51
|
Herpes simplex virus 1 regulatory protein ICP27 undergoes a head-to-tail intramolecular interaction. J Virol 2010; 84:4124-35. [PMID: 20164236 DOI: 10.1128/jvi.02319-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) regulatory protein ICP27 is a multifunction functional protein that interacts with many cellular proteins. A number of the proteins with which ICP27 interacts require that both the N and C termini of ICP27 are intact. These include RNA polymerase II, TAP/NXF1, and Hsc70. We tested the possibility that the N and C termini of ICP27 could undergo a head-to-tail intramolecular interaction that exists in open and closed configurations for different binding partners. Here, we show by bimolecular fluorescence complementation (BiFC) assays and fluorescence resonance energy transfer (FRET) by acceptor photobleaching that ICP27 undergoes a head-to-tail intramolecular interaction but not head-to-tail or tail-to-tail intermolecular interactions. Substitution mutations in the N or C termini showed that the leucine-rich region (LRR) in the N terminus and the zinc finger-like region in the C terminus must be intact for intramolecular interactions. A recombinant virus, vNC-Venus-ICP27, was constructed, and this virus was severely impaired for virus replication. The expression of NC-Venus-ICP27 protein was delayed compared to ICP27 expression in wild-type HSV-1 infection, but NC-Venus-ICP27 was abundantly expressed at late times of infection. Because the renaturation of the Venus fluorescent protein results in a covalent bonding of the two halves of the Venus molecule, the head-to-tail interaction of NC-Venus-ICP27 locks ICP27 in a closed configuration. We suggest that the population of locked ICP27 molecules is not able to undergo further protein-protein interactions.
Collapse
|
52
|
Ding Q, Guo H, Lin F, Pan W, Ye B, Zheng AC. Characterization of the nuclear import and export mechanisms of bovine herpesvirus-1 infected cell protein 27. Virus Res 2010; 149:95-103. [PMID: 20109505 DOI: 10.1016/j.virusres.2010.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Accepted: 01/19/2010] [Indexed: 11/16/2022]
Abstract
In previous study, we have identified a nuclear localization signal (NLS) and a nucleolar localization signal (NoLS) in bovine herpesvirus-1 (BHV-1) infected cell protein 27 (BICP27), which targets predominantly to the nucleolus. Furthermore, the C-terminal 300 amino acid residues targets exclusively to the cytoplasm, suggesting that BICP27 might contain a nuclear export signal (NES). Amino acid sequence analysis revealed that there is a cluster of leucine-rich residues resembling a NES. Heterokaryon assays demonstrated that BICP27 is capable of shuttling between the nucleus and the cytoplasm of the BHV-1 infected, BICP27 and BICP27-EYFP transfected cells. Deletion mutant analysis revealed that this property is attributed to the leucine-rich NES 299LEELCAARRLSL310. Moreover, the functional NES could mediate transport of a monomer EYFP and a dimer EYFP to the cytoplasm. The nucleocytoplasmic shuttling of BICP27 and the nuclear export of NES-EYFP and NES-dEYFP could be blocked by leptomycin LMB, an inhibitor of the chromosomal region maintenance 1 (CRM1), which is the receptor for exportin-1-dependent nuclear export. In addition, the nuclear import of BICP27 was inhibited by a dominant negative Ran-GTP, namely Ran-GTP Q69L, indicating that BICP27 localized to the nucleus by means of a classic Ran dependent nuclear import mechanism. In conclusion, these results demonstrate that BICP27 shuttles between the nucleus and the cytoplasm by the functional NES and NLS through a CRM1-dependent nuclear export pathway and a Ran dependent nuclear import pathway.
Collapse
Affiliation(s)
- Qiong Ding
- State Key Laboratory of Virology, Molecular Virology and Viral Immunology Research Group, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China
| | | | | | | | | | | |
Collapse
|
53
|
Corbin-Lickfett KA, Chen IHB, Cocco MJ, Sandri-Goldin RM. The HSV-1 ICP27 RGG box specifically binds flexible, GC-rich sequences but not G-quartet structures. Nucleic Acids Res 2010; 37:7290-301. [PMID: 19783816 PMCID: PMC2790906 DOI: 10.1093/nar/gkp793] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein ICP27, an important regulator for viral gene expression, directly recognizes and exports viral RNA through an N-terminal RGG box RNA binding motif, which is necessary and sufficient for RNA binding. An ICP27 N-terminal peptide, including the RGG box RNA binding motif, was expressed and its binding specificity was analyzed using EMSA and SELEX. DNA oligonucleotides corresponding to HSV-1 glycoprotein C (gC) mRNA, identified in a yeast three-hybrid analysis, were screened for binding to the ICP27 N-terminal peptide in EMSA experiments. The ICP27 N-terminus was able to bind most gC substrates. Notably, the ICP27 RGG box was unable to bind G-quartet structures recognized by the RGG domains of other proteins. SELEX analysis identified GC-rich RNA sequences as a common feature of recognition. NMR analysis of SELEX and gC sequences revealed that sequences able to bind to ICP27 did not form secondary structures and conversely, sequences that were not able to bind to ICP27 gave spectra consistent with base-pairing. Therefore, the ICP27 RGG box is unique in its recognition of nucleic acid sequences compared to other RGG box proteins; it prefers flexible, GC-rich substrates that do not form stable secondary structures.
Collapse
Affiliation(s)
- Kara A Corbin-Lickfett
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
54
|
Herpes simplex virus proteins ICP27 and UL47 associate with polyadenylate-binding protein and control its subcellular distribution. J Virol 2010; 84:270-9. [PMID: 19864386 DOI: 10.1128/jvi.01740-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Human pathogenic viruses manipulate host cell translation machinery to ensure efficient expression of viral genes and to thwart host cell protein synthesis. Viral strategies include cleaving translation factors, manipulating translation factor abundance and recruitment into translation initiation complexes, or expressing viral translation factor analogs. Analyzing translation factors in herpes simplex virus type 1 (HSV-1)-infected HeLa cells, we found diminished association of the polyadenylate-binding protein (PABP) with the cap-binding complex. Although total PABP levels were unchanged, HSV-1 infection prompted accumulation of cytoplasmic PABPC1, but not its physiologic binding partner PABP-interacting protein 2 (Paip2), in the nucleus. Using glutathione S-transferase-PABP pull-down and proteomic analyses, we identified several viral proteins interacting with PABPC1 including tegument protein UL47 and infected-cell protein ICP27. Transient expression of ICP27 and UL47 in HeLa cells suggested that ICP27 and UL47 jointly displace Paip2 from PABP. ICP27 expression alone was sufficient to cause PABPC1 redistribution to the nucleus. ICP27 and UL47 did not alter translation efficiency of transfected reporter RNAs but modulated transcript abundance and expression of reporter cDNAs in transfected cells. This indicates that redistribution of PABPC1 may be involved in co- and posttranscriptional regulation of mRNA processing and/or nuclear export by HSV-1 gene regulatory proteins.
Collapse
|
55
|
A UL47 gene deletion mutant of bovine herpesvirus type 1 exhibits impaired growth in cell culture and lack of virulence in cattle. J Virol 2010; 84:445-58. [PMID: 19864376 DOI: 10.1128/jvi.01544-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tegument protein VP8 encoded by the U(L)47 gene of bovine herpesvirus type 1 (BHV-1) is the most abundant constituent of mature virions. In the present report, we describe the characterization of U(L)47 gene-deleted BHV-1 in cultured cells and its natural host. The U(L)47 deletion mutant exhibited reduced plaque size and more than 100-fold decrease in intracellular and extracellular viral titers in cultured cells. Ultrastructural observations of infected cells showed normal maturation of BHV-1 virions in the absence of VP8. There was no evidence for a change in immediate-early gene activator function of VP16 in the U(L)47 deletion mutant virus-infected cells, since bovine ICP4 mRNA and protein levels were similar to those in the wild-type and revertant virus-infected cells throughout the course of infection. Whereas VP16, glycoprotein C (gC), gB, and VP5 were expressed to wild-type levels in the U(L)47 deletion mutant-infected cells, the gD and VP22 protein levels were significantly reduced. The reduction in gD protein was associated with increased turnover of the protein. Furthermore, some of the analyzed early and late proteins were expressed with earlier kinetics in the absence of VP8. Extracellular virions of the U(L)47 deletion mutant contained reduced amounts of gD, gB, gC, and VP22 but similar amounts of VP16 compared to those of wild-type or revertant virus particles. In addition, the U(L)47 gene product was indispensable for BHV-1 replication in vivo, since no clinical manifestations or viral shedding were detected in the U(L)47 deletion mutant-infected calves, and the virus failed to induce significant levels of humoral and cellular immunity.
Collapse
|
56
|
Belin S, Kindbeiter K, Hacot S, Albaret MA, Roca-Martinez JX, Thérizols G, Grosso O, Diaz JJ. Uncoupling ribosome biogenesis regulation from RNA polymerase I activity during herpes simplex virus type 1 infection. RNA (NEW YORK, N.Y.) 2010; 16:131-140. [PMID: 19934231 PMCID: PMC2802023 DOI: 10.1261/rna.1935610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 10/08/2009] [Indexed: 05/28/2023]
Abstract
The ribosome is the central effector of protein synthesis, and its synthesis is intimately coordinated with that of proteins. At present, the most documented way to modulate ribosome biogenesis involves control of rDNA transcription by RNA polymerase I (RNA Pol I). Here we show that after infection of human cells with herpes simplex virus type 1 (HSV-1) the rate of ribosome biogenesis is modulated independently of RNA Pol I activity by a dramatic change in the rRNA maturation pathway. This process permits control of the ribosome biogenesis rate, giving the possibility of escaping ribosomal stress and eventually allowing assembly of specialized kinds of ribosomes.
Collapse
Affiliation(s)
- Stéphane Belin
- Centre National de la Recherche Scientifique (CNRS), Université de Lyon, Lyon F-69003, France
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Identification of an ICP27-responsive element in the coding region of a herpes simplex virus type 1 late gene. J Virol 2009; 84:2707-18. [PMID: 20042503 DOI: 10.1128/jvi.02005-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During productive herpes simplex virus type 1 (HSV-1) infection, a subset of viral delayed-early (DE) and late (L) genes require the immediate-early (IE) protein ICP27 for their expression. However, the cis-acting regulatory sequences in DE and L genes that mediate their specific induction by ICP27 are unknown. One viral L gene that is highly dependent on ICP27 is that encoding glycoprotein C (gC). We previously demonstrated that this gene is posttranscriptionally transactivated by ICP27 in a plasmid cotransfection assay. Based on our past results, we hypothesized that the gC gene possesses a cis-acting inhibitory sequence and that ICP27 overcomes the effects of this sequence to enable efficient gC expression. To test this model, we systematically deleted sequences from the body of the gC gene and tested the resulting constructs for expression. In so doing, we identified a 258-bp "silencing element" (SE) in the 5' portion of the gC coding region. When present, the SE inhibits gC mRNA accumulation from a transiently transfected gC gene, unless ICP27 is present. Moreover, the SE can be transferred to another HSV-1 gene, where it inhibits mRNA accumulation in the absence of ICP27 and confers high-level expression in the presence of ICP27. Thus, for the first time, an ICP27-responsive sequence has been identified in a physiologically relevant ICP27 target gene. To see if the SE functions during viral infection, we engineered HSV-1 recombinants that lack the SE, either in a wild-type (WT) or ICP27-null genetic background. In an ICP27-null background, deletion of the SE led to ICP27-independent expression of the gC gene, demonstrating that the SE functions during viral infection. Surprisingly, the ICP27-independent gC expression seen with the mutant occurred even in the absence of viral DNA synthesis, indicating that the SE helps to regulate the tight DNA replication-dependent expression of gC.
Collapse
|
58
|
ICP27 phosphorylation site mutants display altered functional interactions with cellular export factors Aly/REF and TAP/NXF1 but are able to bind herpes simplex virus 1 RNA. J Virol 2009; 84:2212-22. [PMID: 20015986 DOI: 10.1128/jvi.01388-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein ICP27 is a multifunctional regulatory protein that is phosphorylated. Phosphorylation can affect protein localization, protein interactions, and protein function. The major sites of ICP27 that are phosphorylated are serine residues 16 and 18, within a CK2 site adjacent to a leucine-rich region required for ICP27 export, and serine 114, within a PKA site in the nuclear localization signal. Viral mutants bearing serine-to-alanine or glutamic acid substitutions at these sites are defective in viral replication and gene expression. To determine which interactions of ICP27 are impaired, we analyzed the subcellular localization of ICP27 and its colocalization with cellular RNA export factors Aly/REF and TAP/NXF1. In cells infected with phosphorylation site mutants, ICP27 was confined to the nucleus even at very late times after infection. ICP27 did not colocalize with Aly/REF or TAP/NXF1, and overexpression of TAP/NXF1 did not promote the export of ICP27 to the cytoplasm. However, in vitro binding experiments showed that mutant ICP27 was able to bind to the same RNA substrates as the wild type. Nuclear magnetic resonance (NMR) analysis of the N terminus of ICP27 from amino acids 1 to 160, compared to mutants with triple substitutions to alanine or glutamic acid, showed that the mutations affected the overall conformation of the N terminus, such that mutant ICP27 was more flexible and unfolded. These results indicate that these changes in the structure of ICP27 altered in vivo protein interactions that occur in the N terminus but did not prevent RNA binding.
Collapse
|
59
|
ICP27 phosphorylation site mutants are defective in herpes simplex virus 1 replication and gene expression. J Virol 2009; 84:2200-11. [PMID: 20015991 DOI: 10.1128/jvi.00917-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein ICP27 is a multifunctional regulatory protein that is posttranslationally modified by phosphorylation during viral infection. ICP27 has been shown to be phosphorylated on three serine residues, specifically serine residues 16 and 18, which are within casein kinase 2 (CK2) sites, and serine residue 114, which is within a protein kinase A (PKA) site. Phosphorylation is an important regulatory mechanism that is reversible and controls many signaling pathways, protein-protein interactions, and protein subcellular localization. To determine the role of phosphorylation in modulating the activities of ICP27, we constructed phosphorylation site mutations at each of the three serine residues. Single, double, and triple viral mutants were created in which alanine or glutamic acid was substituted for serines 16, 18, and 114. ICP27 phosphorylation site mutants were defective in viral replication and viral gene expression. Notably, ICP4-containing replication compartment formation was severely compromised, with the appearance of small ring-like structures that persisted even at late times after infection. Neither the colocalization of ICP27 with RNA polymerase II nor the formation of Hsc70 nuclear foci was observed during infection with the phosphorylation site mutants, both of which occur during wild-type HSV-1 infection. These data indicate that several key events in which ICP27 plays a role are curtailed during infection with ICP27 phosphorylation site mutants.
Collapse
|
60
|
Ote I, Lebrun M, Vandevenne P, Bontems S, Medina-Palazon C, Manet E, Piette J, Sadzot-Delvaux C. Varicella-zoster virus IE4 protein interacts with SR proteins and exports mRNAs through the TAP/NXF1 pathway. PLoS One 2009; 4:e7882. [PMID: 19924249 PMCID: PMC2775670 DOI: 10.1371/journal.pone.0007882] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/22/2009] [Indexed: 12/28/2022] Open
Abstract
Available data suggest that the Varicella-Zoster virus (VZV) IE4 protein acts as an important regulator on VZV and cellular genes expression and could exert its functions at post-transcriptional level. However, the molecular mechanisms supported by this protein are not yet fully characterized. In the present study, we have attempted to clarify this IE4-mediated gene regulation and identify some cellular partners of IE4. By yeast two-hybrid and immunoprecipitation analysis, we showed that IE4 interacts with three shuttling SR proteins, namely ASF/SF2, 9G8 and SRp20. We positioned the binding domain in the IE4 RbRc region and we showed that these interactions are not bridged by RNA. We demonstrated also that IE4 strongly interacts with the main SR protein kinase, SRPK1, and is phosphorylated in in vitro kinase assay on residue Ser-136 contained in the Rb domain. By Northwestern analysis, we showed that IE4 is able to bind RNA through its arginine-rich region and in immunoprecipitation experiments the presence of RNA stabilizes complexes containing IE4 and the cellular export factors TAP/NXF1 and Aly/REF since the interactions are RNase-sensitive. Finally, we determined that IE4 influences the export of reporter mRNAs and clearly showed, by TAP/NXF1 knockdown, that VZV infection requires the TAP/NXF1 export pathway to express some viral transcripts. We thus highlighted a new example of viral mRNA export factor and proposed a model of IE4-mediated viral mRNAs export.
Collapse
Affiliation(s)
- Isabelle Ote
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
| | - Marielle Lebrun
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
| | - Patricia Vandevenne
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
| | - Sébastien Bontems
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
| | | | - Evelyne Manet
- Laboratoire de Virologie Humaine, INSERM U758, ENS-Lyon, Lyon, France
| | - Jacques Piette
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
| | - Catherine Sadzot-Delvaux
- Laboratory of Virology and Immunology, GIGA-R, University of Liege (ULg), Liège, Belgium
- * E-mail:
| |
Collapse
|
61
|
Johnson KE, Knipe DM. Herpes simplex virus-1 infection causes the secretion of a type I interferon-antagonizing protein and inhibits signaling at or before Jak-1 activation. Virology 2009; 396:21-9. [PMID: 19879619 DOI: 10.1016/j.virol.2009.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 07/28/2009] [Accepted: 09/16/2009] [Indexed: 11/18/2022]
Abstract
Host cells respond to viral infection by the production of type I interferons (IFNs), which induce the expression of antiviral genes. Herpes simplex virus I (HSV-1) encodes many mechanisms that inhibit the type I IFN response, including the ICP27-dependent inhibition of type I IFN signaling. Here we show inhibition of Stat-1 nuclear accumulation in cells that express ICP27. ICP27 expression also induces the secretion of a small, heat-stable type I IFN antagonizing protein that inhibits Stat-1 nuclear accumulation. We show that the inhibition of IFN-induced Stat-1 phosphorylation occurs at or upstream of Jak-1 phosphorylation. Finally, we show that ISG15 expression is induced after IFNalpha treatment in mock-infected cells, but not cells infected with WT HSV-1 or ICP27(-) HSV-1. These data suggest that HSV-1 has evolved multiple mechanisms to inhibit IFN signaling not only in infected cells, but also in neighboring cells, thereby allowing for increased viral replication and spread.
Collapse
Affiliation(s)
- Karen E Johnson
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
62
|
General and target-specific RNA binding properties of Epstein-Barr virus SM posttranscriptional regulatory protein. J Virol 2009; 83:11635-44. [PMID: 19726500 DOI: 10.1128/jvi.01483-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) SM protein is an essential nuclear shuttling protein expressed by EBV early during the lytic phase of replication. SM acts to increase EBV lytic gene expression by binding EBV mRNAs and enhancing accumulation of the majority of EBV lytic cycle mRNAs. SM increases target mRNA stability and nuclear export, in addition to modulating RNA splicing. SM and its homologs in other herpesvirus have been hypothesized to function in part by binding viral RNAs and recruiting cellular export factors. Although activation of gene expression by SM is gene specific, it is unknown whether SM binds to mRNA in a specific manner or whether its RNA binding is target independent. SM-mRNA complexes were isolated from EBV-infected B-lymphocyte cell lines induced to permit lytic EBV replication, and a quantitative measurement of mRNAs corresponding to all known EBV open reading frames was performed by real-time quantitative reverse transcription-PCR. The results showed that although SM has broad RNA binding properties, there is a clear hierarchy of affinities among EBV mRNAs with respect to SM complex formation. In vitro binding assays with two of the most highly SM-associated transcripts suggested that SM binds preferentially to specific sequences or structures present in noncoding regions of some EBV mRNAs. Furthermore, the presence of these sequences conferred responsiveness to SM. These data are consistent with a mechanism of action similar to that of hnRNPs, which exert sequence-specific effects on gene expression despite having multiple degenerate consensus binding sites common to a large number of RNAs.
Collapse
|
63
|
Arginine methylation of the ICP27 RGG box regulates the functional interactions of ICP27 with SRPK1 and Aly/REF during herpes simplex virus 1 infection. J Virol 2009; 83:8970-5. [PMID: 19553338 DOI: 10.1128/jvi.00801-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus 1 protein ICP27 is methylated on arginine residues within an RGG box, and arginine methylation regulates ICP27 export to the cytoplasm. Arginine methylation can regulate protein-protein interactions; therefore, we examined the effect of hypomethylation on ICP27's interactions with cellular proteins SRPK1 and Aly/REF, which bind to ICP27 through the RGG box region. During infections with viral mutants containing lysine substitutions or the methylation inhibitor adenosine dialdehyde, the interaction of ICP27 with SRPK1 and Aly/REF was decreased, as determined by coimmunoprecipitation and colocalization studies, indicating that ICP27 RGG box methylation regulates interaction with these proteins.
Collapse
|
64
|
Ricci EP, Mure F, Gruffat H, Decimo D, Medina-Palazon C, Ohlmann T, Manet E. Translation of intronless RNAs is strongly stimulated by the Epstein-Barr virus mRNA export factor EB2. Nucleic Acids Res 2009; 37:4932-43. [PMID: 19528074 PMCID: PMC2731895 DOI: 10.1093/nar/gkp497] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Epstein–Barr virus protein (EB2) allows the nuclear export of a particular subset of early and late viral RNAs derived from intronless genes. EB2 is conserved among most herpesvirus members and its presence is essential for the production of infectious particles. Here we show that, besides its role as a nuclear export factor, EB2 strongly stimulates translation of unspliced mRNAs without affecting overall cellular translation. Interestingly, this effect can be reversed by the addition of an intron within the gene. The spliced mRNA is then efficiently exported and translated even in the absence of EB2. Moreover, we show that EB2 associates with translating ribosomes and increases the proportion of its target RNA in the polyribosomal fraction. Finally, testing of EB2 homolog proteins derived from EBV-related herpesviruses, shows that, even if they play similar roles within the replication cycle of their respective virus, their mechanisms of action are different.
Collapse
Affiliation(s)
- Emiliano P Ricci
- INSERM U758, Unité de Virologie Humaine, Ecole Normale Supérieure de Lyon, Lyon F-69007, France
| | | | | | | | | | | | | |
Collapse
|
65
|
The cellular RNA export receptor TAP/NXF1 is required for ICP27-mediated export of herpes simplex virus 1 RNA, but the TREX complex adaptor protein Aly/REF appears to be dispensable. J Virol 2009; 83:6335-46. [PMID: 19369354 DOI: 10.1128/jvi.00375-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) protein ICP27 has been shown to shuttle between the nucleus and cytoplasm and to bind viral RNA during infection. ICP27 was found to interact with the cellular RNA export adaptor protein Aly/REF, which is part of the TREX complex, and to relocalize Aly/REF to viral replication sites. ICP27 is exported to the cytoplasm through the export receptor TAP/NXF1, and ICP27 must be able to interact with TAP/NXF1 for efficient export of HSV-1 early and late transcripts. We examined the dynamics of ICP27 movement and its localization with respect to Aly/REF and TAP/NXF1 in living cells during viral infection. Recombinant viruses with a yellow fluorescent protein (YFP) tag on the N or C terminus of ICP27 were constructed. While the N-terminally tagged ICP27 virus behaved like wild-type HSV-1, the C-terminally tagged virus was defective in viral replication and gene expression, and ICP27 was confined to the nucleus, suggesting that the C-terminal YFP tag interfered with ICP27's C-terminal interactions, including the interaction with TAP/NXF1. To assess the role of Aly/REF and TAP/NXF1 in viral RNA export, these factors were knocked down using small interfering RNA. Knockdown of Aly/REF had little effect on the export of ICP27 or poly(A)(+) RNA during infection. In contrast, a decrease in TAP/NXF1 levels severely impaired export of ICP27 and poly(A)(+) RNA. We conclude that TAP/NXF1 is essential for ICP27-mediated export of RNA during HSV-1 infection, whereas Aly/REF may be dispensable.
Collapse
|
66
|
Genetic evidence for a connection between Rous sarcoma virus gag nuclear trafficking and genomic RNA packaging. J Virol 2009; 83:6790-7. [PMID: 19369339 DOI: 10.1128/jvi.00101-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The packaging of retroviral genomic RNA (gRNA) requires cis-acting elements within the RNA and trans-acting elements within the Gag polyprotein. The packaging signal psi, at the 5' end of the viral gRNA, binds to Gag through interactions with basic residues and Cys-His box RNA-binding motifs in the nucleocapsid. Although specific interactions between Gag and gRNA have been demonstrated previously, where and when they occur is not well understood. We discovered that the Rous sarcoma virus (RSV) Gag protein transiently localizes to the nucleus, although the roles of Gag nuclear trafficking in virus replication have not been fully elucidated. A mutant of RSV (Myr1E) with enhanced plasma membrane targeting of Gag fails to undergo nuclear trafficking and also incorporates reduced levels of gRNA into virus particles compared to those in wild-type particles. Based on these results, we hypothesized that Gag nuclear entry might facilitate gRNA packaging. To test this idea by using a gain-of-function genetic approach, a bipartite nuclear localization signal (NLS) derived from the nucleoplasmin protein was inserted into the Myr1E Gag sequence (generating mutant Myr1E.NLS) in an attempt to restore nuclear trafficking. Here, we report that the inserted NLS enhanced the nuclear localization of Myr1E.NLS Gag compared to that of Myr1E Gag. Also, the NLS sequence restored gRNA packaging to nearly wild-type levels in viruses containing Myr1E.NLS Gag, providing genetic evidence linking nuclear trafficking of the retroviral Gag protein with gRNA incorporation.
Collapse
|
67
|
Herpes simplex virus type 1 suppresses RNA-induced gene silencing in mammalian cells. J Virol 2009; 83:6652-63. [PMID: 19369325 DOI: 10.1128/jvi.00260-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RNA-induced silencing is a potent innate antiviral defense strategy in plants, and suppression of silencing is a hallmark of pathogenic plant viruses. However, the impact of silencing as a mammalian antiviral defense mechanism and the ability of mammalian viruses to suppress silencing in natural host cells have remained controversial. The ability of herpes simplex virus type 1 (HSV-1) to suppress silencing was examined in a transient expression system that employed an imperfect hairpin to target degradation of transcripts encoding enhanced green fluorescent protein (EGFP). HSV-1 infection suppressed EGFP-specific silencing as demonstrated by increased EGFP mRNA levels and an increase in the EGFP mRNA half-life. The increase in EGFP mRNA stability occurred despite the well-characterized host macromolecular shutoff functions of HSV-1 that globally destabilize mRNAs. Moreover, mutant viruses defective in these functions increased the stability of EGFP mRNA even more than did the wild-type virus in silenced cells compared to results in control cells. The importance of RNA silencing to HSV-1 replication was confirmed by a significantly enhanced virus burst size in cells in which silencing was knocked down with small inhibitory RNAs directed to Argonaute 2, an integral component of the silencing complex. Given that HSV-1 encodes several microRNAs, it is possible that a dynamic equilibrium exists between silencing and silencing suppression that is capable of modulating viral gene expression to promote replication, to evade host defenses, and/or to promote latency.
Collapse
|
68
|
Arginine methylation of the ICP27 RGG box regulates ICP27 export and is required for efficient herpes simplex virus 1 replication. J Virol 2009; 83:5309-20. [PMID: 19321610 DOI: 10.1128/jvi.00238-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The herpes simplex virus 1 (HSV-1) multifunctional regulatory protein ICP27 shuttles between the nucleus and cytoplasm in its role as a viral mRNA export factor. Arginine methylation on glycine- and arginine-rich motifs has been shown to regulate protein export. ICP27 contains an RGG box and has been shown to be methylated during viral infection. We found by mass spectrometric analysis that three arginine residues within the RGG box were methylated. Viral mutants with substitutions of lysine for arginine residues were created as single, double, and triple mutants. Growth of these mutants was impaired and the viral replication cycle was delayed compared to wild-type HSV-1. Most striking was the finding that under conditions of hypomethylation resulting from infection with arginine substitution mutants or treatment of wild-type HSV-1-infected cells with the methylation inhibitor adenosine dialdehyde, ICP27 export to the cytoplasm occurred earlier and was more rapid than wild-type ICP27 export. We conclude that arginine methylation of the ICP27 RGG box regulates its export activity and that early export of ICP27 interferes with the performance of its nuclear functions.
Collapse
|
69
|
Abstract
The extensive alternative splicing in higher eukaryotes has initiated a debate whether alternative mRNA isoforms are generated by an inaccurate spliceosome or are the consequence of highly degenerate splice sites within the human genome. Here, we established a quantitative assay to evaluate the accuracy of splice-site pairing by determining the number of incorrect exon-skipping events made from constitutively spliced pre-mRNA transcripts. We demonstrate that the spliceosome pairs exons with an astonishingly high degree of accuracy that may be limited by the quality of pre-mRNAs generated by RNA pol II. The error rate of exon pairing is increased by the effects of the neurodegenerative disorder spinal muscular atrophy because of reduced levels of Survival of Motor Neuron, a master assembler of spliceosomal components. We conclude that all multi-intron-containing genes are alternatively spliced and that the reduction of SMN results in a general splicing defect that is mediated through alterations in the fidelity of splice-site pairing.
Collapse
|
70
|
Majerciak V, Zheng ZM. Kaposi's sarcoma-associated herpesvirus ORF57 in viral RNA processing. FRONT BIOSCI-LANDMRK 2009; 14:1516-28. [PMID: 19273144 DOI: 10.2741/3322] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 (MTA, mRNA transcript accumulation) is a multifunctional regulator of the expression of viral lytic genes. KSHV ORF57 is expressed during viral lytic infection and is essential for virus production. Like its homologues in the herpesvirus family, ORF57 promotes the accumulation (stabilization) and export of viral intronless RNA transcripts by a mechanism which remains to be defined. The ORF57-Aly/REF interaction plays only a small role in viral RNA export. Although other members of the family generally inhibit the splicing of cellular RNAs, KSHV ORF57 and EBV EB2, in sharp contrast, stimulate viral RNA splicing for the expression of viral intron-containing genes. The functions of KSHV ORF57 are independent of transcription and of other viral proteins; instead, these functions always rely on cellular components and occur in various protein-RNA complexes. ORF57 may synergize with KSHV ORF50 to transactivate a subset of viral promoters by an unknown mechanism. Thus, some functions of ORF57 have been conserved while others have diverged from its homologues as ORF57 adapted over evolution to KSHV biology and pathogenesis.
Collapse
Affiliation(s)
- Vladimir Majerciak
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1868, USA
| | | |
Collapse
|
71
|
Herpes simplex virus type 1 ICP27 induces p38 mitogen-activated protein kinase signaling and apoptosis in HeLa cells. J Virol 2008; 83:1767-77. [PMID: 19073744 DOI: 10.1128/jvi.01944-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) protein ICP27 has been implicated in a variety of functions important for viral replication including host shutoff, viral gene expression, activation of mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK), and apoptosis inhibition. In the present study we sought to examine the functions of ICP27 in the absence of viral infection by creating stable HeLa cell lines that inducibly express ICP27. Here, we characterize two such cell lines and show that ICP27 expression is associated with a cellular growth defect. The observed defect is caused at least in part by the induction of apoptosis as indicated by caspase-3 activation, annexin V staining, and characteristic changes in cellular morphology. In an effort to identify the function of ICP27 responsible for inducing apoptosis, we show that ICP27 expression is sufficient to activate p38 signaling to a level that is similar to that observed during wild-type HSV-1 infection. However, ICP27 expression alone is unable to lead to a strong activation of JNK signaling. Using chemical inhibitors, we show that the ICP27-mediated activation of p38 signaling is responsible for the observed induction of apoptosis in the induced cell lines. Our findings suggest that during viral infection, ICP27 activates p38 and JNK signaling pathways via two distinct mechanisms. ICP27 directly activates p38 signaling, leading to stimulation of the host cell apoptotic pathways. In contrast, robust activation of JNK signaling by ICP27 requires one or more delayed early or late viral gene products and may be associated with the inhibition of apoptosis.
Collapse
|
72
|
The herpes simplex virus type 1 multiple function protein ICP27. Virol Sin 2008. [DOI: 10.1007/s12250-008-2993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
73
|
Leenadevi T, Dalziel RG. Alcelaphine herpesvirus-1 open reading frame 57 encodes an immediate-early protein with regulatory function. Vet Res Commun 2008; 33:395-407. [PMID: 19031004 DOI: 10.1007/s11259-008-9186-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2008] [Indexed: 11/25/2022]
Abstract
Alcelaphine herpesvirus-1 (AlHV-1) is the causative agent of Malignant Catarrhal fever, a lymphoproliferative and degenerative disease of large ruminants and ungulate species. The Alcelaphine Herpesvirus-1 gene product encoded by open reading frame 57 (ORF 57) is the positional homologue of the ORF 57 of Herpes Virus Saimiri (HVS), Kaposi's Sarcoma associated herpesvirus (KSHV) and Murine Gammaherpesvirus 68 (MHV 68), the Epstein-Barr virus BMLF1 gene, the herpes simplex virus (HSV-1) ICP 27 and the IE 4 gene of Varicella Zoster virus (VZV). In these viruses the ORF 57 gene product is expressed very early and encodes a regulatory protein, which is essential for viral replication acting both at the transcriptional and post-transcriptional levels. The function of ORF 57 gene product in the life cycle of AlHV-1 however remains unknown. Here we examined the expression of this gene and the function of its product. We have demonstrated that it is expressed very early in infection and have shown that the ORF57 gene product activates the promoter of another classical transactivator gene ORF50. It activates ORF50 promoter driving expression of an intron-less reporter gene to 50 fold and does not have any effect on an intron-containing reporter gene driven by the ORF 50 promoter. The 50 fold increase in the luciferase activity was not correlated with a similar fold increase in the luciferase RNA levels indicating that ORF 57 protein acts at a post-transcriptional level to regulate gene expression.
Collapse
Affiliation(s)
- T Leenadevi
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | | |
Collapse
|
74
|
Leenadevi T, Dalziel RG. The alcelaphine herpesvirus-1 ORF 57 encodes a nuclear shuttling protein. Vet Res Commun 2008; 33:409-19. [DOI: 10.1007/s11259-008-9187-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 10/29/2008] [Indexed: 10/21/2022]
|
75
|
Efficient nuclear export of herpes simplex virus 1 transcripts requires both RNA binding by ICP27 and ICP27 interaction with TAP/NXF1. J Virol 2008; 83:1184-92. [PMID: 19019956 DOI: 10.1128/jvi.02010-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) regulatory protein ICP27 has been reported to bind viral RNA and to interact with the nuclear export adaptor Aly/REF and the major cellular mRNA nuclear export receptor TAP/NXF1. Using in situ hybridization and in vitro export assays, we show here that poly(A)(+) RNA was retained in the nucleus of cells infected with viral ICP27 mutants that either cannot bind RNA or that do not interact with TAP/NXF1. Microarray analysis of nuclear and cytoplasmic RNA fractions demonstrated that efficient export of the majority of viral transcripts requires that ICP27 be able to bind RNA and to interact with TAP/NXF1. We conclude that ICP27 is the major export adaptor for HSV-1 mRNA and that it links bound transcripts to the TAP/NXF1 export receptor.
Collapse
|
76
|
Mercorelli B, Sinigalia E, Loregian A, Palù G. Human cytomegalovirus DNA replication: antiviral targets and drugs. Rev Med Virol 2008; 18:177-210. [PMID: 18027349 DOI: 10.1002/rmv.558] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, in particular transplant recipients and AIDS patients, and is the most frequent congenital viral infection in humans. There are currently five drugs approved for HCMV treatment: ganciclovir and its prodrug valganciclovir, foscarnet, cidofovir and fomivirsen. These drugs have provided a major advance in HCMV disease management, but they suffer from poor bioavailability, significant toxicity and limited effectiveness, mainly due to the development of drug resistance. Fortunately, there are several novel and potentially very effective new compounds which are under pre-clinical and clinical evaluation and may address these limitations. This review focuses on HCMV proteins that are directly or indirectly involved in viral DNA replication and represent already established or potential novel antiviral targets, and describes both currently available drugs and new compounds against such protein targets.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35121 Padua, Italy
| | | | | | | |
Collapse
|
77
|
Interactions of human cytomegalovirus proteins with the nuclear transport machinery. Curr Top Microbiol Immunol 2008; 325:167-85. [PMID: 18637506 DOI: 10.1007/978-3-540-77349-8_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Accurate cellular localization is crucial for the effective function of most viral macromolecules and nuclear translocation is central to the function of herpesviral proteins that are involved in processes such as transcription and DNA replication. The passage of large molecules between the cytoplasm and nucleus, however, is restricted, and this restriction affords specific mechanisms that control nucleocytoplasmic exchange. In this review, we focus on two cytomegalovirus-encoded proteins, pUL69 and pUL84, that are able to shuttle between the nucleus and the cytoplasm. Both viral proteins use unconventional interactions with components of the cellular transport machinery: pUL69 binds to the mRNA export factor UAP56, and this interaction is crucial for pUL69-mediated nuclear export of unspliced RNA; pUL84 docks to importin-alpha proteins via an unusually large protein domain that contains functional leucine-rich nuclear export signals, thus serving as a complex bidirectional transport domain. Selective interference with these unconventional interactions, which disturbs the intracellular trafficking of important viral regulatory proteins, may constitute a novel and attractive principle for antiviral therapy.
Collapse
|
78
|
Herpes simplex virus type 1 ICP27 regulates expression of a variant, secreted form of glycoprotein C by an intron retention mechanism. J Virol 2008; 82:7443-55. [PMID: 18495765 DOI: 10.1128/jvi.00388-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that herpes simplex virus type 1 (HSV-1) immediate-early (IE) protein ICP27 can posttranscriptionally stimulate mRNA accumulation from a transfected viral late gene encoding glycoprotein C (gC) (K. D. Perkins, J. Gregonis, S. Borge, and S. A. Rice, J. Virol. 77:9872-9884, 2003). We began this study by asking whether ICP27 homologs from other herpesviruses can also mediate this activity. Although the homologs from varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) were inactive, the homolog from bovine herpesvirus 4 (BHV-4), termed HORF1/2, was a very efficient transactivator. Surprisingly, most of the mRNA produced via HORF1/2 transactivation was 225 nucleotides shorter than expected due to the removal of a previously undescribed intron from the gC transcript. We found that the gC mRNA produced in the absence of transactivation was also mostly spliced. In contrast, gC mRNA produced by ICP27 transactivation was predominantly unspliced. Based on these results, we conclude that ICP27 has two distinct effects on the transfected gC gene: it (i) stimulates mRNA accumulation and (ii) promotes the retention of an intron. Interestingly, the spliced transcript encodes a variant of gC that lacks its transmembrane domain and is secreted from transfected cells. As the gC splicing signals are conserved among several HSV-1 strains, we investigated whether the variant gC is expressed during viral infection. We report here that both the spliced transcript and its encoded protein are readily detected in Vero cells infected with three different laboratory strains of wild-type HSV-1. Moreover, the variant gC is efficiently secreted from infected cells. We have designated this alternate form of the protein as gCsec. As the extracellular domain of gC is known to bind heparan sulfate-containing proteoglycans and to inhibit the complement cascade via an interaction with complement component C3b, we speculate that gCsec could function as a secreted virulence factor.
Collapse
|
79
|
Feng P, Liang C, Shin YC, E X, Zhang W, Gravel R, Wu TT, Sun R, Usherwood E, Jung JU. A novel inhibitory mechanism of mitochondrion-dependent apoptosis by a herpesviral protein. PLoS Pathog 2008; 3:e174. [PMID: 18069888 PMCID: PMC2134948 DOI: 10.1371/journal.ppat.0030174] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 10/02/2007] [Indexed: 11/19/2022] Open
Abstract
Upon viral infection, cells undergo apoptosis as a defense against viral replication. Viruses, in turn, have evolved elaborate mechanisms to subvert apoptotic processes. Here, we report that a novel viral mitochondrial anti-apoptotic protein (vMAP) of murine γ-herpesvirus 68 (γHV-68) interacts with Bcl-2 and voltage-dependent anion channel 1 (VDAC1) in a genetically separable manner. The N-terminal region of vMAP interacted with Bcl-2, and this interaction markedly increased not only Bcl-2 recruitment to mitochondria but also its avidity for BH3-only pro-apoptotic proteins, thereby suppressing Bax mitochondrial translocation and activation. In addition, the central and C-terminal hydrophobic regions of vMAP interacted with VDAC1. Consequently, these interactions resulted in the effective inhibition of cytochrome c release, leading to the comprehensive inhibition of mitochondrion-mediated apoptosis. Finally, vMAP gene was required for efficient γHV-68 lytic replication in normal cells, but not in mitochondrial apoptosis-deficient cells. These results demonstrate that γHV-68 vMAP independently targets two important regulators of mitochondrial apoptosis-mediated intracellular innate immunity, allowing efficient viral lytic replication. Apoptosis is a conserved cell death program that contributes to restriction of viral replication and elimination of infected cells. Whether triggered via internal inducers such as DNA damage or via external stimuli such as engagement of the death receptor, apoptosis takes place through a cascade of regulated internal proteolytic digestion, resulting in a collapse of cellular infrastructure, mitochondrial potential, genomic fidelity, and cell membrane integrity. Indeed, apoptosis represents a predominant form of virally infected cell demise. In response, viruses have evolved numerous ways of circumventing this host-cell apoptosis. Most of the DNA viruses including murine γ-herpesvirus 68 (γHV-68) are genetically equipped with anti-apoptotic ability to ensure viral replication and propagation. The authors have identified a new viral mitochondrial protein (vMAP) of γHV-68 that interacts with Bcl-2 and voltage-dependent anion channel 1 (VDAC1) in a genetically separable manner. These interactions markedly suppress Bax mitochondrial translocation and activation and inhibit cytochrome c release, leading to the comprehensive inhibition of mitochondrion-mediated apoptosis. The authors also demonstrate that vMAP gene is required for efficient γHV-68 lytic replication in normal cells, but not in mitochondrial apoptosis-deficient cells. These findings are entirely novel and significantly advance our understanding of how virus escapes host intracellular apoptosis-mediated innate immunity.
Collapse
Affiliation(s)
- Pinghui Feng
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * To whom correspondence should be addressed. E-mail: (PF); (JUJ)
| | - Chengyu Liang
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Young C Shin
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Xiaofei E
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Weijun Zhang
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Robyn Gravel
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
| | - Ting-ting Wu
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Edward Usherwood
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Jae U Jung
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail: (PF); (JUJ)
| |
Collapse
|
80
|
Abstract
The herpes simplex virus (HSV) ICP27 immediate-early protein plays an essential role in the expression of viral late genes. ICP27 is a multifunctional protein and has been reported to regulate multiple steps of mRNA synthesis and processing, including transcription, splicing, and nuclear export. Recently, ICP27 was reported to interact with translation factors and to stimulate translation of the viral late mRNA encoding VP16. We examined the effects of ICP27 on accumulation, nuclear export, and translation of HSV 1 (HSV-1) late mRNAs encoding VP16, ICP5, and gD. We confirm here that ICP27 stimulates translation of VP16 mRNA as well as an additional HSV-1 late ICP5 mRNA. The data presented here demonstrate that translation levels of both VP16 and ICP5 mRNA is reduced during infections with the ICP27-null virus mutant d27-1, and with ICP27 C-terminal deletion mutant viruses n406 and n504, compared to wild-type virus. In contrast, the translation of gD mRNA is not affected by the presence of ICP27 during infection. These data demonstrate that ICP27 functions to increase the translation levels of a subset of HSV-1 late genes, and this function requires the C terminus of ICP27.
Collapse
|
81
|
Kaposi's sarcoma-associated herpesvirus ORF57 functions as a viral splicing factor and promotes expression of intron-containing viral lytic genes in spliceosome-mediated RNA splicing. J Virol 2008; 82:2792-801. [PMID: 18184716 DOI: 10.1128/jvi.01856-07] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 facilitates the expression of both intronless viral ORF59 genes and intron-containing viral K8 and K8.1 genes (V. Majerciak, N. Pripuzova, J. P. McCoy, S. J. Gao, and Z. M. Zheng, J. Virol. 81:1062-1071, 2007). In this study, we showed that disruption of ORF57 in a KSHV genome led to increased accumulation of ORF50 and K8 pre-mRNAs and reduced expression of ORF50 and K-bZIP proteins but had no effect on latency-associated nuclear antigen (LANA). Cotransfection of ORF57 and K8beta cDNA, which retains a suboptimal intron of K8 pre-mRNA due to alternative splicing, promoted RNA splicing of K8beta and production of K8alpha (K-bZIP). Although Epstein-Barr virus EB2, a closely related homolog of ORF57, had a similar activity in the cotransfection assays, herpes simplex virus type 1 ICP27 was inactive. This enhancement of RNA splicing by ORF57 correlates with the intact N-terminal nuclear localization signal motifs of ORF57 and takes place in the absence of other viral proteins. In activated KSHV-infected B cells, KSHV ORF57 partially colocalizes with splicing factors in nuclear speckles and assembles into spliceosomal complexes in association with low-abundance viral ORF50 and K8 pre-mRNAs and essential splicing components. The association of ORF57 with snRNAs occurs by ORF57-Sm protein interaction. We also found that ORF57 binds K8beta pre-mRNAs in vitro in the presence of nuclear extracts. Collectively our data indicate that KSHV ORF57 functions as a novel splicing factor in the spliceosome-mediated splicing of viral RNA transcripts.
Collapse
|
82
|
Medina-Palazon C, Gruffat H, Mure F, Filhol O, Vingtdeux-Didier V, Drobecq H, Cochet C, Sergeant N, Sergeant A, Manet E. Protein kinase CK2 phosphorylation of EB2 regulates its function in the production of Epstein-Barr virus infectious viral particles. J Virol 2007; 81:11850-60. [PMID: 17699575 PMCID: PMC2168784 DOI: 10.1128/jvi.01421-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr Virus (EBV) early protein EB2 (also called BMLF1, Mta, or SM) promotes the nuclear export of a subset of early and late viral mRNAs and is essential for the production of infectious virions. We show here that in vitro, protein kinase CK2alpha and -beta subunits bind both individually and, more efficiently, as a complex to the EB2 N terminus and that the CK2beta regulatory subunit also interacts with the EB2 C terminus. Immunoprecipitated EB2 has CK2 activity that phosphorylates several sites within the 80 N-terminal amino acids of EB2, including Ser-55, -56, and -57, which are localized next to the nuclear export signal. EB2S3E, the phosphorylation-mimicking mutant of EB2 at these three serines, but not the phosphorylation ablation mutant EB2S3A, efficiently rescued the production of infectious EBV particles by HEK293(BMLF1-KO) cells harboring an EB2-defective EBV genome. The defect of EB2S3A in transcomplementing 293(BMLF1-KO) cells was not due to impaired nucleocytoplasmic shuttling of the mutated protein but was associated with a decrease in the cytoplasmic accumulation of several late viral mRNAs. Thus, EB2-mediated production of infectious EBV virions is regulated by CK2 phosphorylation at one or more of the serine residues Ser-55, -56, and -57.
Collapse
|
83
|
Iacovides DC, O'Shea CC, Oses-Prieto J, Burlingame A, McCormick F. Critical role for arginine methylation in adenovirus-infected cells. J Virol 2007; 81:13209-17. [PMID: 17686851 PMCID: PMC2169124 DOI: 10.1128/jvi.01415-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During the late stages of adenovirus infection, the 100K protein (100K) inhibits the translation of cellular messages in the cytoplasm and regulates hexon trimerization and assembly in the nucleus. However, it is not known how it switches between these two functions. Here we show that 100K is methylated on arginine residues at its C terminus during infection and that this region is necessary for binding PRMT1 methylase. Methylated 100K is exclusively nuclear. Mutation of the third RGG motif (amino acids 741 to 743) prevents localization to the nucleus during infection, suggesting that methylation of that sequence is important for 100K shuttling. Treatment of infected cells with methylation inhibitors inhibits expression of late structural proteins. These data suggest that arginine methylation of 100K is necessary for its localization to the nucleus and is a critical cellular function necessary for productive adenovirus infection.
Collapse
|
84
|
Han Z, Swaminathan S. Kaposi's sarcoma-associated herpesvirus lytic gene ORF57 is essential for infectious virion production. J Virol 2007; 80:5251-60. [PMID: 16699005 PMCID: PMC1472138 DOI: 10.1128/jvi.02570-05] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ORF57 gene of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a nuclear protein expressed during the lytic phase of KSHV replication. An ORF57 homolog is present in all known human herpesviruses and many animal herpesviruses. Many of these proteins have been demonstrated to have essential transcriptional and posttranscriptional regulatory functions. ORF57 enhances expression of reporter genes posttranscriptionally in vitro and may synergize with transcription factors to enhance gene transcription. However, the biologic role of ORF57 in KSHV replication has not been established. In this study, we demonstrate that ORF57 is essential for productive KSHV lytic replication by constructing a recombinant KSHV in which ORF57 expression has been specifically inactivated. The ORF57-null KSHV recombinant was unable to produce virion progeny or fully express several other lytic KSHV genes except when ORF57 was provided in trans. The Epstein-Barr virus (EBV) homolog of ORF57, SM, was unable to rescue lytic KSHV virion production, although EBV SM does enhance KSHV lytic gene expression from the ORF57-null mutant. Conversely, ORF57 did not rescue an SM-null recombinant EBV, indicating the existence of virus-specific functions for the ORF57 family of genes.
Collapse
Affiliation(s)
- Zhao Han
- Program in Cancer Genetics, Epigenetics and Tumor Virology, UF Shands Cancer Center, Box 100232, University of Florida, Gainesville, FL 32610-0232, USA
| | | |
Collapse
|
85
|
Lukasiewicz R, Velazquez-Dones A, Huynh N, Hagopian J, Fu XD, Adams J, Ghosh G. Structurally unique yeast and mammalian serine-arginine protein kinases catalyze evolutionarily conserved phosphorylation reactions. J Biol Chem 2007; 282:23036-43. [PMID: 17517895 DOI: 10.1074/jbc.m611305200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian serine-arginine (SR) protein, ASF/SF2, contains multiple contiguous RS dipeptides at the C terminus, and approximately 12 of these serines are processively phosphorylated by the SR protein kinase 1 (SRPK1). We have recently shown that a docking motif in ASF/SF2 specifically interacts with a groove in SRPK1, and this interaction is necessary for processive phosphorylation. We previously showed that SRPK1 and its yeast ortholog Sky1p maintain their active conformations using diverse structural strategies. Here we tested if the mechanism of ASF/SF2 phosphorylation by SRPK is evolutionarily conserved. We show that Sky1p forms a stable complex with its heterologous mammalian substrate ASF/SF2 and processively phosphorylates the same sites as SRPK1. We further show that Sky1p utilizes the same docking groove to bind yeast SR-like protein Gbp2p and phosphorylates all three serines present in a contiguous RS dipeptide stretch. However, the mechanism of Gbp2p phosphorylation appears to be non-processive. Thus, there are physical attributes of SR and SR-like substrates that dictate the mechanism of phosphorylation, whereas the ability to processively phosphorylate substrates is inherent to SR protein kinases.
Collapse
Affiliation(s)
- Randall Lukasiewicz
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California 92093-0375, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
Serotypical application of herpes simplex virus (HSV) vectors to gene therapy (type 1) and prophylactic vaccines (types 1 and 2) has garnered substantial clinical interest recently. HSV vectors and amplicons have also been employed as helper virus constructs for manufacture of the dependovirus adeno-associated virus (AAV). Large quantities of infectious HSV stocks are requisite for these therapeutic applications, requiring a scalable vector manufacturing and processing platform comprised of unit operations which accommodate the fragility of HSV. In this study, production of a replication deficient rHSV-1 vector bearing the rep and cap genes of AAV-2 (denoted rHSV-rep2/cap2) was investigated. Adaptation of rHSV production from T225 flasks to a packed bed, fed-batch bioreactor permitted an 1100-fold increment in total vector production without a decrease in specific vector yield (pfu/cell). The fed-batch bioreactor system afforded a rHSV-rep2/cap2 vector recovery of 2.8 x 10(12) pfu. The recovered vector was concentrated by tangential flow filtration (TFF), permitting vector stocks to be formulated at greater than 1.5 x 10(9) pfu/mL.
Collapse
Affiliation(s)
- David R Knop
- Applied Genetic Technologies Corporation (AGTC), Alachua, Florida 32615, USA.
| | | |
Collapse
|
87
|
Colletti KS, Smallenburg KE, Xu Y, Pari GS. Human cytomegalovirus UL84 interacts with an RNA stem-loop sequence found within the RNA/DNA hybrid region of oriLyt. J Virol 2007; 81:7077-85. [PMID: 17459920 PMCID: PMC1933308 DOI: 10.1128/jvi.00058-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) lytic DNA replication is initiated at the complex cis-acting oriLyt region, which spans nearly 3 kb. DNA synthesis requires six core proteins together with UL84 and IE2. Previously, two essential regions were identified within oriLyt. Essential region I (nucleotides [nt] 92209 to 92573) can be replaced with the constitutively active simian virus 40 promoter, which in turn eliminates the requirement for IE2 in the origin-dependent transient-replication assay. Essential region II (nt 92979 to 93513) contains two elements of interest: an RNA/DNA hybrid domain and an inverted repeat sequence capable of forming a stem-loop structure. Our studies now reveal for the first time that UL84 interacts with a stem-loop RNA oligonucleotide in vitro, and although UL84 interacted with other nucleic acid substrates, a specific interaction occurred only with the RNA stem-loop. Increasing concentrations of purified UL84 produced a remarkable downward-staircase pattern, which is not due to a nuclease activity but is dependent upon the presence of secondary structures, suggesting that UL84 modifies the conformation of the RNA substrate. Cross-linking experiments show that UL84 possibly changes the conformation of the RNA substrate. The addition of purified IE2 to the in vitro binding reaction did not affect binding to the stem-loop structure. Chromatin immunoprecipitation assays performed using infected cells and purified virus show that UL84 is bound to oriLyt in a region adjacent to the RNA/DNA hybrid and the stem-loop structure. These results solidify UL84 as the potential initiator of HCMV DNA replication through a unique interaction with a conserved RNA stem-loop structure within oriLyt.
Collapse
Affiliation(s)
- Kelly S Colletti
- University of Nevada--Reno, Department of Microbiology, School of Medicine, Howard Bldg., Reno, NV 89557, USA
| | | | | | | |
Collapse
|
88
|
Lischka P, Thomas M, Toth Z, Mueller R, Stamminger T. Multimerization of human cytomegalovirus regulatory protein UL69 via a domain that is conserved within its herpesvirus homologues. J Gen Virol 2007; 88:405-410. [PMID: 17251556 DOI: 10.1099/vir.0.82480-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The UL69 protein of human cytomegalovirus is a multifunctional regulatory protein that has counterparts in all herpesviruses. Some of these proteins have been shown to function primarily at the post-transcriptional level in promoting nuclear export of viral transcripts. Consistently, this group has reported recently that pUL69 is an RNA-binding, nucleocytoplasmic shuttling protein that facilitates the cytoplasmic accumulation of unspliced mRNA via its interaction with the cellular mRNA export factor UAP56. Evidence has been presented to suggest that some of the pUL69 homologues self-interact and function in vivo as multimers. Herein, the possibility of pUL69 self-association was examined and it has been demonstrated that pUL69 can interact with itself in vitro and in vivo in order to form high-molecular-mass complexes. The self-interaction domain within pUL69 was mapped to a central domain of this viral protein that is conserved within the homologous proteins of other herpesviruses, suggesting that multimerization is a conserved feature of this protein family.
Collapse
Affiliation(s)
- Peter Lischka
- Institut für Klinische und Molekulare Virologie der Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marco Thomas
- Institut für Klinische und Molekulare Virologie der Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Zsolt Toth
- Institut für Klinische und Molekulare Virologie der Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Regina Mueller
- Institut für Klinische und Molekulare Virologie der Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas Stamminger
- Institut für Klinische und Molekulare Virologie der Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
89
|
Han Z, Marendy E, Wang YD, Yuan J, Sample JT, Swaminathan S. Multiple roles of Epstein-Barr virus SM protein in lytic replication. J Virol 2007; 81:4058-69. [PMID: 17287267 PMCID: PMC1866120 DOI: 10.1128/jvi.02665-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of Epstein-Barr virus (EBV) SM protein on EBV gene expression was examined using a recombinant EBV strain with the SM gene deleted and DNA microarrays representing all known EBV coding regions. Induction of lytic EBV replication in the absence of SM led to expression of approximately 40% of EBV genes, but a block in expression of over 50% of EBV genes. Contrary to previous findings, several early genes were SM dependent, and lytic EBV DNA replication did not occur in the absence of SM. Notably, two genes essential for lytic EBV DNA replication, BSLF1 and BALF5, encoding EBV DNA primase and polymerase, respectively, were SM dependent. Lytic DNA replication was partially rescued by ectopic expression of EBV primase and polymerase, but virion production was not. Rescue of DNA replication only enhanced expression of a subset of late genes, consistent with a direct requirement for SM for late gene expression in addition to its contribution to DNA replication. Therefore, while SM is essential for most late gene expression, the proximate block to virion production by the EBV SM deletion strain is an inability to replicate linear DNA. The block to DNA replication combined with the direct effect of SM on late gene expression leads to a global deficiency of late gene expression. SM also inhibited BHRF1 expression during productive replication in comparison to that of cells induced into lytic replication in the absence of SM. Thus, SM plays a role in multiple steps of lytic cycle EBV gene expression and that it is transcript-specific in both activation and repression functions.
Collapse
Affiliation(s)
- Zhao Han
- University of Florida, UF Shands Cancer Center, 1376 Mowry Road, Gainesville, FL 32610-3633, and Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
90
|
Donnelly M, Verhagen J, Elliott G. RNA binding by the herpes simplex virus type 1 nucleocytoplasmic shuttling protein UL47 is mediated by an N-terminal arginine-rich domain that also functions as its nuclear localization signal. J Virol 2006; 81:2283-96. [PMID: 17166902 PMCID: PMC1865927 DOI: 10.1128/jvi.01677-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The function of the alphaherpesvirus UL47 tegument protein has not yet been defined. Nonetheless, previous studies with transfected cells have shown that both the herpes simplex virus type 1 homologue (hUL47, or VP13/14) and the bovine herpesvirus type 1 (BHV-1) homologue (bUL47, or VP8) have the capacity to shuttle between the nucleus and the cytoplasm. Furthermore, hUL47 packaged into the virion has also been shown to bind several individual virus-specific RNA transcripts. Here, we extend these observations and show that hUL47 binds a wide range of RNA species in vitro. It has a high affinity for polyadenylated transcripts but has no apparent selectivity for virus-encoded RNA over cellular RNA. We also show that the virion population of bUL47 binds RNA in vitro. However, while purified recombinant hUL47 retains its RNA binding activity, recombinant bUL47 does not, suggesting that the BHV-1 homologue may require virus-induced modification for its activity. We identify the minimal RNA binding domain in hUL47 as a 26-residue N-terminal peptide containing an arginine-rich motif that is essential but not sufficient for optimal RNA binding, and we demonstrate that this RNA binding domain incorporates the hUL47 minimal nuclear localization signal. In addition, we show that soon after hUL47 is expressed during infection, it colocalizes in the infected cell nucleus with ICP4, the major virus transcriptional activator. Using RNA immunoprecipitations, we demonstrate that hUL47 is also bound in vivo to at least one viral transcript, the ICP0 mRNA. Taken together, these results suggest that hUL47 may play a role in RNA biogenesis in the infected cell.
Collapse
Affiliation(s)
- Michelle Donnelly
- Virus Assembly Group, Marie Curie Research Institute, Oxted, Surrey RH8 OTL, United Kingdom
| | | | | |
Collapse
|
91
|
Hargett D, Rice S, Bachenheimer SL. Herpes simplex virus type 1 ICP27-dependent activation of NF-kappaB. J Virol 2006; 80:10565-78. [PMID: 16928747 PMCID: PMC1641752 DOI: 10.1128/jvi.01119-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 08/11/2006] [Indexed: 11/20/2022] Open
Abstract
The ability of herpes simplex virus type 1 (HSV-1) to activate NF-kappaB has been well documented. Beginning at 3 to 5 h postinfection, HSV-1 induces a robust and persistent nuclear translocation of an NF-kappaB-dependent (p50/p65 heterodimer) DNA binding activity, as measured by electrophoretic mobility shift assay. Activation requires virus binding and entry, as well as de novo infected-cell protein synthesis, and is accompanied by loss of both IkappaBalpha and IkappaBbeta. In this study, we identified loss of IkappaBalpha as a marker of NF-kappaB activation, and infection with mutants with individual immediate-early (IE) regulatory proteins deleted indicated that ICP27 was necessary for IkappaBalpha loss. Analysis of both N-terminal and C-terminal mutants of ICP27 identified the region from amino acids 21 to 63 as being necessary for IkappaBalpha loss. Additional experiments with mutant viruses with combinations of IE genes deleted revealed that the ICP27-dependent mechanism of NF-kappaB activation may be augmented by functional ICP4. We also analyzed two additional markers for NF-kappaB activation, phosphorylation of the p65 subunit on Ser276 and Ser536. Phosphorylation of both serines was induced upon HSV infection and required functional ICP4 and ICP27. Pharmacological inhibitor studies revealed that both IkappaBalpha and Ser276 phosphorylation were dependent on Jun N-terminal protein kinase activity, while Ser536 phosphorylation was not affected during inhibitor treatment. These results demonstrate that there are several layers of regulation of NF-kappaB activation during HSV infection, highlighting the important role that NF-kappaB may play in infection.
Collapse
Affiliation(s)
- Danna Hargett
- Department of Microbiology and Immunology, 837 MEJB, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | | | | |
Collapse
|
92
|
Malik P, Schirmer EC. The Kaposi's sarcoma-associated herpesvirus ORF57 protein: a pleurotropic regulator of gene expression. Biochem Soc Trans 2006; 34:705-10. [PMID: 17052179 DOI: 10.1042/bst0340705] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Herpesviridae comprises over 120 viruses infecting a wide range of vertebrates including humans and livestock. Herpesvirus infections typically produce dermal lesions or immune cell destruction, but can also lead to oncogenesis, especially with KSHV (Kaposi's sarcoma-associated herpesvirus). All herpesviruses are nuclear replicating viruses that subvert cellular processes such as nucleocytoplasmic transport for their advantage. For virus replication to take over the cell and produce lytic infection requires that virus gene expression outpace that of the host cell. KSHV ORF57 (open reading frame 57) appears to play a major role in this by (i) serving as a nuclear export receptor to carry intronless viral mRNAs out of the nucleus and (ii) inhibiting expression of intron-containing host mRNAs. As most of the virally encoded mRNAs are intronless compared with host cell mRNAs, these two mechanisms are critical to overcoming host gene expression.
Collapse
Affiliation(s)
- P Malik
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh EH9 3JR, UK.
| | | |
Collapse
|
93
|
Corcoran JA, Hsu WL, Smiley JR. Herpes simplex virus ICP27 is required for virus-induced stabilization of the ARE-containing IEX-1 mRNA encoded by the human IER3 gene. J Virol 2006; 80:9720-9. [PMID: 16973576 PMCID: PMC1617249 DOI: 10.1128/jvi.01216-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) stifles cellular gene expression during productive infection of permissive cells, thereby diminishing host responses to infection. Host shutoff is achieved largely through the complementary actions of two viral proteins, ICP27 and virion host shutoff (vhs), that inhibit cellular mRNA biogenesis and trigger global mRNA decay, respectively. Although most cellular mRNAs are thus depleted, some instead increase in abundance after infection; perhaps surprisingly, some of these contain AU-rich instability elements (AREs) in their 3'-untranslated regions. ARE-containing mRNAs normally undergo rapid decay; however, their stability can increase in response to signals such as cytokines and virus infection that activate the p38/MK2 mitogen-activated protein kinase (MAPK) pathway. We and others have shown that HSV infection stabilizes the ARE mRNA encoding the stress-inducible IEX-1 mRNA, and a previous report from another laboratory has suggested vhs is responsible for this effect. However, we now report that ICP27 is essential for IEX-1 mRNA stabilization whereas vhs plays little if any role. A recent report has documented that ICP27 activates the p38 MAPK pathway, and we detected a strong correlation between this activity and stabilization of IEX-1 mRNA by using a panel of HSV type 1 (HSV-1) isolates bearing an array of previously characterized ICP27 mutations. Furthermore, IEX-1 mRNA stabilization was abrogated by the p38 inhibitor SB203580. Taken together, these data indicate that the HSV-1 immediate-early protein ICP27 alters turnover of the ARE-containing message IEX-1 by activating p38. As many ARE mRNAs encode proinflammatory cytokines or other immediate-early response proteins, some of which may limit viral replication, it will be of great interest to determine if ICP27 mediates stabilization of many or all ARE-containing mRNAs.
Collapse
Affiliation(s)
- Jennifer A Corcoran
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | |
Collapse
|
94
|
Watanabe D, Brockman MA, Ndung'u T, Mathews L, Lucas WT, Murphy CG, Felber BK, Pavlakis GN, Deluca NA, Knipe DM. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector. Virology 2006; 357:186-98. [PMID: 16996101 DOI: 10.1016/j.virol.2006.08.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 07/25/2006] [Accepted: 08/10/2006] [Indexed: 10/24/2022]
Abstract
Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli beta-galactosidase induced durable beta-gal-specific IgG and CD8(+) T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes.
Collapse
Affiliation(s)
- Daisuke Watanabe
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Lindner I, Ehlers B, Noack S, Dural G, Yasmum N, Bauer C, Goltz M. The porcine lymphotropic herpesvirus 1 encodes functional regulators of gene expression. Virology 2006; 357:134-48. [PMID: 16979210 DOI: 10.1016/j.virol.2006.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 06/21/2006] [Accepted: 08/02/2006] [Indexed: 11/18/2022]
Abstract
The porcine lymphotropic herpesviruses (PLHV) are discussed as possible risk factors in xenotransplantation because of the high prevalence of PLHV-1, PLHV-2 and PLHV-3 in pig populations world-wide and the fact that PLHV-1 has been found to be associated with porcine post-transplant lymphoproliferative disease. To provide structural and functional knowledge on the PLHV immediate-early (IE) transactivator genes, the central regions of the PLHV genomes were characterized by genome walking, sequence and splicing analysis. Three spliced genes were identified (ORF50, ORFA6/BZLF1(h), ORF57) encoding putative IE transactivators, homologous to (i) ORF50 and BRLF1/Rta, (ii) K8/K-bZIP and BZLF1/Zta and (iii) ORF57 and BMLF1 of HHV-8 and EBV, respectively. Expressed as myc-tag or HA-tag fusion proteins, they were located to the cellular nucleus. In reporter gene assays, several PLHV-promoters were mainly activated by PLHV-1 ORF50, to a lower level by PLHV-1 ORFA6/BZLF1(h) and not by PLHV-1 ORF57. However, the ORF57-encoded protein acted synergistically on ORF50-mediated activation.
Collapse
Affiliation(s)
- I Lindner
- Robert Koch-Institut, P14 Molekulare Genetik und Epidemiologie von Herpesviren, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
96
|
Majerciak V, Yamanegi K, Nie SH, Zheng ZM. Structural and Functional Analyses of Kaposi Sarcoma-associated Herpesvirus ORF57 Nuclear Localization Signals in Living Cells. J Biol Chem 2006; 281:28365-78. [PMID: 16829516 DOI: 10.1074/jbc.m603095200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) ORF57 is a multifunctional, nuclear protein involved in post-transcriptional regulation of a subset of viral genes during lytic replication. Three nuclear localization signals (NLSs), NLS1 (amino acids (aa 101-107), NLS2 (aa 121-130), and NLS3 (aa 143-152), were identified in the N terminus of the ORF57 protein, and each of the three represents a short stretch of basic amino acid residues. Disruption of all three NLSs prevented localization of ORF57 in the nucleus. Insertion of individual NLSs into a heterologous cytoplasmic protein converted it into a nuclear protein, confirming that each NLS functions independently and is sufficient to promote protein nuclear localization. Although it exhibits a function similar to that of Epstein-Barr virus EB2 in promoting KSHV ORF59 expression, KSHV ORF57 differs from the herpes simplex virus ICP27 protein, and its function could be disrupted by point mutations of single or two NLSs in random combination, despite the proper localization of the mutant protein in the nucleus. The dysfunctional ORF57 containing NLS mutations also had low affinity with ORF59 RNA and the RNA export factor REF. However, the REF binding of ORF57 in vivo appeared to have no effect on ORF57-mediated enhancement of ORF59 expression. Thus, the three NLSs identified in ORF57 provide at least two functions, nuclear localization of ORF57 and up-regulation of ORF59 expression.
Collapse
Affiliation(s)
- Vladimir Majerciak
- HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
97
|
Abstract
The ability to regulate cellular gene expression is a key aspect of the lifecycles of a diverse array of viruses. In fact, viral infection often results in a global shutoff of host cellular gene expression; such inhibition serves not only to ensure maximal viral gene expression without competition from the host for essential machinery and substrates but also aids in evasion of immune responses detrimental to successful viral replication and dissemination. Within the herpesvirus family, host shutoff is a prominent feature of both the alpha- and gamma-herpesviruses. Intriguingly, while both classes of herpesviruses block cellular gene expression by inducing decay of messenger RNAs, the viral factors responsible for this phenotype as well as the mechanisms by which it is achieved are quite distinct. However, data suggest that the host shutoff functions of alpha- and gamma-herpesviruses are likely achieved both through the activity of virally encoded nucleases as well as via modulation of cellular RNA degradation pathways. This review highlights the processes governing normal cellular messenger RNA decay and then details the mechanisms by which herpesviruses promote accelerated RNA turnover. Parallels between the viral and cellular degradation systems as well as the known interactions between viral host shutoff factors and the cellular RNA turnover machinery are highlighted.
Collapse
Affiliation(s)
- Britt A Glaunsinger
- Howard Hughes Medical Institute, Department of Microbiology, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
98
|
Lengyel J, Strain AK, Perkins KD, Rice SA. ICP27-dependent resistance of herpes simplex virus type 1 to leptomycin B is associated with enhanced nuclear localization of ICP4 and ICP0. Virology 2006; 352:368-79. [PMID: 16780914 DOI: 10.1016/j.virol.2006.04.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 03/01/2006] [Accepted: 04/20/2006] [Indexed: 11/28/2022]
Abstract
It was previously shown that herpes simplex virus type 1 (HSV-1) is sensitive to leptomycin B (LMB), an inhibitor of nuclear export factor CRM1, and that a single methionine to threonine change at residue 50 (M50T) of viral immediate-early (IE) protein ICP27 can confer LMB resistance. In this work, we show that deletion of residues 21-63 from ICP27 can also confer LMB resistance. We further show that neither the M50T mutation nor the presence of LMB affects the nuclear shuttling activity of ICP27, suggesting that another function of ICP27 determines LMB resistance. A possible clue to this function emerged when it was discovered that LMB treatment of HSV-1-infected cells dramatically enhances the cytoplasmic accumulation of two other IE proteins, ICP0 and ICP4. This effect is completely dependent on ICP27 and is reversed in cells infected with LMB-resistant mutants. Moreover, LMB-resistant mutations in ICP27 enhance the nuclear localization of ICP0 and ICP4 even in the absence of LMB, and this effect can be discerned in transfected cells. Thus, the same amino (N)-terminal region of ICP27 that determines sensitivity to LMB also enhances ICP27's previously documented ability to promote the cytoplasmic accumulation of ICP4 and ICP0. We speculate that ICP27's effects on ICP4 and ICP0 may contribute to HSV-1 LMB sensitivity.
Collapse
Affiliation(s)
- Joy Lengyel
- Department of Microbiology, University of Minnesota Medical School, Mayo Mail Code 196, 420 Delaware St. S.E., Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
99
|
Dai-Ju JQ, Li L, Johnson LA, Sandri-Goldin RM. ICP27 interacts with the C-terminal domain of RNA polymerase II and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection. J Virol 2006; 80:3567-81. [PMID: 16537625 PMCID: PMC1440381 DOI: 10.1128/jvi.80.7.3567-3581.2006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) ICP27 has been shown to interact with RNA polymerase II (RNAP II) holoenzyme. Here, we show that ICP27 interacts with the C-terminal domain (CTD) of RNAP II and that ICP27 mutants that cannot interact fail to relocalize RNAP II to viral transcription sites, suggesting a role for ICP27 in RNAP II recruitment. Using monoclonal antibodies specific for different phosphorylated forms of the RNAP II CTD, we found that the serine-2 phosphorylated form, which is found predominantly in elongating complexes, was not recruited to viral transcription sites. Further, there was an overall reduction in phosphoserine-2 staining. Western blot analysis revealed that there was a pronounced decrease in the phosphoserine-2 form and in overall RNAP II levels in lysates from cells infected with wild-type HSV-1. There was no appreciable difference in cdk9 levels, suggesting that protein degradation rather than dephosphorylation was occurring. Treatment of infected cells with proteasome inhibitors MG-132 and lactacystin prevented the decrease in the phosphoserine-2 form and in overall RNAP II levels; however, there was a concomitant decrease in the levels of several HSV-1 late proteins and in virus yield. Proteasomal degradation has been shown to resolve stalled RNAP II complexes at sites of DNA damage to allow 3' processing of transcripts. Thus, we propose that at later times of infection when robust transcription and DNA replication are occurring, elongating complexes may collide and proteasomal degradation may be required for resolution.
Collapse
Affiliation(s)
- Jenny Q Dai-Ju
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, CA 92697-4025, USA
| | | | | | | |
Collapse
|
100
|
Lischka P, Toth Z, Thomas M, Mueller R, Stamminger T. The UL69 transactivator protein of human cytomegalovirus interacts with DEXD/H-Box RNA helicase UAP56 to promote cytoplasmic accumulation of unspliced RNA. Mol Cell Biol 2006; 26:1631-43. [PMID: 16478985 PMCID: PMC1430265 DOI: 10.1128/mcb.26.5.1631-1643.2006] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 12/13/2005] [Indexed: 11/20/2022] Open
Abstract
The UL69 gene product of human cytomegalovirus belongs to a family of regulatory proteins conserved among all herpesviruses that have in part been characterized as posttranscriptional transactivators participating in the nuclear export of RNA. Recent experiments suggested that pUL69 also acts as a posttranscriptional activator since it was demonstrated that nucleocytoplasmic shuttling via a CRM1-independent nuclear export signal is a prerequisite for its stimulatory effect on gene expression. Based on these findings we initiated studies to investigate the role of pUL69 in mRNA export and demonstrate that pUL69 efficiently promotes the cytoplasmic accumulation of unspliced RNA. Furthermore, we show that this pUL69 activity is linked to the cellular mRNA export machinery by direct protein interaction with the highly related DEXD/H-box RNA helicases UAP56 and URH49. Particularly, we identified a 12-amino-acid domain within the N terminus of pUL69 which is required for binding to UAP56 and URH49, and we could demonstrate that UAP56 interaction and nucleocytoplasmic shuttling are both prerequisites for pUL69-mediated mRNA export. Thus, we identified a novel cellular target which provides a herpesviral regulatory protein with access to a conserved cellular transport system in order to promote nuclear export of unspliced RNA.
Collapse
Affiliation(s)
- Peter Lischka
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|