Timothy J Ley
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - Todd Druley
- Department of Pediatrics, Division of Hematology/Oncology, Washington University in St. Louis, St. Louis, MO
| | - Daniel C Link
- Department of Medicine, Division of Oncology, Washington University, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO
| | - Richard K Wilson
- The Genome Institute, Washington University in St. Louis, St. Louis, MO.,Siteman Cancer Center, Washington University, St. Louis, MO.,Department of Genetics, Washington University, St. Louis, MO
| |
Collapse
|
99
|
Hao Q, Cho WC. Battle against cancer: an everlasting saga of p53. Int J Mol Sci 2014; 15:22109-22127. [PMID: 25470027 PMCID: PMC4284697 DOI: 10.3390/ijms151222109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/23/2014] [Accepted: 11/25/2014] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most life-threatening diseases characterized by uncontrolled growth and spread of malignant cells. The tumor suppressor p53 is the master regulator of tumor cell growth and proliferation. In response to various stress signals, p53 can be activated and transcriptionally induces a myriad of target genes, including both protein-encoding and non-coding genes, controlling cell cycle progression, DNA repair, senescence, apoptosis, autophagy and metabolism of tumor cells. However, around 50% of human cancers harbor mutant p53 and, in the majority of the remaining cancers, p53 is inactivated through multiple mechanisms. Herein, we review the recent progress in understanding the molecular basis of p53 signaling, particularly the newly identified ribosomal stress-p53 pathway, and the development of chemotherapeutics via activating wild-type p53 or restoring mutant p53 functions in cancer. A full understanding of p53 regulation will aid the development of effective cancer treatments.
Collapse
Affiliation(s)
- Qian Hao
- School of Continuing Studies, Tulane University, New Orleans, LA 70118, USA.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong 999077, China.
| |
Collapse
|
100
|
Kiran S, Oddi V, Ramakrishna G. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response. Exp Cell Res 2014; 331:123-141. [PMID: 25445786 DOI: 10.1016/j.yexcr.2014.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/29/2014] [Accepted: 11/04/2014] [Indexed: 01/10/2023]
Abstract
Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress.
Collapse
Affiliation(s)
- Shashi Kiran
- Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001, India
| | - Vineesha Oddi
- Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001, India
| | - Gayatri Ramakrishna
- Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001, India; Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070, India.
| |
Collapse
|