51
|
Abstract
The glass transition in soft matter systems is generally triggered by an increase in packing fraction or a decrease in temperature. It has been conjectured that the internal topology of the constituent particles, such as polymers, can cause glassiness too. However, the conjecture relies on immobilizing a fraction of the particles and is therefore difficult to fulfill experimentally. Here we show that in dense solutions of circular polymers containing (active) segments of increased mobility, the interplay of the activity and the topology of the polymers generates an unprecedented glassy state of matter. The active isotropic driving enhances mutual ring threading to the extent that the rings can relax only in a cooperative way, which dramatically increases relaxation times. Moreover, the observed phenomena feature similarities with the conformation and dynamics of the DNA fibre in living nuclei of higher eukaryotes.
Collapse
Affiliation(s)
- Jan Smrek
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria.
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Iurii Chubak
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090, Vienna, Austria
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
52
|
Peddireddy KR, Lee M, Zhou Y, Adalbert S, Anderson S, Schroeder CM, Robertson-Anderson RM. Unexpected entanglement dynamics in semidilute blends of supercoiled and ring DNA. SOFT MATTER 2020; 16:152-161. [PMID: 31774103 DOI: 10.1039/c9sm01767d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Blends of polymers of different topologies, such as ring and supercoiled, naturally occur in biology and often exhibit emergent viscoelastic properties coveted in industry. However, due to their complexity, along with the difficulty of producing polymers of different topologies, the dynamics of topological polymer blends remains poorly understood. We address this void by using both passive and active microrheology to characterize the linear and nonlinear rheological properties of blends of relaxed circular and supercoiled DNA. We characterize the dynamics as we vary the concentration from below the overlap concentration c* to above (0.5c* to 2c*). Surprisingly, despite working at the dilute-semidilute crossover, entanglement dynamics, such as elastic plateaus and multiple relaxation modes, emerge. Finally, blends exhibit an unexpected sustained elastic response to nonlinear strains not previously observed even in well-entangled linear polymer solutions.
Collapse
Affiliation(s)
- Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Megan Lee
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Yuecheng Zhou
- Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology & Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Serenity Adalbert
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Sylas Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| | - Charles M Schroeder
- Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology & Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, CA 92110, USA.
| |
Collapse
|