51
|
Kouprina N, Larionov V. Exploiting the yeast Saccharomyces cerevisiae for the study of the organization and evolution of complex genomes. FEMS Microbiol Rev 2004; 27:629-49. [PMID: 14638416 DOI: 10.1016/s0168-6445(03)00070-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Yeast artificial chromosome (YAC) cloning systems have advanced the analysis of complex genomes considerably. They permit the cloning of larger fragments than do bacterial artificial chromosome systems, and the cloned material is more easily modified. We recently developed a novel YAC cloning system called transformation-associated recombination (TAR) cloning. Using in vivo recombination in yeast, TAR cloning selectively isolates, as circular YACs, desired chromosome segments or entire genes from complex genomes. The ability to do that without constructing a representative genomic library of random clones greatly facilitates analysis of gene function and its role in disease. In this review, we summarize how recombinational cloning techniques have advanced the study of complex genome organization, gene expression, and comparative genomics.
Collapse
Affiliation(s)
- Natalay Kouprina
- National Cancer Institute, NIH, Bldg. 37, Room 5032, 90000 Rockville Pike, Bethesda, MD 20892, USA
| | | |
Collapse
|
52
|
Walter J, Paulsen M. The potential role of gene duplications in the evolution of imprinting mechanisms. Hum Mol Genet 2003; 12 Spec No 2:R215-20. [PMID: 12944422 DOI: 10.1093/hmg/ddg296] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Using the completed genomic sequences of mouse and human we performed a comparative analyses of imprinted genes and gene clusters. For many imprinted genes we could detect imprinted as well as non-imprinted paralogues. The inter- and intrachromosomal similarities between paralogues and their linkage to imprinting clusters suggests that imprinted genes were dispersed throughout the genome by gene duplications as well as translocation and transposition events. Our findings indicate that imprinting clusters may have been linked together on one (or a few) ancestral pre-imprinted chromosome(s), arguing for a common mechanistic origin of imprinting control. Imprinting may originally have evolved on a simple basis of dosage compensation required for some duplicated genes (chromosomes) followed by selection of sex-biased expression control.
Collapse
Affiliation(s)
- Jorn Walter
- Universität des Saarlandes, Saarbrücken, Germany
| | | |
Collapse
|
53
|
Kiyosawa H, Yamanaka I, Osato N, Kondo S, Hayashizaki Y. Antisense transcripts with FANTOM2 clone set and their implications for gene regulation. Genome Res 2003; 13:1324-34. [PMID: 12819130 PMCID: PMC403655 DOI: 10.1101/gr.982903] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have used the FANTOM2 mouse cDNA set (60,770 clones), public mRNA data, and mouse genome sequence data to identify 2481 pairs of sense-antisense transcripts and 899 further pairs of nonantisense bidirectional transcription based upon genomic mapping. The analysis greatly expands the number of known examples of sense-antisense transcript and nonantisense bidirectional transcription pairs in mammals. The FANTOM2 cDNA set appears to contain substantially large numbers of noncoding transcripts suitable for antisense transcript analysis. The average proportion of loci encoding sense-antisense transcript and nonantisense bidirectional transcription pairs on autosomes was 15.1 and 5.4%, respectively. Those on the X chromosome were 6.3 and 4.2%, respectively. Sense-antisense transcript pairs, rather than nonantisense bidirectional transcription pairs, may be less prevalent on the X chromosome, possibly due to X chromosome inactivation. Sense and antisense transcripts tended to be isolated from the same libraries, where nonantisense bidirectional transcription pairs were not apparently coregulated. The existence of large numbers of natural antisense transcripts implies that the regulation of gene expression by antisense transcripts is more common that previously recognized. The viewer showing mapping patterns of sense-antisense transcript pairs and nonantisense bidirectional transcription pairs on the genome and other related statistical data is available on our Web site.
Collapse
Affiliation(s)
- Hidenori Kiyosawa
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center (GSC), RIKEN Yokohama Institute, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | |
Collapse
|
54
|
Noskov VN, Leem SH, Solomon G, Mullokandov M, Chae JY, Yoon YH, Shin YS, Kouprina N, Larionov V. A novel strategy for analysis of gene homologues and segmental genome duplications. J Mol Evol 2003; 56:702-10. [PMID: 12911033 DOI: 10.1007/s00239-002-2442-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Transformation-associated recombination (TAR) cloning allows selective isolation of a desired chromosomal region or gene from complex genomes. The method exploits a high level of recombination between homologous DNA sequences during transformation in the yeast Saccharomyces cerevisiae. We investigated the effect of nonhomology on the efficiency of gene capture and found that up to 15% DNA divergence did not prevent efficient gene isolation. Such tolerance to DNA divergence greatly expands the potential applications of TAR cloning for comparative genomics. In this study, we were able to use the technique to isolate nonidentical chromosomal duplications and gene homologues.
Collapse
Affiliation(s)
- Vladimir N Noskov
- Laboratory of Biosystems and Cancer, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Room 5032, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Noskov VN, Kouprina N, Leem SH, Ouspenski I, Barrett JC, Larionov V. A general cloning system to selectively isolate any eukaryotic or prokaryotic genomic region in yeast. BMC Genomics 2003; 4:16. [PMID: 12720573 PMCID: PMC156606 DOI: 10.1186/1471-2164-4-16] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 04/29/2003] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Transformation-associated recombination (TAR) cloning in yeast is a unique method for selective isolation of large chromosomal fragments or entire genes from complex genomes. The technique involves homologous recombination, during yeast spheroplast transformation, between genomic DNA and a TAR vector that has short (approximately 60 bp) 5' and 3' gene targeting sequences (hooks). RESULT TAR cloning requires that the cloned DNA fragment carry at least one autonomously replicating sequence (ARS) that can function as the origin of replication in yeast, which prevents wide application of the method. In this paper, we describe a novel TAR cloning system that allows isolation of genomic regions lacking yeast ARS-like sequences. ARS is inserted into the TAR vector along with URA3 as a counter-selectable marker. The hooks are placed between the TATA box and the transcription initiation site of URA3. Insertion of any sequence between hooks results in inactivation of URA3 expression. That inactivation confers resistance to 5-fluoroorotic acid, allowing selection of TAR cloning events against background vector recircularization events. CONCLUSION The new system greatly expands the area of application of TAR cloning by allowing isolation of any chromosomal region from eukaryotic and prokaryotic genomes regardless of the presence of autonomously replicating sequences.
Collapse
Affiliation(s)
- Vladimir N Noskov
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalay Kouprina
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sun-Hee Leem
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ilia Ouspenski
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Carl Barrett
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Laboratory of Biosystems and Cancer, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
56
|
Leem SH, Noskov VN, Park JE, Kim SI, Larionov V, Kouprina N. Optimum conditions for selective isolation of genes from complex genomes by transformation-associated recombination cloning. Nucleic Acids Res 2003; 31:e29. [PMID: 12626728 PMCID: PMC152883 DOI: 10.1093/nar/gng029] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2002] [Revised: 11/27/2002] [Accepted: 11/27/2002] [Indexed: 11/13/2022] Open
Abstract
Transformation-associated recombination (TAR) cloning in yeast is used to isolate a desired chromosomal region or gene from a complex genome without construction of a genomic library. The technique involves homologous recombination during yeast spheroplast transformation between genomic DNA and a TAR vector containing short 5' and 3' gene-specific targeting hooks. Efficient gene capture requires a high yield of transformants, and we demonstrate here that the transformant yield increases approximately 10-fold when the genomic DNA is sheared to 100-200 kb before being presented to the spheroplasts. Here we determine the most effective concentration of genomic DNA, and also show that the targeted sequences recombine much more efficiently with the vector's targeting hooks when they are located at the ends of the genomic DNA fragment. We demonstrate that the yield of gene-positive clones increases approximately 20-fold after endonuclease digestion of genomic DNA, which caused double strand breaks near the targeted sequences. These findings have led to a greatly improved protocol.
Collapse
Affiliation(s)
- Sun-Hee Leem
- Laboratory of Biosystems and Cancer, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4471, USA
| | | | | | | | | | | |
Collapse
|
57
|
Türeci O, Sahin U, Koslowski M, Buss B, Bell C, Ballweber P, Zwick C, Eberle T, Zuber M, Villena-Heinsen C, Seitz G, Pfreundschuh M. A novel tumour associated leucine zipper protein targeting to sites of gene transcription and splicing. Oncogene 2002; 21:3879-88. [PMID: 12032826 DOI: 10.1038/sj.onc.1205481] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2001] [Revised: 02/28/2002] [Accepted: 03/18/2002] [Indexed: 11/09/2022]
Abstract
We describe here the definition and characterization of antigen CT-8/HOM-TES-85 encoded by a previously unknown gene and identified by serological expression screening using antibodies from a seminoma patient. Intriguingly, the leucine zipper region of CT-8/HOM-TES-85 shows an atypical amphipathy with clusters of hydrophobic residues that is exclusively shared by the N-myc proto-oncogene. CT-8/HOM-TES-85 gene is tightly silenced in normal tissues except for testis. However, it is frequently activated in human neoplasms of different types including lung cancer, ovarian cancer, melanoma and glioma. Endogenous as well as heterogeneously expressed CT-8/HOM-TES-85 targets predominantly to the nucleus forming a distinctive speckled pattern of nuclear dots arranged in macromolecular structures. By co-localization studies these speckles were identified as loci of transcriptional activity and splicing, suggesting that CT-8/HOM-TES-85 may be involved in these processes. The aberrant expression of CT-8/HOM-TES-85 in human neoplasms might therefore be involved in cancer associated alterations of transcriptional or post-transcriptional processes and thus may disclose new mechanisms involved in the manifestation of the cancer phenotype.
Collapse
MESH Headings
- Alternative Splicing
- Antigens/chemistry
- Antigens/metabolism
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/genetics
- Blotting, Northern
- DNA, Complementary/metabolism
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- Genome
- Green Fluorescent Proteins
- Humans
- Immunoblotting
- Leucine Zippers
- Luminescent Proteins/metabolism
- Microscopy, Fluorescence
- Models, Biological
- Models, Chemical
- Phenotype
- Protein Structure, Tertiary
- Proto-Oncogene Mas
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Distribution
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Ozlem Türeci
- III. Medizinische Klinik und Poliklinik, Johannes Gutenberg Universität Mainz, D-55131 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Noskov V, Kouprina N, Leem SH, Koriabine M, Barrett JC, Larionov V. A genetic system for direct selection of gene-positive clones during recombinational cloning in yeast. Nucleic Acids Res 2002; 30:E8. [PMID: 11788734 PMCID: PMC99847 DOI: 10.1093/nar/30.2.e8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2001] [Revised: 11/11/2001] [Accepted: 11/11/2001] [Indexed: 11/14/2022] Open
Abstract
Transformation-associated recombination (TAR) is a cloning technique that allows specific chromosomal regions or genes to be isolated directly from genomic DNA without prior construction of a genomic library. This technique involves homologous recombination during spheroplast transformation between genomic DNA and a TAR vector that has 5' and 3' gene targeting sequences (hooks). Typically, TAR cloning produces positive YAC recombinants at a frequency of approximately 0.5%; the positive clones are identified by PCR or colony hybridization. This paper describes a novel TAR cloning procedure that selects positive clones by positive and negative genetic selection. This system utilizes a TAR vector with two targeting hooks, HIS3 as a positive selectable marker, URA3 as a negative selectable marker and a gene-specific sequence called a loop sequence. The loop sequence lies distal to a targeting hook sequence in the chromosomal target, but proximal to the targeting hook and URA3 in the TAR vector. When this vector recombines with chromosomal DNA at the gene-specific targeting hook, the recombinant YAC product carries two copies of the loop sequence, therefore, the URA3 negative selectable marker becomes mitotically unstable and is lost at high frequency by direct repeat recombination involving the loop sequence. Positive clones are identified by selecting against URA3. This method produces positive YAC recombinants at a frequency of approximately 40%. This novel TAR cloning method provides a powerful tool for structural and functional analysis of complex genomes.
Collapse
Affiliation(s)
- Vladimir Noskov
- Laboratory of Biosystems and Cancer, National Cancer Institute, NIH, Building 37, Room 5032, Bethesda, MD 20892-4264, USA
| | | | | | | | | | | |
Collapse
|
59
|
Kim J, Bergmann A, Wehri E, Lu X, Stubbs L. Imprinting and evolution of two Kruppel-type zinc-finger genes, ZIM3 and ZNF264, located in the PEG3/USP29 imprinted domain. Genomics 2001; 77:91-8. [PMID: 11543637 DOI: 10.1006/geno.2001.6621] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have isolated Kruppel-type (C2H2) zinc-finger genes, ZIM3 (zinc-finger gene 3 from imprinted domain) and ZNF264, located downstream of human and mouse USP29 genes (encoding ubiquitin-specific processing protease 29). In human, both ZIM3 and ZNF264 encode zinc-finger proteins with Kruppel-associated box (KRAB) A and B domains at the amino-terminal regions of the predicted proteins. In contrast, mouse Zim3 and Zfp264 seem to have lost protein-coding capability based on the lack of open reading frames (ORFs) in their cDNA sequences. In particular, the 3' end of the Zim3 transcript overlaps with the coding region of the adjacent gene Usp29 in an antisense orientation, indicating the conversion of mouse Zim3 into an antisense transcript gene for Usp29. The expression patterns of ZIM3 and ZNF264 have been largely conserved between human and mouse, with testis-specific expression of ZIM3 and ubiquitous expression of ZNF264, but high expression levels in adult testes in both species. Our studies also demonstrate that both mouse genes are imprinted with maternal expression of Zim3 in adult testes and paternal expression of Zfp264 in neonatal and adult brain. The reciprocal imprinting of two neighboring mouse genes, Zim3 and Zfp264, is consistent with a pattern observed frequently in other imprinted domains, and suggests that the imprinting of these two genes might be coregulated.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Chromosomes, Human, Pair 19/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Embryo, Mammalian/metabolism
- Endopeptidases/genetics
- Evolution, Molecular
- Exons
- Female
- Gene Expression
- Gene Expression Regulation, Developmental
- Genes/genetics
- Genomic Imprinting
- Humans
- In Situ Hybridization
- Introns
- Kruppel-Like Transcription Factors
- Male
- Mice
- Molecular Sequence Data
- Protein Kinases
- Proteins/genetics
- RNA/genetics
- RNA/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Transcription Factors
- Ubiquitin-Specific Proteases
- Zinc Fingers/genetics
Collapse
Affiliation(s)
- J Kim
- Genomics Division, Biology and Biotechnology Research Program, L-441, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551, USA.
| | | | | | | | | |
Collapse
|
60
|
Kim J, Gordon L, Dehal P, Badri H, Christensen M, Groza M, Ha C, Hammond S, Vargas M, Wehri E, Wagner M, Olsen A, Stubbs L. Homology-driven assembly of a sequence-ready mouse BAC contig map spanning regions related to the 46-Mb gene-rich euchromatic segments of human chromosome 19. Genomics 2001; 74:129-41. [PMID: 11386749 DOI: 10.1006/geno.2001.6521] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Draft sequence derived from the 46-Mb gene-rich euchromatic portion of human chromosome 19 (HSA19) was utilized to generate a sequence-ready physical map spanning homologous regions of mouse chromosomes. Sequence similarity searches with the human sequence identified more than 1000 individual orthologous mouse genes from which 382 overgo probes were developed for hybridization. Using human gene order and spacing as a model, these probes were used to isolate and assemble bacterial artificial chromosome (BAC) clone contigs spanning homologous mouse regions. Each contig was verified, extended, and joined to neighboring contigs by restriction enzyme fingerprinting analysis. Approximately 3000 mouse BACs were analyzed and assembled into 44 contigs with a combined length of 41.4 Mb. These BAC contigs, covering 90% of HSA19-related mouse DNA, are distributed throughout 15 homology segments derived from different regions of mouse chromosomes 7, 8, 9, 10, and 17. The alignment of the HSA19 map with the ordered mouse BAC contigs revealed a number of structural differences in several overtly conserved homologous regions and more precisely defined the borders of the known regions of HSA19-syntenic homology. Our results demonstrate that given a human draft sequence, BAC contig maps can be constructed quickly for comparative sequencing without the need for preestablished mouse-specific genetic or physical markers and indicate that similar strategies can be applied with equal success to genomes of other vertebrate species.
Collapse
Affiliation(s)
- J Kim
- Genomics Division, Lawrence Livermore National Laboratory, 7000 East Avenue, L-441, Livermore, California 94550, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Maegawa S, Yoshioka H, Itaba N, Kubota N, Nishihara S, Shirayoshi Y, Nanba E, Oshimura M. Epigenetic silencing of PEG3 gene expression in human glioma cell lines. Mol Carcinog 2001; 31:1-9. [PMID: 11398192 DOI: 10.1002/mc.1034] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genomic imprinting, the phenomenon in which alleles of genes are expressed differentially depending on their parental origins, has important consequences for mammalian development, and disturbance of normal imprinting leads to abnormal embryogenesis and some inherited diseases and is also associated with various cancers. In the context of screening for novel imprinted genes on human chromosome 19q13.4 with mouse A9 hybrids, we identified a maternal allele-specific methylated CpG island in exon 1 of paternally expressed imprinted gene 3 (PEG3), a gene that exhibits paternal allele-specific expression. Because PEG3 expression is downregulated in some gliomas and glioma cell lines, despite high-level expression in normal brain tissues, we investigated whether the loss of PEG3 expression is related to epigenetic modifications involving DNA methylation. We found monoallelic expression of PEG3 in all normal brain tissues examined and five of nine glioma cell lines that had both unmethylated and methylated alleles; the remaining four glioma cell lines exhibited gain of imprinting with hypermethylated alleles. In addition, treatment of glioma cell lines with the DNA demethylating agent 5-aza-2'-deoxycytidine reversed the silencing of PEG3 biallelically. In this article, we report that the epigenetic silencing of PEG3 expression in glioma cell lines depends on aberrant DNA methylation of an exonic CpG island, suggesting that PEG3 contributes to glioma carcinogenesis in certain cases.
Collapse
Affiliation(s)
- S Maegawa
- Gene Research Center, Tottori University, Tottori, Japan
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Murphy SK, Wylie AA, Jirtle RL. Imprinting of PEG3, the human homologue of a mouse gene involved in nurturing behavior. Genomics 2001; 71:110-7. [PMID: 11161803 DOI: 10.1006/geno.2000.6419] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The paternally expressed Peg3 gene in mice encodes an unusual Krüppel-type zinc finger protein implicated in critical cellular and behavioral functions including growth, apoptosis, and maternal nurturing behavior. Methylation and expression analyses were used to determine whether PEG3 on chromosome 19q13.4 is imprinted in humans. The PEG3 promoter is encompassed within a large CpG-rich region that is differentially methylated in fetal tissues. Furthermore, expression studies demonstrate that PEG3 is ubiquitously imprinted throughout development and postnatally. Multiple isoforms of the PEG3 gene, including a novel transcript, are paternally expressed. These results are the first to show that human chromosome 19q13.4 contains an imprinted region. The imprinted status of PEG3 throughout life coupled with its neural expression and putative roles in regulating cell growth suggests that PEG3 may be a susceptibility locus for cancer as well as neurobehavioral deficits.
Collapse
Affiliation(s)
- S K Murphy
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|