51
|
Ashley GA, Desnick RJ, Gordon RE, Gordon JW. High overexpression of the human alpha-galactosidase A gene driven by its promoter in transgenic mice: implications for the treatment of Fabry disease. J Investig Med 2002; 50:185-92. [PMID: 12033283 DOI: 10.2310/6650.2002.33432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Human alpha-galactosidase A (alpha-Gal A) is the lysosomal enzyme that cleaves alpha-galactosyl residues from glycoconjugates and is the deficient enzyme in Fabry disease. To date, there have been no studies on the regulation of this "housekeeping" gene. METHODS Transgenic mice were established with either 1) a 13.3-kilobase (kb) human genomic fragment that contained 246 bp of 5'- and approximately 2.8 kb of 3'- untranslated sequences, or 2) an "intronless" construct derived from the genomic sequence with the 5' and 3' flanking regions intact. Tissues that expressed high levels of alpha-Gal A activity were examined by light and electron microscopy. RESULTS Transgenic mice were generated with 2 and 12 copies of the genomic sequence (Lines 1 and 2) or about 60 copies of the intronless construct (Lines 3 and 4). In mice hemizygous for the genomic transgene (Lines 1 and 2), tissue alpha-Gal A activities were 12 to 155 times higher than those in the respective wild-type tissue, depending on tissue and transgene copy number. Of note, the high overexpression did not alter the cellular or subcellular cytoarchitecture. In contrast, alpha-Gal A activities expressed by mice that carried the intronless construct were only two- to sixfold more than in wild-type tissues in which the genomic transgene was highly expressed. CONCLUSIONS The remarkably high levels of alpha-Gal A expression in transgenic mice carrying the intact genomic sequence versus the intronless construct suggested that the genomic sequence contained a strong intronic enhancer element. Identification of this regulatory element or elements may be useful in efforts to overexpress human alpha-Gal A for gene therapy endeavors. In addition, overexpression of human alpha-Gal A did not affect cellular morphology, which indicates that its overexpression in gene therapy endeavors should be safe.
Collapse
Affiliation(s)
- Grace A Ashley
- Department of Human Genetics, Mount Sinai School of Medicine of New York University, NY 10029, USA
| | | | | | | |
Collapse
|
52
|
Loots GG, Ovcharenko I, Pachter L, Dubchak I, Rubin EM. rVista for comparative sequence-based discovery of functional transcription factor binding sites. Genome Res 2002; 12:832-9. [PMID: 11997350 PMCID: PMC186580 DOI: 10.1101/gr.225502] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Identifying transcriptional regulatory elements represents a significant challenge in annotating the genomes of higher vertebrates. We have developed a computational tool, rVista, for high-throughput discovery of cis-regulatory elements that combines clustering of predicted transcription factor binding sites (TFBSs) and the analysis of interspecies sequence conservation to maximize the identification of functional sites. To assess the ability of rVista to discover true positive TFBSs while minimizing the prediction of false positives, we analyzed the distribution of several TFBSs across 1 Mb of the well-annotated cytokine gene cluster (Hs5q31; Mm11). Because a large number of AP-1, NFAT, and GATA-3 sites have been experimentally identified in this interval, we focused our analysis on the distribution of all binding sites specific for these transcription factors. The exploitation of the orthologous human-mouse dataset resulted in the elimination of > 95% of the approximately 58,000 binding sites predicted on analysis of the human sequence alone, whereas it identified 88% of the experimentally verified binding sites in this region.
Collapse
Affiliation(s)
- Gabriela G Loots
- Genome Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
53
|
Kosaki K, Kosaki R, Suzuki T, Yoshihashi H, Takahashi T, Sasaki K, Tomita M, McGinnis W, Matsuo N. Complete mutation analysis panel of the 39 human HOX genes. TERATOLOGY 2002; 65:50-62. [PMID: 11857506 DOI: 10.1002/tera.10009] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The HOX gene family consists of highly conserved transcription factors that specify the identity of the body segments along the anteroposterior axis of the embryo. Because the phenotypes of mice with targeted disruptions of Hox genes resemble some patterns of human malformations, mutations in HOX genes have been expected to be associated with a significant number of human malformations. Thus far, however, mutations have been documented in only three of the 39 human HOX genes (HOXD13, HOXA13, and HOXA11) partly because current knowledge on the complete coding sequence and genome structure is limited to only 20 of the 39 human HOX genes. METHODS Taking advantage of the human and mouse draft genome sequences, we attempted to characterize the remaining 19 human HOX genes by bioinformatic analysis including phylogenetic footprinting, the probabilistic prediction method, and comparison of genomic sequences with the complete set of the human anonymous cDNA sequences. RESULTS We were able to determine the full coding sequences of 19 HOX genes and their genome structure and successfully designed a complete set of PCR primers to amplify the entire coding region of each of the 39 HOX genes from genomic DNA. CONCLUSIONS Our results indicate the usefulness of bioinformatic analysis of the draft genome sequences for clinically oriented research projects. It is hoped that the mutation panel provided here will serve as a launchpad for a new discourse on the genetic basis of human malformations.
Collapse
Affiliation(s)
- Kenjiro Kosaki
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
DeSilva U, Elnitski L, Idol JR, Doyle JL, Gan W, Thomas JW, Schwartz S, Dietrich NL, Beckstrom-Sternberg SM, McDowell JC, Blakesley RW, Bouffard GG, Thomas PJ, Touchman JW, Miller W, Green ED. Generation and comparative analysis of approximately 3.3 Mb of mouse genomic sequence orthologous to the region of human chromosome 7q11.23 implicated in Williams syndrome. Genome Res 2002; 12:3-15. [PMID: 11779826 PMCID: PMC155257 DOI: 10.1101/gr.214802] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Williams syndrome is a complex developmental disorder that results from the heterozygous deletion of a approximately 1.6-Mb segment of human chromosome 7q11.23. These deletions are mediated by large (approximately 300 kb) duplicated blocks of DNA of near-identical sequence. Previously, we showed that the orthologous region of the mouse genome is devoid of such duplicated segments. Here, we extend our studies to include the generation of approximately 3.3 Mb of genomic sequence from the mouse Williams syndrome region, of which just over 1.4 Mb is finished to high accuracy. Comparative analyses of the mouse and human sequences within and immediately flanking the interval commonly deleted in Williams syndrome have facilitated the identification of nine previously unreported genes, provided detailed sequence-based information regarding 30 genes residing in the region, and revealed a number of potentially interesting conserved noncoding sequences. Finally, to facilitate comparative sequence analysis, we implemented several enhancements to the program, including the addition of links from annotated features within a generated percent-identity plot to specific records in public databases. Taken together, the results reported here provide an important comparative sequence resource that should catalyze additional studies of Williams syndrome, including those that aim to characterize genes within the commonly deleted interval and to develop mouse models of the disorder.
Collapse
Affiliation(s)
- Udaya DeSilva
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Vigneau S, Levillayer F, Crespeau H, Cattolico L, Caudron B, Bihl F, Robert C, Brahic M, Weissenbach J, Bureau JF. Homology between a 173-kb region from mouse chromosome 10, telomeric to the Ifng locus, and human chromosome 12q15. Genomics 2001; 78:206-13. [PMID: 11735227 DOI: 10.1006/geno.2001.6656] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sequenced a 173-kb region of mouse chromosome 10, telomeric to the Ifng locus, and compared it with the human homologous sequence located on chromosome 12q15 using various sequence analysis programs. This region has a low density of genes: one gene was detected in the mouse and the human sequences and a second gene was detected only in the human sequence. The mouse gene and its human orthologue, which are expressed in the immune system at a low level, produce a noncoding mRNA. Nonexpressed sequences show a higher degree of conservation than exons in this genomic region. At least three of these conserved sequences are also conserved in a third mammalian species (sheep or cow).
Collapse
Affiliation(s)
- S Vigneau
- Unité des Virus Lents (CNRS URA 1930), Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Frazer KA, Sheehan JB, Stokowski RP, Chen X, Hosseini R, Cheng JF, Fodor SP, Cox DR, Patil N. Evolutionarily conserved sequences on human chromosome 21. Genome Res 2001; 11:1651-9. [PMID: 11591642 PMCID: PMC311124 DOI: 10.1101/gr.198201] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Comparison of human sequences with the DNA of other mammals is an excellent means of identifying functional elements in the human genome. Here we describe the utility of high-density oligonucleotide arrays as a rapid approach for comparing human sequences with the DNA of multiple species whose sequences are not presently available. High-density arrays representing approximately 22.5 Mb of nonrepetitive human chromosome 21 sequence were synthesized and then hybridized with mouse and dog DNA to identify sequences conserved between humans and mice (human-mouse elements) and between humans and dogs (human-dog elements). Our data show that sequence comparison of multiple species provides a powerful empiric method for identifying actively conserved elements in the human genome. A large fraction of these evolutionarily conserved elements are present in regions on chromosome 21 that do not encode known genes.
Collapse
Affiliation(s)
- K A Frazer
- Perlegen Sciences, Santa Clara, California 95051, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Matera I, De Miguel-Rodríguez M, Fernández-Santos JM, Santamaria G, Puliti A, Ravazzolo R, Romeo G, Galera-Davidson H, Ceccherini I. cDNA sequence and genomic structure of the rat RET proto-oncogene. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 11:405-17. [PMID: 11328649 DOI: 10.3109/10425170009033991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The RET proto-oncogene, a member of the Receptor Tyrosine Kinase family, plays a crucial role during the development of the excretory system and the enteric nervous system, as demonstrated by in vivo animal studies and by its involvement in the pathogenesis of several human neurocristopathies like Hirschsprung disease and Multiple Endocrine Neoplasia type 2. Using a multistep RT-PCR approach we have isolated and sequenced the cDNA of the whole rat RET proto-oncogene, reporting the deduced amino acid sequence in comparison with the human and mouse counterparts. Moreover, two different isoforms (RET9 and RET51) have been confirmed in the rat, while a third RET isoform demonstrated in human (RET43) has not resulted to be conserved in this species. Finally, we have determined the genomic structure of the rat RET proto-oncogene comparing the exon-intron boundaries and intron sizes with the known structure of the human homologous gene. Our findings will facilitate the molecular study of appropriate rat models of RET related human diseases.
Collapse
Affiliation(s)
- I Matera
- Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, 16148 Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Footz TK, Brinkman-Mills P, Banting GS, Maier SA, Riazi MA, Bridgland L, Hu S, Birren B, Minoshima S, Shimizu N, Pan H, Nguyen T, Fang F, Fu Y, Ray L, Wu H, Shaull S, Phan S, Yao Z, Chen F, Huan A, Hu P, Wang Q, Loh P, Qi S, Roe BA, McDermid HE. Analysis of the cat eye syndrome critical region in humans and the region of conserved synteny in mice: a search for candidate genes at or near the human chromosome 22 pericentromere. Genome Res 2001; 11:1053-70. [PMID: 11381032 PMCID: PMC311098 DOI: 10.1101/gr.154901] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have sequenced a 1.1-Mb region of human chromosome 22q containing the dosage-sensitive gene(s) responsible for cat eye syndrome (CES) as well as the 450-kb homologous region on mouse chromosome 6. Fourteen putative genes were identified within or adjacent to the human CES critical region (CESCR), including three known genes (IL-17R, ATP6E, and BID) and nine novel genes, based on EST identity. Two putative genes (CECR3 and CECR9) were identified, in the absence of EST hits, by comparing segments of human and mouse genomic sequence around two solitary amplified exons, thus showing the utility of comparative genomic sequence analysis in identifying transcripts. Of the 14 genes, 10 were confirmed to be present in the mouse genomic sequence in the same order and orientation as in human. Absent from the mouse region of conserved synteny are CECR1, a promising CES candidate gene from the center of the contig, neighboring CECR4, and CECR7 and CECR8, which are located in the gene-poor proximal 400 kb of the contig. This latter proximal region, located approximately 1 Mb from the centromere, shows abundant duplicated gene fragments typical of pericentromeric DNA. The margin of this region also delineates the boundary of conserved synteny between the CESCR and mouse chromosome 6. Because the proximal CESCR appears abundant in duplicated segments and, therefore, is likely to be gene poor, we consider the putative genes identified in the distal CESCR to represent the majority of candidate genes for involvement in CES.
Collapse
Affiliation(s)
- T K Footz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Shiraishi T, Druck T, Mimori K, Flomenberg J, Berk L, Alder H, Miller W, Huebner K, Croce CM. Sequence conservation at human and mouse orthologous common fragile regions, FRA3B/FHIT and Fra14A2/Fhit. Proc Natl Acad Sci U S A 2001; 98:5722-7. [PMID: 11320209 PMCID: PMC33280 DOI: 10.1073/pnas.091095898] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been suggested that delayed DNA replication underlies fragility at common human fragile sites, but specific sequences responsible for expression of these inducible fragile sites have not been identified. One approach to identify such cis-acting sequences within the large nonexonic regions of fragile sites would be to identify conserved functional elements within orthologous fragile sites by interspecies sequence comparison. This study describes a comparison of orthologous fragile regions, the human FRA3B/FHIT and the murine Fra14A2/Fhit locus. We sequenced over 600 kbp of the mouse Fra14A2, covering the region orthologous to the fragile epicenter of FRA3B, and determined the Fhit deletion break points in a mouse kidney cancer cell line (RENCA). The murine Fra14A2 locus, like the human FRA3B, was characterized by a high AT content. Alignment of the two sequences showed that this fragile region was stable in evolution despite its susceptibility to mitotic recombination on inhibition of DNA replication. There were also several unusual highly conserved regions (HCRs). The positions of predicted matrix attachment regions (MARs), possibly related to replication origins, were not conserved. Of known fragile region landmarks, five cancer cell break points, one viral integration site, and one aphidicolin break cluster were located within or near HCRs. Thus, comparison of orthologous fragile regions has identified highly conserved sequences with possible functional roles in maintenance of fragility.
Collapse
Affiliation(s)
- T Shiraishi
- Kimmel Cancer Center, Jefferson Medical College, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Nesterova TB, Slobodyanyuk SY, Elisaphenko EA, Shevchenko AI, Johnston C, Pavlova ME, Rogozin IB, Kolesnikov NN, Brockdorff N, Zakian SM. Characterization of the genomic Xist locus in rodents reveals conservation of overall gene structure and tandem repeats but rapid evolution of unique sequence. Genome Res 2001; 11:833-49. [PMID: 11337478 PMCID: PMC311126 DOI: 10.1101/gr.174901] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2000] [Accepted: 02/27/2001] [Indexed: 11/24/2022]
Abstract
The Xist locus plays a central role in the regulation of X chromosome inactivation in mammals, although its exact mode of action remains to be elucidated. Evolutionary studies are important in identifying conserved genomic regions and defining their possible function. Here we report cloning, sequence analysis, and detailed characterization of the Xist gene from four closely related species of common vole (field mouse), Microtus arvalis. Our analysis reveals that there is overall conservation of Xist gene structure both between different vole species and relative to mouse and human Xist/XIST. Within transcribed sequence, there is significant conservation over five short regions of unique sequence and also over Xist-specific tandem repeats. The majority of unique sequences, however, are evolving at an unexpectedly high rate. This is also evident from analysis of flanking sequences, which reveals a very high rate of rearrangement and invasion of dispersed repeats. We discuss these results in the context of Xist gene function and evolution.
Collapse
Affiliation(s)
- T B Nesterova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk 630090, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
|
62
|
Göttgens B, Gilbert JG, Barton LM, Grafham D, Rogers J, Bentley DR, Green AR. Long-range comparison of human and mouse SCL loci: localized regions of sensitivity to restriction endonucleases correspond precisely with peaks of conserved noncoding sequences. Genome Res 2001; 11:87-97. [PMID: 11156618 PMCID: PMC311011 DOI: 10.1101/gr.153001] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2000] [Accepted: 10/12/2000] [Indexed: 11/24/2022]
Abstract
Long-range comparative sequence analysis provides a powerful strategy for identifying conserved regulatory elements. The stem cell leukemia (SCL) gene encodes a bHLH transcription factor with a pivotal role in hemopoiesis and vasculogenesis, and it displays a highly conserved expression pattern. We present here a detailed sequence comparison of 193 kb of the human SCL locus to 234 kb of the mouse SCL locus. Four new genes have been identified together with an ancient mitochondrial insertion in the human locus. The SCL gene is flanked upstream by the SIL gene and downstream by the MAP17 gene in both species, but the gene order is not collinear downstream from MAP17. To facilitate rapid identification of candidate regulatory elements, we have developed a new sequence analysis tool (SynPlot) that automates the graphical display of large-scale sequence alignments. Unlike existing programs, SynPlot can display the locus features of more than one sequence, thereby indicating the position of homology peaks relative to the structure of all sequences in the alignment. In addition, high-resolution analysis of the chromatin structure of the mouse SCL gene permitted the accurate positioning of localized zones accessible to restriction endonucleases. Zones known to be associated with functional regulatory regions were found to correspond precisely with peaks of human/mouse homology, thus demonstrating that long-range human/mouse sequence comparisons allow accurate prediction of the extent of accessible DNA associated with active regulatory regions.
Collapse
Affiliation(s)
- B Göttgens
- The Wellcome Trust Centre for Molecular Mechanisms in Disease, Cambridge Institute for Medical Research, Addenbrooke's Hospital Site, Cambridge CB2 2XY, UK.
| | | | | | | | | | | | | |
Collapse
|
63
|
Touchman JW, Dehejia A, Chiba-Falek O, Cabin DE, Schwartz JR, Orrison BM, Polymeropoulos MH, Nussbaum RL. Human and mouse alpha-synuclein genes: comparative genomic sequence analysis and identification of a novel gene regulatory element. Genome Res 2001; 11:78-86. [PMID: 11156617 PMCID: PMC311023 DOI: 10.1101/gr.165801] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human alpha-synuclein gene (SNCA) encodes a presynaptic nerve terminal protein that was originally identified as a precursor of the non-beta-amyloid component of Alzheimer's disease plaques. More recently, mutations in SNCA have been identified in some cases of familial Parkinson's disease, presenting numerous new areas of investigation for this important disease. Molecular studies would benefit from detailed information about the long-range sequence context of SNCA. To that end, we have established the complete genomic sequence of the chromosomal regions containing the human and mouse alpha-synuclein genes, with the objective of using the resulting sequence information to identify conserved regions of biological importance through comparative sequence analysis. These efforts have yielded approximately 146 and approximately 119 kb of high-accuracy human and mouse genomic sequence, respectively, revealing the precise genetic architecture of the alpha-synuclein gene in both species. A simple repeat element upstream of SNCA/Snca has been identified and shown to be necessary for normal expression in transient transfection assays using a luciferase reporter construct. Together, these studies provide valuable data that should facilitate more detailed analysis of this medically important gene.
Collapse
Affiliation(s)
- J W Touchman
- NIH Intramural Sequencing Center, National Institutes of Health, Gaithersburg, Maryland 20877, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Kapanadze B, Makeeva N, Corcoran M, Jareborg N, Hammarsund M, Baranova A, Zabarovsky E, Vorontsova O, Merup M, Gahrton G, Jansson M, Yankovsky N, Einhorn S, Oscier D, Grandér D, Sangfelt O. Comparative sequence analysis of a region on human chromosome 13q14, frequently deleted in B-cell chronic lymphocytic leukemia, and its homologous region on mouse chromosome 14. Genomics 2000; 70:327-34. [PMID: 11161783 DOI: 10.1006/geno.2000.6386] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have indicated the presence of a putative tumor suppressor gene on human chromosome 13q14, commonly deleted in patients with B-cell chronic lymphocytic leukemia (B-CLL). We have recently identified a minimally deleted region encompassing parts of two adjacent genes, termed LEU1 and LEU2 (leukemia-associated genes 1 and 2), and several additional transcripts. In addition, 50 kb centromeric to this region we have identified another gene, LEU5/RFP2. To elucidate further the complex genomic organization of this region, we have identified, mapped, and sequenced the homologous region in the mouse. Fluorescence in situ hybridization analysis demonstrated that the region maps to mouse chromosome 14. The overall organization and gene order in this region were found to be highly conserved in the mouse. Sequence comparison between the human deletion hotspot region and its homologous mouse region revealed a high degree of sequence conservation with an overall score of 74%. However, our data also show that in terms of transcribed sequences, only two of those, human LEU2 and LEU5/RFP2, are clearly conserved, strengthening the case for these genes as putative candidate B-CLL tumor suppressor genes.
Collapse
Affiliation(s)
- B Kapanadze
- Radiumhemmets Research Laboratory, CCK, R8:03, Karolinska Hospital, Stockholm, S-171 76, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Dubchak I, Brudno M, Loots GG, Pachter L, Mayor C, Rubin EM, Frazer KA. Active conservation of noncoding sequences revealed by three-way species comparisons. Genome Res 2000; 10:1304-6. [PMID: 10984448 PMCID: PMC310906 DOI: 10.1101/gr.142200] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human and mouse genomic sequence comparisons are being increasingly used to search for evolutionarily conserved gene regulatory elements. Large-scale human-mouse DNA comparison studies have discovered numerous conserved noncoding sequences of which only a fraction has been functionally investigated A question therefore remains as to whether most of these noncoding sequences are conserved because of functional constraints or are the result of a lack of divergence time.
Collapse
Affiliation(s)
- I Dubchak
- Center for Bioinformatics and Computational Genomics, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Endrizzi MG, Hadinoto V, Growney JD, Miller W, Dietrich WF. Genomic sequence analysis of the mouse Naip gene array. Genome Res 2000; 10:1095-102. [PMID: 10958627 PMCID: PMC310933 DOI: 10.1101/gr.10.8.1095] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A mouse locus called Lgn1 determines differences in macrophage permissiveness for the intracellular replication of Legionella pneumophila. The only regional candidate genes for this phenotype difference lie within a cluster of closely linked paralogs of the Neuronal Apoptosis Inhibitory Protein (Naip) gene. Previous genetic and physical mapping of the Lgn1 phenotype narrowed it to an interval containing only Naip2 and Naip5, suggesting that there is not complete functional overlap among the mouse Naip loci. In order to gather more information about polymorphisms among the Naip genes of the 129 mouse haplotype, we have determined the genomic sequence of a substantial portion of the 129 Naip gene array. We have constructed an evolutionary model for the expansion of the Naip gene array from a single progenitor Naip gene. This model predicts the presence of two distinct families of Naip paralogs: Naip1/2/3 and Naip4/5/6/7. Unlike the divergences among all the other Naip paralogs, the splits among Naip4, Naip5, Naip6, and Naip7 occurred relatively recently. The high degree of sequence conservation within the Naip4/5/6/7 family increases the likelihood of functional overlap among these genes.
Collapse
Affiliation(s)
- M G Endrizzi
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
67
|
Abstract
Comparative analysis of genomic sequences provides a powerful tool for identifying regions of potential biologic function; by comparing corresponding regions of genomes from suitable species, protein coding or regulatory regions can be identified by their homology. This requires the use of several specific types of computational analysis tools. Many programs exist for these types of analysis; not many exist for overall view/control of the results, which is necessary for large-scale genomic sequence analysis. Using Java, we have developed a new visualization tool that allows effective comparative genome sequence analysis. The program handles a pair of sequences from putatively homologous regions in different species. Results from various different existing external analysis programs, such as database searching, gene prediction, repeat masking, and alignment programs, are visualized and used to find corresponding functional sequence domains in the two sequences. The user interacts with the program through a graphic display of the genome regions, in which an independently scrollable and zoomable symbolic representation of the sequences is shown. As an example, the analysis of two unannotated orthologous genomic sequences from human and mouse containing parts of the UTY locus is presented.
Collapse
Affiliation(s)
- N Jareborg
- The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom.
| | | |
Collapse
|
68
|
Nakane T, Inada Y, Ito F, Itoh N, Tazawa S, Chiba S. Cloning and expression of mouse deafness dystonia peptide 1 cDNA. Biochem Biophys Res Commun 2000; 273:759-64. [PMID: 10873677 DOI: 10.1006/bbrc.2000.3004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complementary DNA of mouse deafness dystonia peptide 1 (DDP1) was isolated from adipocyte cDNA library and expressed in mammalian cells. The sequence shares homology of 92 and 97% on the nucleic acid and the amino acid levels with human DDP1. In comparison to mouse Bruton's tyrosine kinase (Btk) locus, the coding region spans 2 exons and the splice point is the same as human DDP1. Northern blot analysis suggests that mouse DDP1 expresses ubiquitously. In vitro transcription/translation study showed that the cDNA of mouse DDP1 codes about 11 kDa peptide. DDP1 tagged with FLAG localized in mitochondria and cytoplasm of COS7 cells. P19 embryonal carcinoma cells transfected with anti sense DDP1 cDNA were frequently dead after subculture and all the survivals expressed endogenous DDP1 mRNA. Therefore, mouse DDP1 may play an important role to survive in contrast to Tim8p, a yeast homologue, which was unnecessary in yeast.
Collapse
Affiliation(s)
- T Nakane
- Department of Pharmacology, Department of Pathology, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto, 390-8621,
| | | | | | | | | | | |
Collapse
|
69
|
Batzoglou S, Pachter L, Mesirov JP, Berger B, Lander ES. Human and mouse gene structure: comparative analysis and application to exon prediction. Genome Res 2000; 10:950-8. [PMID: 10899144 PMCID: PMC310911 DOI: 10.1101/gr.10.7.950] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We describe a novel analytical approach to gene recognition based on cross-species comparison. We first undertook a comparison of orthologous genomic loci from human and mouse, studying the extent of similarity in the number, size and sequence of exons and introns. We then developed an approach for recognizing genes within such orthologous regions by first aligning the regions using an iterative global alignment system and then identifying genes based on conservation of exonic features at aligned positions in both species. The alignment and gene recognition are performed by new programs called and, respectively. performed well at exact identification of coding exons in 117 orthologous pairs tested.
Collapse
Affiliation(s)
- S Batzoglou
- Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge 02139 USA
| | | | | | | | | |
Collapse
|
70
|
Vihinen M, Kwan SP, Lester T, Ochs HD, Resnick I, Väliaho J, Conley ME, Smith CI. Mutations of the human BTK gene coding for bruton tyrosine kinase in X-linked agammaglobulinemia. Hum Mutat 2000; 13:280-5. [PMID: 10220140 DOI: 10.1002/(sici)1098-1004(1999)13:4<280::aid-humu3>3.0.co;2-l] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the gene coding for Bruton agammaglobulinemia tyrosine kinase (BTK). A database (BTKbase) of BTK mutations lists 544 mutation entries from 471 unrelated families showing 341 unique molecular events. In addition to mutations, a number of variants or polymorphisms have been found. Mutations in all the five domains of BTK cause the disease, the single most common event being missense mutations. Most mutations lead to truncation of the enzyme. The mutations appear almost uniformly throughout the molecule. About one-third of point mutations affect CpG sites, which usually code for arginine residues. The putative structural implications of all the missense mutations are provided in the database. BTKbase is available at http://www.uta.fi/imt/bioinfo.
Collapse
Affiliation(s)
- M Vihinen
- Institute of Medical Technology, University of Tampere, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Mallon AM, Platzer M, Bate R, Gloeckner G, Botcherby MR, Nordsiek G, Strivens MA, Kioschis P, Dangel A, Cunningham D, Straw RN, Weston P, Gilbert M, Fernando S, Goodall K, Hunter G, Greystrong JS, Clarke D, Kimberley C, Goerdes M, Blechschmidt K, Rump A, Hinzmann B, Mundy CR, Miller W, Poustka A, Herman GE, Rhodes M, Denny P, Rosenthal A, Brown SD. Comparative genome sequence analysis of the Bpa/Str region in mouse and Man. Genome Res 2000; 10:758-75. [PMID: 10854409 PMCID: PMC310879 DOI: 10.1101/gr.10.6.758] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The progress of human and mouse genome sequencing programs presages the possibility of systematic cross-species comparison of the two genomes as a powerful tool for gene and regulatory element identification. As the opportunities to perform comparative sequence analysis emerge, it is important to develop parameters for such analyses and to examine the outcomes of cross-species comparison. Our analysis used gene prediction and a database search of 430 kb of genomic sequence covering the Bpa/Str region of the mouse X chromosome, and 745 kb of genomic sequence from the homologous human X chromosome region. We identified 11 genes in mouse and 13 genes and two pseudogenes in human. In addition, we compared the mouse and human sequences using pairwise alignment and searches for evolutionary conserved regions (ECRs) exceeding a defined threshold of sequence identity. This approach aided the identification of at least four further putative conserved genes in the region. Comparative sequencing revealed that this region is a mosaic in evolutionary terms, with considerably more rearrangement between the two species than realized previously from comparative mapping studies. Surprisingly, this region showed an extremely high LINE and low SINE content, low G+C content, and yet a relatively high gene density, in contrast to the low gene density usually associated with such regions.
Collapse
Affiliation(s)
- A M Mallon
- MRC UK Mouse Genome Centre and Mammalian Genetics Unit, Harwell, Oxon, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Ishihara K, Hatano N, Furuumi H, Kato R, Iwaki T, Miura K, Jinno Y, Sasaki H. Comparative genomic sequencing identifies novel tissue-specific enhancers and sequence elements for methylation-sensitive factors implicated in Igf2/H19 imprinting. Genome Res 2000; 10:664-71. [PMID: 10810089 PMCID: PMC310880 DOI: 10.1101/gr.10.5.664] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A differentially methylated region (DMR) and endoderm-specific enhancers, located upstream and downstream of the mouse H19 gene, respectively, are known to be essential for the reciprocal imprinting of Igf2 and H19. To explain the same imprinting patterns in non-endodermal tissues, additional enhancers have been hypothesized. We determined and compared the sequences of human and mouse H19 over 40 kb and identified 10 evolutionarily conserved downstream segments, 2 of which were coincident with the known enhancers. Reporter assays in transgenic mice showed that 5 of the other 8 segments functioned as enhancers in specific mesodermal and/or ectodermal tissues. We also identified a conserved 39-bp element that appeared repeatedly within the DMR and formed complexes with specific nuclear factors. Binding of one of the factors was inhibited when the target sequence contained methylated CpGs. These complexes may contribute to the presumed boundary function of the unmethylated DMR, which is proposed to insulate maternal Igf2 from the enhancers. Our results demonstrate that comparative genomic sequencing is highly efficient in identifying regulatory elements.
Collapse
Affiliation(s)
- K Ishihara
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Bouck JB, Metzker ML, Gibbs RA. Shotgun sample sequence comparisons between mouse and human genomes. Nat Genet 2000; 25:31-3. [PMID: 10802652 DOI: 10.1038/75563] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A mixed 'clone-by-clone' and 'whole-genome shotgun' strategy will be used to determine the genomic sequence of the mouse. This method will allow a phase of rapid annotation of the contemporaneous human sequence draft, through whole-genome 'sample sequence comparisons'.
Collapse
Affiliation(s)
- J B Bouck
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
74
|
Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, Bouck J, Gibbs R, Hardison R, Miller W. PipMaker--a web server for aligning two genomic DNA sequences. Genome Res 2000; 10:577-86. [PMID: 10779500 PMCID: PMC310868 DOI: 10.1101/gr.10.4.577] [Citation(s) in RCA: 841] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/1999] [Accepted: 02/01/2000] [Indexed: 11/25/2022]
Abstract
PipMaker (http://bio.cse.psu.edu) is a World-Wide Web site for comparing two long DNA sequences to identify conserved segments and for producing informative, high-resolution displays of the resulting alignments. One display is a percent identity plot (pip), which shows both the position in one sequence and the degree of similarity for each aligning segment between the two sequences in a compact and easily understandable form. Positions along the horizontal axis can be labeled with features such as exons of genes and repetitive elements, and colors can be used to clarify and enhance the display. The web site also provides a plot of the locations of those segments in both species (similar to a dot plot). PipMaker is appropriate for comparing genomic sequences from any two related species, although the types of information that can be inferred (e.g., protein-coding regions and cis-regulatory elements) depend on the level of conservation and the time and divergence rate since the separation of the species. Gene regulatory elements are often detectable as similar, noncoding sequences in species that diverged as much as 100-300 million years ago, such as humans and mice, Caenorhabditis elegans and C. briggsae, or Escherichia coli and Salmonella spp. PipMaker supports analysis of unfinished or "working draft" sequences by permitting one of the two sequences to be in unoriented and unordered contigs.
Collapse
Affiliation(s)
- S Schwartz
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park 16802, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Ellsworth RE, Jamison DC, Touchman JW, Chissoe SL, Braden Maduro VV, Bouffard GG, Dietrich NL, Beckstrom-Sternberg SM, Iyer LM, Weintraub LA, Cotton M, Courtney L, Edwards J, Maupin R, Ozersky P, Rohlfing T, Wohldmann P, Miner T, Kemp K, Kramer J, Korf I, Pepin K, Antonacci-Fulton L, Fulton RS, Minx P, Hillier LW, Wilson RK, Waterston RH, Miller W, Green ED. Comparative genomic sequence analysis of the human and mouse cystic fibrosis transmembrane conductance regulator genes. Proc Natl Acad Sci U S A 2000; 97:1172-7. [PMID: 10655503 PMCID: PMC15558 DOI: 10.1073/pnas.97.3.1172] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The identification of the cystic fibrosis transmembrane conductance regulator gene (CFTR) in 1989 represents a landmark accomplishment in human genetics. Since that time, there have been numerous advances in elucidating the function of the encoded protein and the physiological basis of cystic fibrosis. However, numerous areas of cystic fibrosis biology require additional investigation, some of which would be facilitated by information about the long-range sequence context of the CFTR gene. For example, the latter might provide clues about the sequence elements responsible for the temporal and spatial regulation of CFTR expression. We thus sought to establish the sequence of the chromosomal segments encompassing the human CFTR and mouse Cftr genes, with the hope of identifying conserved regions of biologic interest by sequence comparison. Bacterial clone-based physical maps of the relevant human and mouse genomic regions were constructed, and minimally overlapping sets of clones were selected and sequenced, eventually yielding approximately 1.6 Mb and approximately 358 kb of contiguous human and mouse sequence, respectively. These efforts have produced the complete sequence of the approximately 189-kb and approximately 152-kb segments containing the human CFTR and mouse Cftr genes, respectively, as well as significant amounts of flanking DNA. Analyses of the resulting data provide insights about the organization of the CFTR/Cftr genes and potential sequence elements regulating their expression. Furthermore, the generated sequence reveals the precise architecture of genes residing near CFTR/Cftr, including one known gene (WNT2/Wnt2) and two previously unknown genes that immediately flank CFTR/Cftr.
Collapse
Affiliation(s)
- R E Ellsworth
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Göttgens B, Barton LM, Gilbert JG, Bench AJ, Sanchez MJ, Bahn S, Mistry S, Grafham D, McMurray A, Vaudin M, Amaya E, Bentley DR, Green AR, Sinclair AM. Analysis of vertebrate SCL loci identifies conserved enhancers. Nat Biotechnol 2000; 18:181-6. [PMID: 10657125 DOI: 10.1038/72635] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The SCL gene encodes a highly conserved bHLH transcription factor with a pivotal role in hemopoiesis and vasculogenesis. We have sequenced and analyzed 320 kb of genomic DNA composing the SCL loci from human, mouse, and chicken. Long-range sequence comparisons demonstrated multiple peaks of human/mouse homology, a subset of which corresponded precisely with known SCL enhancers. Comparisons between mammalian and chicken sequences identified some, but not all, SCL enhancers. Moreover, one peak of human/mouse homology (+23 region), which did not correspond to a known enhancer, showed significant homology to an analogous region of the chicken SCL locus. A transgenic Xenopus reporter assay was established and demonstrated that the +23 region contained a new neural enhancer. This combination of long-range comparative sequence analysis with a high-throughput transgenic bioassay provides a powerful strategy for identifying and characterizing developmentally important enhancers.
Collapse
Affiliation(s)
- B Göttgens
- University of Cambridge, Department of Haematology, MRC Centre, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
|
78
|
Elgar G, Clark MS, Meek S, Smith S, Warner S, Edwards YJ, Bouchireb N, Cottage A, Yeo GS, Umrania Y, Williams G, Brenner S. Generation and analysis of 25 Mb of genomic DNA from the pufferfish Fugu rubripes by sequence scanning. Genome Res 1999; 9:960-71. [PMID: 10523524 PMCID: PMC310822 DOI: 10.1101/gr.9.10.960] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have generated and analyzed >50,000 shotgun clones from 1059 Fugu cosmid clones. All sequences have been minimally edited and searched against protein and DNA databases. These data are all displayed on a searchable, publicly available web site at. With an average of 50 reads per cosmid, this is virtually nonredundant sequence skimming, covering 30%-50% of each clone. This essentially random data set covers nearly 25 Mb (>6%) of the Fugu genome and forms the basis of a series of whole genome analyses which address questions regarding gene density and distribution in the Fugu genome and the similarity between Fugu and mammalian genes. The Fugu genome, with eight times less DNA but a similar gene repertoire, is ideally suited to this type of study because most cosmids contain more than one identifiable gene. General features of the genome are also discussed. We have made some estimation of the syntenic relationship between mammals and Fugu and looked at the efficacy of ORF prediction from short, unedited Fugu genomic sequences. Comparative DNA sequence analyses are an essential tool in the functional interpretation of complex vertebrate genomes. This project highlights the utility of using the Fugu genome in this kind of study.
Collapse
Affiliation(s)
- G Elgar
- UK Human Genome Mapping Project (HGMP) Resource Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SB, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Ling V, Wu PW, Finnerty HF, Sharpe AH, Gray GS, Collins M. Complete sequence determination of the mouse and human CTLA4 gene loci: cross-species DNA sequence similarity beyond exon borders. Genomics 1999; 60:341-55. [PMID: 10493833 DOI: 10.1006/geno.1999.5930] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
CTLA4 (CD152), a receptor for the B7 costimulatory molecules (CD80 and CD86), is considered a fundamental regulator of T-cell activation. In this paper, we present the complete primary structure of the mouse and human CTLA4 gene loci. Sequence comparison between the mouse and the human CTLA4 gene loci revealed a high degree of sequence conservation both for homologous noncoding regions (65-78% identity) and for coding regions (72-98% identity), with an overall score of 71% over the entire length of the two genes. Of the CTLA4 genomic regions aligned, five simple repetitive elements were found in the mouse locus, whereas two simple repetitive sequences were localized on the human locus. RNA blot analysis of mouse and human primary tissues indicated that both CTLA4 and T-cell receptor transcripts were found in most organs with generally higher levels in lymphoid tissues. The conservation of CTLA4 gene patterning raises the possibility that constrained gene evolution of CTLA4 may be linked to conserved transcriptional control of this locus.
Collapse
Affiliation(s)
- V Ling
- Department of Immunology, Genetics Institute, 87 CambridgePark Drive, Cambridge, Massachusetts 02140, USA.
| | | | | | | | | | | |
Collapse
|
80
|
Jareborg N, Birney E, Durbin R. Comparative analysis of noncoding regions of 77 orthologous mouse and human gene pairs. Genome Res 1999; 9:815-24. [PMID: 10508839 PMCID: PMC310816 DOI: 10.1101/gr.9.9.815] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A data set of 77 genomic mouse/human gene pairs has been compiled from the EMBL nucleotide database, and their corresponding features determined. This set was used to analyze the degree of conservation of noncoding sequences between mouse and human. A new alignment algorithm was developed to cope with the fact that large parts of noncoding sequences are not alignable in a meaningful way because of genetic drift. This new algorithm, DNA Block Aligner (DBA), finds colinear-conserved blocks that are flanked by nonconserved sequences of varying lengths. The noncoding regions of the data set were aligned with DBA. The proportion of the noncoding regions covered by blocks >60% identical was 36% for upstream regions, 50% for 5' UTRs, 23% for introns, and 56% for 3' UTRs. These blocks of high identity were more or less evenly distributed across the length of the features, except for upstream regions in which the first 100 bp upstream of the transcription start site was covered in up to 70% of the gene pairs. This data set complements earlier sets on the basis of cDNA sequences and will be useful for further comparative studies. [This paper contains supplementary data that can be found at http://www.genome.org [corrected]].
Collapse
Affiliation(s)
- N Jareborg
- The Sanger Centre, The Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | | | | |
Collapse
|
81
|
Endrizzi M, Huang S, Scharf JM, Kelter AR, Wirth B, Kunkel LM, Miller W, Dietrich WF. Comparative sequence analysis of the mouse and human Lgn1/SMA interval. Genomics 1999; 60:137-51. [PMID: 10486205 DOI: 10.1006/geno.1999.5910] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human chromosome 5q11.2-q13.3 and its ortholog on mouse chromosome 13 contain candidate genes for an inherited human neurodegenerative disorder called spinal muscular atrophy (SMA) and for an inherited mouse susceptibility to infection with Legionella pneumophila (Lgn1). These homologous genomic regions also have unusual repetitive organizations that create practical difficulties in mapping and raise interesting issues about the evolutionary origin of the repeats. In an attempt to analyze this region in detail, and as a way to identify additional candidate genes for these diseases, we have determined the sequence of 179 kb of the mouse Lgn1/SMA interval. We have analyzed this sequence using BLAST searches and various exon prediction programs to identify potential genes. Since these methods can generate false-positive exon declarations, our alignments of the mouse sequence with available human orthologous sequence allowed us to discriminate rapidly among this collection of potential coding regions by indicating which regions were well conserved and were more likely to represent actual coding sequence. As a result of our analysis, we accurately mapped two additional genes in the SMA interval that can be tested for involvement in the pathogenesis of SMA. While no new Lgn1 candidates emerged, we have identified new genetic markers that exclude Smn as an Lgn1 candidate. In addition to providing important resources for studying SMA and Lgn1, our data provide further evidence of the value of sequencing the mouse genome as a means to help with the annotation of the human genomic sequence and vice versa.
Collapse
Affiliation(s)
- M Endrizzi
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
BACKGROUND Nucleotide substitution rates and G + C content vary considerably among mammalian genes. It has been proposed that the mammalian genome comprises a mosaic of regions - termed isochores - with differing G + C content. The regional variation in gene G + C content might therefore be a reflection of the isochore structure of chromosomes, but the factors influencing the variation of nucleotide substitution rate are still open to question. RESULTS To examine whether nucleotide substitution rates and gene G + C content are influenced by the chromosomal location of genes, we compared human and murid (mouse or rat) orthologues known to belong to one of the chromosomal (autosomal) segments conserved between these species. Multiple members of gene families were excluded from the dataset. Sets of neighbouring genes were defined as those lying within 1 centiMorgan (cM) of each other on the mouse genetic map. For both synonymous substitution rates and G + C content at silent sites, neighbouring genes were found to be significantly more similar to each other than sets of genes randomly drawn from the dataset. Moreover, we demonstrated that the regional similarities in G + C content (isochores) and synonymous substitution rate were independent of each other. CONCLUSIONS Our results provide the first substantial statistical evidence for the existence of a regional variation in the synonymous substitution rate within the mammalian genome, indicating that different chromosomal regions evolve at different rates. This regional phenomenon which shapes gene evolution could reflect the existence of 'evolutionary rate units' along the chromosome.
Collapse
Affiliation(s)
- G Matassi
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK.
| | | | | |
Collapse
|
83
|
Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL. Alignment of whole genomes. Nucleic Acids Res 1999; 27:2369-76. [PMID: 10325427 PMCID: PMC148804 DOI: 10.1093/nar/27.11.2369] [Citation(s) in RCA: 400] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new system for aligning whole genome sequences is described. Using an efficient data structure called a suffix tree, the system is able to rapidly align sequences containing millions of nucleotides. Its use is demonstrated on two strains of Mycoplasma tuberculosis, on two less similar species of Mycoplasma bacteria and on two syntenic sequences from human chromosome 12 and mouse chromosome 6. In each case it found an alignment of the input sequences, using between 30 s and 2 min of computation time. From the system output, information on single nucleotide changes, translocations and homologous genes can easily be extracted. Use of the algorithm should facilitate analysis of syntenic chromosomal regions, strain-to-strain comparisons, evolutionary comparisons and genomic duplications.
Collapse
Affiliation(s)
- A L Delcher
- Department of Computer Science, Loyola College in Maryland, Baltimore, MD 21210, USA
| | | | | | | | | | | |
Collapse
|
84
|
Mittaz L, Rossier C, Heino M, Peterson P, Krohn KJ, Gos A, Morris MA, Kudoh J, Shimizu N, Antonarakis SE, Scott HS. Isolation and characterization of the mouse Aire gene. Biochem Biophys Res Commun 1999; 255:483-90. [PMID: 10049735 DOI: 10.1006/bbrc.1999.0223] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is a rare autosomal recessive disorder characterized by Addison's disease and/or hypoparathyroidism and/or chronic mucocutaneous candidiasis. Patients may also have other clinical symptoms both within and outside the endocrine system, mainly as a result of autoimmunity against organ-specific autoantigens. The gene for APECED has recently been identified and termed AIRE (for AutoImmune REgulator). APECED is a model of organ-specific autoimmunity and isolation and characterization of the homologous mouse gene, Aire, will provide tools for dissection of the mechanisms underlying this human disorder and defining molecular pathways involved in organ-specific autoimmunity. We have isolated and completely sequenced the mouse Aire gene which is split into 14 exons over 13 kb and encodes a predicted protein of 552 amino acids. The predicted mouse and human AIRE proteins are 71% identical and contain motifs suggestive of a transcriptional regulator. Additional conserved motifs are emerging in the AIRE/Aire proteins including a nuclear localization signal, an "ASS" domain, and a "SAND" domain. The human and mouse AIRE promoters have conserved sites for several thymus-specific transcription factors and others important in hematopoesis, consistent with its expression in rare cells of the thymus medulla, lymph nodes, and fetal liver. We have mapped mouse Aire to mouse chromosome 10 by FISH, to the same region as Pwp2 and Pfkl, confirming synteny to the corresponding region of human chromosome 21.
Collapse
Affiliation(s)
- L Mittaz
- Division of Medical Genetics, University of Geneva, Medical School, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
The sequencing of the human genome is well underway. Technology has advanced, such that the total genomic sequence is possible, along with an extensive catalogue of genes via comprehensive cDNA libraries. With the recent completion of the Saccharomyces cerevisiae sequencing project and the imminent completion of that of Caenorhabditis elegans, the most frequently asked question is how much can sequence data alone tell us? The answer is that that a DNA sequence taken in isolation from a single organism reveals very little. The vast majority of DNA in most organisms is noncoding. Protein coding sequences or genes cannot function as isolated units without interaction with noncoding DNA and neighboring genes. This genomic environment is specific to each organism. In order to understand this we need to look at similar genes in different organisms, to determine how function and position has changed over the course of evolution. By understanding evolutionary processes we can gain a greater insight into what makes a gene and the wider processes of genetics and inheritance. Comparative genomics (with model organisms), once the poor relation of the human genome project, is starting to provide the key to unlock the DNA code.
Collapse
Affiliation(s)
- M S Clark
- Fugu Landmark Mapping Project, HGMP Resource Centre, Hinxton, Cambridge, UK.
| |
Collapse
|
86
|
Rohrer J, Minegishi Y, Richter D, Eguiguren J, Conley ME. Unusual mutations in Btk: an insertion, a duplication, an inversion, and four large deletions. Clin Immunol 1999; 90:28-37. [PMID: 9884350 DOI: 10.1006/clim.1998.4629] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in Bruton's tyrosine kinase (Btk) result in the immunodeficiency X-linked agammaglobulinemia (XLA). In a previous study of 101 patients with presumed XLA, we identified seven patients with large genomic alterations in Btk. The recent completion of 100 kb of contiguous DNA sequence at the Btk locus has allowed us to characterize these mutations in detail and to identify four different types of alterations. These alterations included a 253-bp retroposon insertion at position +5 within intron 9, an inversion of greater than 48 kb that disrupted Btk between exons 4 and 5, a 12.9-kb duplication including Btk exons 2 to 5, and four deletions ranging from 2.8 to 38 kb in size. The duplication and three of the deletions resulted from unequal crossovers of Alu repeats. Further, three of the deletions terminated within a repeat-rich cluster spanning 30 kb of sequence 3' of Btk exon 19, suggesting that this region was more susceptible to unequal crossovers than the rest of the Btk gene. These studies describe the first reports of an insertion, an inversion, and a duplication in Btk and demonstrate the utility of large-scale sequencing in the elucidation of disease-causing mutations.
Collapse
Affiliation(s)
- J Rohrer
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, 38105, USA
| | | | | | | | | |
Collapse
|
87
|
Jang W, Hua A, Spilson SV, Miller W, Roe BA, Meisler MH. Comparative Sequence of Human and Mouse BAC Clones from the mnd2 Region of Chromosome 2p13. Genome Res 1999. [DOI: 10.1101/gr.9.1.53] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mnd2 mutation on mouse chromosome 6 produces a progressive neuromuscular disorder. To determine the gene content of the 400-kb mnd2 nonrecombinant region, we sequenced 108 kb of mouse genomic DNA and 92 kb of human genomic sequence from the corresponding region of chromosome 2p13.3. Three genes with the indicated sizes and intergenic distances were identified:D6Mm5e (⩾81 kb)–787 bp–DOK (2 kb)–845 bp–LOR2 (⩾6 kb). D6Mm5e is expressed in many tissues at very low abundance and the predicted 526-residue protein contains no known functional domains. DOK encodes the p62dok rasGAP binding protein involved in signal transduction. LOR2 encodes a novel lysyl oxidase-related protein of 757 amino acid residues. We describe a simple search protocol for identification of conserved internal exons in genomic sequence. Evolutionary conservation proved to be a useful criterion for distinguishing between authentic exons and artifactual products obtained by exon amplification, RT–PCR, and 5′ RACE. Conserved noncoding sequence elements longer than 80 bp with ⩾75% nucleotide sequence identity comprise ∼1% of the genomic sequence in this region. Comparative analysis of this human and mouse genomic DNA sequence was an efficient method for gene identification and is independent of developmental stage or quantitative level of gene expression.[The sequence data described in this paper have been submitted to the GenBank data library under the following accession numbers: AC003061, mouse BAC clone 245c12; AC003065, human BAC clone h173(E10); AF053368, mouse Lor2 cDNA; AF084363, 108-kb contig from mouse BAC 245c12; AF084364, mouse D6Mm5ecDNA.]
Collapse
|
88
|
Dingjan GM, Maas A, Nawijn MC, Smit L, Voerman JS, Grosveld F, Hendriks RW. Severe B cell deficiency and disrupted splenic architecture in transgenic mice expressing the E41K mutated form of Bruton's tyrosine kinase. EMBO J 1998; 17:5309-20. [PMID: 9736610 PMCID: PMC1170858 DOI: 10.1093/emboj/17.18.5309] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To identify B-cell signaling pathways activated by Bruton's tyrosine kinase (Btk) in vivo, we generated transgenic mice in which Btk expression is driven by the MHC class II Ea gene locus control region. Btk overexpression did not have significant adverse effects on B cell function, and essentially corrected the X-linked immunodeficiency (xid) phenotype in Btk- mice. In contrast, expression of a constitutively activated form of Btk carrying the E41K gain-of-function mutation resulted in a B cell defect that was more severe than xid. The mice showed a marked reduction of the B cell compartment in spleen, lymph nodes, peripheral blood and peritoneal cavity. The levels in the serum of most immunoglobulin subclasses decreased with age, and B cell responses to both T cell-independent type II and T cell-dependent antigens were essentially absent. Expression of the E41K Btk mutant enhanced blast formation of splenic B cells in vitro in response to anti-IgM stimulation. Furthermore, the mice manifested a disorganization of B cell areas and marginal zones in the spleen. Our findings demonstrate that expression of constitutively activated Btk blocks the development of follicular recirculating B cells.
Collapse
Affiliation(s)
- G M Dingjan
- Department of Cell Biology and Genetics, Faculty of Medicine, Erasmus University Rotterdam, Dr Molewaterplein 50, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
89
|
Florea L, Hartzell G, Zhang Z, Rubin GM, Miller W. A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res 1998; 8:967-74. [PMID: 9750195 PMCID: PMC310774 DOI: 10.1101/gr.8.9.967] [Citation(s) in RCA: 559] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We address the problem of efficiently aligning a transcribed and spliced DNA sequence with a genomic sequence containing that gene, allowing for introns in the genomic sequence and a relatively small number of sequencing errors. A freely available computer program, described herein, solves the problem for a 100-kb genomic sequence in a few seconds on a workstation.
Collapse
Affiliation(s)
- L Florea
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | | | | | | | | |
Collapse
|
90
|
Abstract
The mouse mutant resource is a valuable tool for gene function studies in the post-genomics era. However, despite a seemingly large catalogue of mouse mutants, it is recognized that we have access to mutations at only a small fraction of the total number of mouse genes. There is a phenotype gap that needs to be narrowed by the implementation of large-scale, systematic mutagenesis programmes in the mouse. Both genotype-driven and phenotype-driven approaches can be employed to recover new mouse mutations. Genotype-driven approaches include large-scale genome-wide mutagenesis by gene trapping in embryonic stem cells. For genotype-driven approaches, the initial focus is on the characterization of the mutational change to the genome. Identification of the mutated gene is relatively trivial, but the genotype-driven route provides little indication of the likely phenotypic outcome of the mutation. In contrast, phenotype-driven approaches employ mutagenesis procedures that emphasize the recovery of novel phenotypes without prior assumptions about the underlying gene or pathway that has been disrupted--although identifying the underlying gene may not be trivial. One phenotype-driven approach includes chemical mutagenesis using N-ethyl-N-nitrosourea (ENU). ENU mutagenesis programmes are increasingly being brought to bear on increasing the breadth and depth of the mouse mutant resource, and in so doing narrowing the phenotype gap.
Collapse
Affiliation(s)
- S D Brown
- MRC Mammalian Genetics Unit, Harwell, UK
| |
Collapse
|
91
|
Abstract
A susceptibility gene in the MHC class III region may underlie the defective B-cell differentiation in familial IgA deficiency and common variable immunodeficiency. Mutations in Bruton's tyrosine kinase, immunoglobulin heavy chain and lambda 5/14.1 surrogate light chain loci disrupt B-cell development to cause profound antibody deficiency. Mutational, biochemical and transgenic studies offer insight into the function of these and other 'antibody deficiency genes'.
Collapse
Affiliation(s)
- M E Conley
- Department of Pediatrics, University of Tennessee School of Medicine, Memphis 38105, USA
| | | |
Collapse
|
92
|
Smith CI, Bäckesjö CM, Berglöf A, Brandén LJ, Islam T, Mattsson PT, Mohamed AJ, Müller S, Nore B, Vihinen M. X-linked agammaglobulinemia: lack of mature B lineage cells caused by mutations in the Btk kinase. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 1998; 19:369-81. [PMID: 9618763 DOI: 10.1007/bf00792597] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C I Smith
- Department of Biosciences at Novum, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Zambrowicz BP, Friedrich GA, Buxton EC, Lilleberg SL, Person C, Sands AT. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 1998; 392:608-11. [PMID: 9560157 DOI: 10.1038/33423] [Citation(s) in RCA: 381] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The dramatic increase in sequence information in the form of expressed sequence tags (ESTs) and genomic sequence has created a 'gene function gap' with the identification of new genes far outpacing the rate at which their function can be identified. The ability to create mutations in embryonic stem (ES) cells on a large scale by tagged random mutagenesis provides a powerful approach for determining gene function in a mammalian system; this approach is well established in lower organisms. Here we describe a high-throughput mutagenesis method based on gene trapping that allows the automated identification of sequence tags from the mutated genes. This method traps and mutates genes regardless of their expression status in ES cells. To facilitate the study of gene function on a large scale, we are using these techniques to create a library of ES cells called Omnibank, from which sequence-tagged mutations in 2,000 genes are described.
Collapse
|
94
|
Affiliation(s)
- A M Mallon
- MRC Mouse Genome Centre, Harwell, Oxfordshire, United Kingdom
| | | |
Collapse
|
95
|
Abstract
This review is intended to provide an overview of techniques and a source of reagents for physical mapping of the mouse genome. It focuses on those applications, methods, or resources unique to the mouse and on the generation of comparative physical maps. The reference list is not comprehensive; rather, recent reviews on each topic and selected representative examples are given.
Collapse
Affiliation(s)
- G E Herman
- Department of Pediatrics, Ohio State University, Columbus, USA
| |
Collapse
|
96
|
Transcriptional Regulatory Elements Within the First Intron of Bruton's Tyrosine Kinase. Blood 1998. [DOI: 10.1182/blood.v91.1.214.214_214_221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Defects in the gene for Bruton's tyrosine kinase (Btk) result in the disorder X-linked agammaglobulinemia (XLA). Whereas XLA is characterized by a profound defect in B-cell development, Btk is expressed in both the B lymphocyte and myeloid cell lineages. We evaluated a patient with XLA who had reduced amounts of Btk transcript but no abnormalities in his coding sequence. A single base-pair substitution in the first intron of Btk was identified in this patient, suggesting that this region may contain regulatory elements. Using reporter constructs we identified two transcriptional control elements in the first 500 bp of intron 1. A strong positive regulator, active in both pre-B cells and B cells, was identified within the first 43 bp of the intron. Gel-shift assays identified two Sp1 binding sites within this element. The patient's mutation results in an altered binding specificity of the proximal Sp1 binding site. A negative regulator, active in pre-B cells only, was located between base pairs 281 and 491 of the intron. These findings indicate that regulation of Btk transcription is complex and may involve several transcriptional regulatory factors at the different stages of B-cell differentiation.
Collapse
|
97
|
Abstract
AbstractDefects in the gene for Bruton's tyrosine kinase (Btk) result in the disorder X-linked agammaglobulinemia (XLA). Whereas XLA is characterized by a profound defect in B-cell development, Btk is expressed in both the B lymphocyte and myeloid cell lineages. We evaluated a patient with XLA who had reduced amounts of Btk transcript but no abnormalities in his coding sequence. A single base-pair substitution in the first intron of Btk was identified in this patient, suggesting that this region may contain regulatory elements. Using reporter constructs we identified two transcriptional control elements in the first 500 bp of intron 1. A strong positive regulator, active in both pre-B cells and B cells, was identified within the first 43 bp of the intron. Gel-shift assays identified two Sp1 binding sites within this element. The patient's mutation results in an altered binding specificity of the proximal Sp1 binding site. A negative regulator, active in pre-B cells only, was located between base pairs 281 and 491 of the intron. These findings indicate that regulation of Btk transcription is complex and may involve several transcriptional regulatory factors at the different stages of B-cell differentiation.
Collapse
|
98
|
Vihinen M, Brandau O, Brandén LJ, Kwan SP, Lappalainen I, Lester T, Noordzij JG, Ochs HD, Ollila J, Pienaar SM, Riikonen P, Saha BK, Smith CI. BTKbase, mutation database for X-linked agammaglobulinemia (XLA). Nucleic Acids Res 1998; 26:242-7. [PMID: 9399844 PMCID: PMC147244 DOI: 10.1093/nar/26.1.242] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the gene coding for Bruton's agammaglobulinemia tyrosine kinase (BTK). A database (BTKbase) of BTK mutations has been compiled and the recent update lists 463 mutation entries from 406 unrelated families showing 303 unique molecular events. In addition to mutations, the database also lists variants or polymorphisms. Each patient is given a unique patient identity number (PIN). Information is included regarding the phenotype including symptoms. Mutations in all the five domains of BTK have been noticed to cause the disease, the most common event being missense mutations. The mutations appear almost uniformly throughout the molecule and frequently affect CpG sites that code for arginine residues. The putative structural implications of all the missense mutations are given in the database. The improved version of the registry having a number of new features is available at http://www. helsinki.fi/science/signal/btkbase.html
Collapse
Affiliation(s)
- M Vihinen
- Department of Biosciences, Division of Biochemistry, PO Box 56, FIN-00014 University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Carver EA, Stubbs L. Zooming in on the human-mouse comparative map: genome conservation re-examined on a high-resolution scale. Genome Res 1997; 7:1123-37. [PMID: 9414318 DOI: 10.1101/gr.7.12.1123] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Over the past decade, conservation of genetic linkage groups has been shown in mammals and used to great advantage, fueling significant exchanges of gene mapping and functional information especially between the genomes of humans and mice. As human physical maps increase in resolution from chromosome bands to nucleotide sequence, comparative alignments of mouse and human regions have revealed striking similarities and surprising differences between the genomes of these two best-mapped mammalian species. Whereas, at present, very few mouse and human regions have been compared on the physical level, existing studies provide intriguing insights to genome evolution, including the observation of recent duplications and deletions of genes that may play significant roles in defining some of the biological differences between the two species. Although high-resolution conserved marker-based maps are currently available only for human and mouse, a variety of new methods and resources are speeding the development of comparative maps of additional organisms. These advances mark the first step toward establishment of the human genome as a reference map for vertebrate species, providing evolutionary and functional annotation to human sequence and vast new resources for genetic analysis of a variety of commercially, medically, and ecologically important animal models.
Collapse
Affiliation(s)
- E A Carver
- Biology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8077, USA
| | | |
Collapse
|
100
|
Hardison RC, Oeltjen J, Miller W. Long human-mouse sequence alignments reveal novel regulatory elements: a reason to sequence the mouse genome. Genome Res 1997; 7:959-66. [PMID: 9331366 DOI: 10.1101/gr.7.10.959] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R C Hardison
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|