51
|
Parker HG, Shearin AL, Ostrander EA. Man's best friend becomes biology's best in show: genome analyses in the domestic dog. Annu Rev Genet 2011; 44:309-36. [PMID: 21047261 DOI: 10.1146/annurev-genet-102808-115200] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the last five years, canine genetics has gone from map construction to complex disease deconstruction. The availability of a draft canine genome sequence, dense marker chips, and an understanding of the genome architecture has changed the types of studies canine geneticists can undertake. There is now a clear recognition that the dog system offers the opportunity to understand the genetics of both simple and complex traits, including those associated with morphology, disease susceptibility, and behavior. In this review, we summarize recent findings regarding canine domestication and review new information on the organization of the canine genome. We discuss studies aimed at finding genes controlling morphological phenotypes and provide examples of the way such paradigms may be applied to studies of behavior. We also discuss the many ways in which the dog has illuminated our understanding of human disease and conclude with a discussion on where the field is likely headed in the next five years.
Collapse
Affiliation(s)
- Heidi G Parker
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
52
|
Kropatsch R, Petrasch-Parwez E, Seelow D, Schlichting A, Gerding WM, Akkad DA, Epplen JT, Dekomien G. Generalized progressive retinal atrophy in the Irish Glen of Imaal Terrier is associated with a deletion in the ADAM9 gene. Mol Cell Probes 2010; 24:357-63. [DOI: 10.1016/j.mcp.2010.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 07/26/2010] [Accepted: 07/26/2010] [Indexed: 01/05/2023]
|
53
|
Won J, Marín de Evsikova C, Smith RS, Hicks WL, Edwards MM, Longo-Guess C, Li T, Naggert JK, Nishina PM. NPHP4 is necessary for normal photoreceptor ribbon synapse maintenance and outer segment formation, and for sperm development. Hum Mol Genet 2010; 20:482-96. [PMID: 21078623 DOI: 10.1093/hmg/ddq494] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nephronophthisis (NPHP) is an autosomal recessive kidney disease that is often associated with vision and/or brain defects. To date, 11 genes are known to cause NPHP. The gene products, while structurally unrelated, all localize to cilia or centrosomes. Although mouse models of NPHP are available for 9 of the 11 genes, none has been described for nephronophthisis 4 (Nphp4). Here we report a novel, chemically induced mutant, nmf192, that bears a nonsense mutation in exon 4 of Nphp4. Homozygous mutant Nphp4(nmf192/nmf192) mice do not exhibit renal defects, phenotypes observed in human patients bearing mutations in NPHP4, but they do develop severe photoreceptor degeneration and extinguished rod and cone ERG responses by 9 weeks of age. Photoreceptor outer segments (OS) fail to develop properly, and some OS markers mislocalize to the inner segments and outer nuclear layer in the Nphp4(nmf192/nmf192) mutant retina. Despite NPHP4 localization to the transition zone in the connecting cilia (CC), the CC appear to be normal in structure and ciliary transport function is partially retained. Likewise, synaptic ribbons develop normally but then rapidly degenerate by P14. Finally, Nphp4(nmf192/nmf192) male mutants are sterile and show reduced sperm motility and epididymal sperm counts. Although Nphp4(nmf192/nmf192) mice fail to recapitulate the kidney phenotype of NPHP, they will provide a valuable tool to further elucidate how NPHP4 functions in the retina and male reproductive organs.
Collapse
Affiliation(s)
- Jungyeon Won
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Murdoch BM, Clawson ML, Laegreid WW, Stothard P, Settles M, McKay S, Prasad A, Wang Z, Moore SS, Williams JL. A 2cM genome-wide scan of European Holstein cattle affected by classical BSE. BMC Genet 2010; 11:20. [PMID: 20350325 PMCID: PMC2853485 DOI: 10.1186/1471-2156-11-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 03/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background Classical bovine spongiform encephalopathy (BSE) is an acquired prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. Polymorphisms that alter the prion protein of sheep or humans have been associated with variations in transmissible spongiform encephalopathy susceptibility or resistance. In contrast, there is no strong evidence that non-synonymous mutations in the bovine prion gene (PRNP) are associated with classical BSE disease susceptibility. However, two bovine PRNP insertion/deletion polymorphisms, one within the promoter region and the other in intron 1, have been associated with susceptibility to classical BSE. These associations do not explain the full extent of BSE susceptibility, and loci outside of PRNP appear to be associated with disease incidence in some cattle populations. To test for associations with BSE susceptibility, we conducted a genome wide scan using a panel of 3,072 single nucleotide polymorphism (SNP) markers on 814 animals representing cases and control Holstein cattle from the United Kingdom BSE epidemic. Results Two sets of BSE affected Holstein cattle were analyzed in this study, one set with known family relationships and the second set of paired cases with controls. The family set comprises half-sibling progeny from six sires. The progeny from four of these sires had previously been scanned with microsatellite markers. The results obtained from the current analysis of the family set yielded both some supporting and new results compared with those obtained in the earlier study. The results revealed 27 SNPs representing 18 chromosomes associated with incidence of BSE disease. These results confirm a region previously reported on chromosome 20, and identify additional regions on chromosomes 2, 14, 16, 21 and 28. This study did not identify a significant association near the PRNP in the family sample set. The only association found in the PRNP region was in the case-control sample set and this was not significant after multiple test correction. The genome scan of the case-control animals did not identify any associations that passed a stringent genome-wide significance threshold. Conclusions Several regions of the genome are statistically associated with the incidence of classical BSE in European Holstein cattle. Further investigation of loci on chromosomes 2, 14, 16, 20, 21 and 28 will be required to uncover any biological significance underlying these marker associations.
Collapse
Affiliation(s)
- Brenda M Murdoch
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Shearin AL, Ostrander EA. Leading the way: canine models of genomics and disease. Dis Model Mech 2010; 3:27-34. [PMID: 20075379 DOI: 10.1242/dmm.004358] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years Canis familiaris, the domestic dog, has drawn considerable attention as a system in which to investigate the genetics of disease susceptibility, morphology and behavior. Because dogs show remarkable intrabreed homogeneity, coupled with striking interbreed heterogeneity, the dog offers unique opportunities to understand the genetic underpinnings of natural variation in mammals, a portion of which is disease susceptibility. In this review, we highlight the unique features of the dog, such as population diversity and breed structure, that make it particularly amenable to genetic studies. We highlight recent advances in understanding the architecture of the dog genome, which propel the system to the forefront of consideration when selecting a system for disease gene studies. The most notable benefit of using the dog for genetic studies is that dogs get many of the same diseases as humans, with a similar frequency, and the same genetic factors are often involved. We discuss two approaches for localizing disease genes in the dog and provide examples of ongoing studies.
Collapse
Affiliation(s)
- Abigail L Shearin
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
56
|
The evolution of heterochiasmy: the role of sexual selection and sperm competition in determining sex-specific recombination rates in eutherian mammals. Genet Res (Camb) 2010; 91:355-63. [PMID: 19922699 DOI: 10.1017/s0016672309990255] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Early karyotypic work revealed that female and male recombination rates in many species show pronounced differences, and this pattern of heterochiasmy has also been observed in modern linkage mapping studies. Several hypotheses to explain this phenomenon have been offered, ranging from strictly biological mechanisms related to the gametic differences between the sexes, to more evolutionary models based on sexually antagonistic selection. However, despite the long history of interest in heterochiasmy, empirical data has failed to support any theory or pattern consistently. Here I test two alternative evolutionary hypotheses regarding heterochiasmy across the eutherian mammals, and show that sexual dimorphism, but not sperm competition, is strongly correlated with recombination rate, suggesting that sexual antagonism is an important influence. However, the observed relationship between heterochiasmy and sexual dimorphism runs counter to theoretical predictions, with male recombination higher in species with high levels of sexual dimorphism. This may be the response to male-biased dispersal, which, rather than the static male fitness landscape envisioned in the models tested here, could radically shift optimal male fitness parameters among generations.
Collapse
|
57
|
Reicher S, Seroussi E, Gootwine E. A mutation in gene CNGA3 is associated with day blindness in sheep. Genomics 2010; 95:101-4. [DOI: 10.1016/j.ygeno.2009.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/09/2009] [Accepted: 10/21/2009] [Indexed: 11/26/2022]
|
58
|
Genome-wide association mapping identifies multiple loci for a canine SLE-related disease complex. Nat Genet 2010; 42:250-4. [PMID: 20101241 DOI: 10.1038/ng.525] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/07/2009] [Indexed: 12/20/2022]
Abstract
The unique canine breed structure makes dogs an excellent model for studying genetic diseases. Within a dog breed, linkage disequilibrium is extensive, enabling genome-wide association (GWA) with only around 15,000 SNPs and fewer individuals than in human studies. Incidences of specific diseases are elevated in different breeds, indicating that a few genetic risk factors might have accumulated through drift or selective breeding. In this study, a GWA study with 81 affected dogs (cases) and 57 controls from the Nova Scotia duck tolling retriever breed identified five loci associated with a canine systemic lupus erythematosus (SLE)-related disease complex that includes both antinuclear antibody (ANA)-positive immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis-arteritis (SRMA). Fine mapping with twice as many dogs validated these loci. Our results indicate that the homogeneity of strong genetic risk factors within dog breeds allows multigenic disorders to be mapped with fewer than 100 cases and 100 controls, making dogs an excellent model in which to identify pathways involved in human complex diseases.
Collapse
|
59
|
Genome-wide association analysis of canine atopic dermatitis and identification of disease related SNPs. Immunogenetics 2010; 61:765-72. [DOI: 10.1007/s00251-009-0402-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 10/07/2009] [Indexed: 12/20/2022]
|
60
|
Miyadera K, Kato K, Aguirre-Hernández J, Tokuriki T, Morimoto K, Busse C, Barnett K, Holmes N, Ogawa H, Sasaki N, Mellersh CS, Sargan DR. Phenotypic variation and genotype-phenotype discordance in canine cone-rod dystrophy with an RPGRIP1 mutation. Mol Vis 2009; 15:2287-305. [PMID: 19936303 PMCID: PMC2779058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 10/28/2009] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Previously, a 44 bp insertion in exon 2 of retinitis pigmentosa GTPase interacting protein 1 (RPGRIP1) was identified as the cause of cone-rod dystrophy 1 (cord1), a recessive form of progressive retinal atrophy (PRA) in the Miniature Longhaired Dachshund (MLHD), a dog model for Leber congenital amaurosis. The cord1 locus was mapped using MLHDs from an inbred colony with a homogeneous early onset disease phenotype. In this paper, the MLHD pet population was studied to investigate phenotypic variation and genotype-phenotype correlation. Further, the cord1 locus was fine-mapped using PRA cases from the MLHD pet population to narrow the critical region. Other dog breeds were also screened for the RGPRIP1 insertion. METHODS This study examined phenotypic variation in an MLHD pet population that included 59 sporadic PRA cases and 18 members of an extended family with shared environment and having six PRA cases. Ophthalmologic evaluations included behavioral abnormalities, responses to menace and light, fundoscopy, and electroretinography (ERG). The RPGRIP1 insertion was screened for in all cases and 200 apparently normal control MLHDs and in 510 dogs from 66 other breed. To fine-map the cord1 locus in the MLHD, 74 PRA cases and 86 controls aged 4 years or more were genotyped for 24 polymorphic markers within the previously mapped cord1 critical region of 14.15 Mb. RESULTS Among sporadic PRA cases from the MLHD pet population, the age of onset varied from 4 months to 15 years old; MLHDs from the extended family also showed variable onset and rate of progression. Screening for the insertion in RPGRIP1 identified substantial genotype-phenotype discordance: 16% of controls were homozygous for the insertion (RPGRIP1(-/-)), while 20% of PRA cases were not homozygous for it. Four other breeds were identified to carry the insertion including English Springer Spaniels and Beagles with insertion homozygotes. The former breed included both controls and PRA cases, yet in the latter breed, cone ERG was undetectable in two dogs with no clinically apparent visual dysfunction. Notably, the insertion in the Beagles was a longer variant of that seen in the other breeds. Fine-mapping of the cord1 locus narrowed the critical region on CFA15 from 14.15 Mb to 1.74 Mb which still contains the RPGRIP1 gene. CONCLUSIONS Extensive phenotypic variations of onset age and progression rate were observed in PRA cases of the MLHD pet population. The insertion in RPGRIP1 showed the strongest association with the disease, yet additional as well as alternative factors may account for the substantial genotype-phenotype discordance.
Collapse
Affiliation(s)
- Keiko Miyadera
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, United Kingdom,Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Kumiko Kato
- Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Jesús Aguirre-Hernández
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, United Kingdom
| | - Tsuyoshi Tokuriki
- Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Kyohei Morimoto
- Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Claudia Busse
- Comparative Ophthalmology Unit, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Keith Barnett
- Comparative Ophthalmology Unit, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - Nigel Holmes
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | | | - Nobuo Sasaki
- Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Cathryn S. Mellersh
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, United Kingdom
| | - David R. Sargan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, United Kingdom
| |
Collapse
|
61
|
Sargan DR. Retinal degeneration in cats: a tale of two means of motion. Vet J 2009; 186:3-5. [PMID: 19744869 DOI: 10.1016/j.tvjl.2009.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 11/18/2022]
|
62
|
Petersen-Jones S, Bartoe J, Fischer A, Scott M, Boye S, Chiodo V, Hauswirth W. AAV retinal transduction in a large animal model species: comparison of a self-complementary AAV2/5 with a single-stranded AAV2/5 vector. Mol Vis 2009; 15:1835-42. [PMID: 19756181 PMCID: PMC2743804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 09/01/2009] [Indexed: 12/02/2022] Open
Abstract
PURPOSE To compare self-complementary (sc) and single-stranded (ss) adeno-associated viral 2/5 (AAV2/5) vectors for retinal cell transduction in the dog when delivered by subretinal injection. METHODS ScAAV2/5 and ssAAV2/5 vectors encoding enhanced green fluorescent protein (GFP) under control of the chicken beta actin promoter were prepared to the same titer. Equal amounts of viral particles were delivered into the subretinal spaces of both eyes of two dogs. In each dog, one eye received the scAAV2/5 and the other the ssAAV2/5. In vivo expression of GFP was monitored ophthalmoscopically. The dogs were sacrificed, and their retinas were examined by fluorescent microscopy and immunohistochemistry to determine GFP expression patterns and to assay for glial reactivity. RESULTS GFP expression in the scAAV2/5 injected eyes was detectable at a much earlier time point than in the ssAAV2/5 injected eyes. Expression of GFP was also at higher levels in the scAAV2/5-injected eyes. Expression levels remained stable for the seven month duration of the study. The types of cells transduced by both vectors were similar; there was strong reporter gene expression in the RPE and photoreceptors, although not all cones in the transduced area expressed GFP. Some horizontal and Müller cells were also transduced. CONCLUSIONS When delivered by subretinal injection in the dog, scAAV2/5 induces faster and stronger transgene expression than ssAAV2/5. The spectrum of retinal neurons transduced is similar between the two vectors. These results confirm in a large animal model those previously reported in the mouse. ScAAV2/5 shows promise for use in the treatment of conditions where a rapid transgene expression is desirable. Furthermore, it may be possible to use a lower number of viral particles to achieve the same effect compared with ssAAV2/5 vectors.
Collapse
Affiliation(s)
- S.M. Petersen-Jones
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI
| | - J.T. Bartoe
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, MI
| | - A.J. Fischer
- Department of Neuroscience, The Ohio State University, Columbus, OH
| | - M. Scott
- Department of Neuroscience, The Ohio State University, Columbus, OH
| | - S.L. Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL
| | - V. Chiodo
- Department of Ophthalmology, University of Florida, Gainesville, FL
| | - W.W. Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, FL
| |
Collapse
|
63
|
Beltran WA. The use of canine models of inherited retinal degeneration to test novel therapeutic approaches. Vet Ophthalmol 2009; 12:192-204. [PMID: 19392879 DOI: 10.1111/j.1463-5224.2009.00694.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Inherited retinal degenerations (RDs) are a common cause of blindness in dogs and in humans. Over the past two decades numerous genes causally associated with these diseases have been identified and several canine models have been used to improve our understanding of the molecular mechanisms of RDs, as well as to test the proof of principle and safety of novel therapies. This review briefly summarizes the drug delivery approaches and therapeutic strategies that have been and are currently tested in dogs, with a particular emphasis on corrective gene therapy, and retinal neuroprotection.
Collapse
Affiliation(s)
- William A Beltran
- Section of Ophthalmology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
64
|
Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet 2009; 10:381-91. [PMID: 19448663 DOI: 10.1038/nrg2575] [Citation(s) in RCA: 599] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
65
|
Wiik AC, Thoresen SI, Wade C, Lindblad-Toh K, Lingaas F. A population study of a mutation allele associated with cone-rod dystrophy in the standard wire-haired dachshund. Anim Genet 2009; 40:572-4. [PMID: 19392817 DOI: 10.1111/j.1365-2052.2009.01877.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cone-rod dystrophy in the standard wire-haired dachshund (SWHD) is inherited as a simple autosomal recessive trait and the recently discovered mutation is widespread within the SWHD population in Norway and other Scandinavian countries. The gene frequency was estimated to be 4.8%. On the basis of the assumption that the size of the ancestral haplotype around a mutation is inversely correlated with the number of generations since the mutation arose, we have found that the mutation is of a relatively recent origin. The conserved haplotype was found to be 8 Mb in size and therefore we estimate that the mutation arose roughly eight generations (approximately 37 years) ago. This indicates that the mutation arose after breed separation.
Collapse
Affiliation(s)
- A C Wiik
- Department of Basic Sciences and Aquatic Medicine, Division of Genetics, Norwegian School of Veterinary Science, PO Box 8146 Dep., 0033 Oslo, Norway.
| | | | | | | | | |
Collapse
|
66
|
Wong AK, Neff MW. DOGSET: pre-designed primer sets for fine-scale mapping and DNA sequence interrogation in the dog. Anim Genet 2009; 40:569-71. [PMID: 19392818 DOI: 10.1111/j.1365-2052.2009.01875.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DOGSET is an online resource that provides access to primer sequences that have been computationally mined from the reference genome using heuristic algorithms. The electronic repository includes PCR primers corresponding to 32,135 markers for genetic mapping and 334,657 sequence-tagged gene elements for targeted re-sequencing and mutation discovery. A customized report that tailors primer design to wet bench protocols can be exported for a region of interest by specifying genome coordinates in a graphical user interface.
Collapse
Affiliation(s)
- A K Wong
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
67
|
Mowat FM, Petersen-Jones SM, Williamson H, Williams DL, Luthert PJ, Ali RR, Bainbridge JW. Topographical characterization of cone photoreceptors and the area centralis of the canine retina. Mol Vis 2008; 14:2518-27. [PMID: 19112529 PMCID: PMC2610288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Accepted: 12/15/2008] [Indexed: 11/02/2022] Open
Abstract
PURPOSE The canine is an important large animal model of human retinal genetic disorders. Studies of ganglion cell distribution in the canine retina have identified a visual streak of high density superior to the optic disc with a temporal area of peak density known as the area centralis. The topography of cone photoreceptors in the canine retina has not been characterized in detail, and in contrast to the macula in humans, the position of the area centralis in dogs is not apparent on clinical funduscopic examination. The purpose of this study was to define the location of the area centralis in the dog and to characterize in detail the topography of rod and cone photoreceptors within the area centralis. This will facilitate the investigation and treatment of retinal disease in the canine. METHODS We used peanut agglutinin, which labels cone matrix sheaths and antibodies against long/medium wavelength (L/M)- and short wavelength (S)-cone opsins, to stain retinal cryosections and flatmounts from beagle dogs. Retinas were imaged using differential interference contrast imaging, fluorescence, and confocal microscopy. Within the area centralis, rod and cone size and density were quantified, and the proportion of cones expressing each cone opsin subtype was calculated. Using a grid pattern of sampling in 9 retinal flatmounts, we investigated the distribution of cones throughout the retina to predict the location of the area centralis. RESULTS We identified the area centralis as the site of maximal density of rod and cone photoreceptor cells, which have a smaller inner segment cross-sectional area in this region. L/M opsin was expressed by the majority of cones in the retina, both within the area centralis and in the peripheral retina. Using the mean of cone density distribution from 9 retinas, we calculated that the area centralis is likely to be centered at a point 1.5 mm temporal and 0.6 mm superior to the optic disc. For clinical funduscopic examination, this represents 1.2 disc diameters temporal and 0.4 disc diameters superior to the optic disc. CONCLUSIONS We have described the distribution of rods and cone subtypes within the canine retina and calculated a predictable location for the area centralis. These findings will facilitate the characterization and treatment of cone photoreceptor dystrophies in the dog.
Collapse
Affiliation(s)
- Freya M. Mowat
- Department of Genetics, University College London (UCL) Institute of Ophthalmology, London, UK
| | | | - Helen Williamson
- Department of Clinical Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David L. Williams
- Department of Clinical Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Robin R. Ali
- Department of Genetics, University College London (UCL) Institute of Ophthalmology, London, UK
| | - James W. Bainbridge
- Department of Genetics, University College London (UCL) Institute of Ophthalmology, London, UK
| |
Collapse
|