51
|
Cohu CM, Abdel-Ghany SE, Gogolin Reynolds KA, Onofrio AM, Bodecker JR, Kimbrel JA, Niyogi KK, Pilon M. Copper delivery by the copper chaperone for chloroplast and cytosolic copper/zinc-superoxide dismutases: regulation and unexpected phenotypes in an Arabidopsis mutant. MOLECULAR PLANT 2009; 2:1336-50. [PMID: 19969519 DOI: 10.1093/mp/ssp084] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Copper (Cu) is an important mineral nutrient found in chloroplasts as a cofactor associated with plastocyanin and Cu/Zn superoxide dismutase (Cu/ZnSOD). Superoxide dismutases are metallo-enzymes found in most oxygenic organisms with proposed roles in reducing oxidative stress. Several recent studies in Arabidopsis have shown that microRNAs and a SQUAMOSA promoter binding protein-like7 (SPL7) transcription factor function to down-regulate the expression of many Cu-proteins, including Cu/ZnSOD in both plastids and the cytosol, during growth on low Cu. Plants contain the Cu Chaperone for SOD (CCS) that delivers Cu to Cu/ZnSODs, and, in Arabidopsis, both cytosolic and plastidic CCS versions are encoded by one gene. In this study, we demonstrate that Arabidopsis CCS transcript levels are regulated by Cu, mediated by microRNA 398 that was not previously predicted to target CCS. The microRNA target site is conserved in CCS of Oryza sativa. The data suggest that Cu-regulated microRNAs may have more mRNA targets than was previously predicted. A CCS null mutant has no measurable SOD activity in the chloroplast and cytosol, indicating an absolute requirement for CCS. When the CCS null mutant was grown on high Cu media, it lacked both Fe superoxide dismutase (FeSOD) and Cu/ZnSOD activity. However, this did not lead to a visual phenotype and no photosynthetic deficiencies were detected, even after high light stress. These results indicate that Cu/ZnSOD is not a pivotal component of the photosynthetic anti-oxidant system during growth in laboratory conditions.
Collapse
Affiliation(s)
- Christopher M Cohu
- Biology Department, Colorado State University, Fort Collins, CO 80523-1878, USA
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Pedron L, Baldi P, Hietala AM, La Porta N. Genotype-specific regulation of cold-responsive genes in cypress (Cupressus sempervirens L.). Gene 2009; 437:45-53. [DOI: 10.1016/j.gene.2008.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
53
|
Abdel-Ghany SE. Contribution of plastocyanin isoforms to photosynthesis and copper homeostasis in Arabidopsis thaliana grown at different copper regimes. PLANTA 2009; 229:767-779. [PMID: 19084994 DOI: 10.1007/s00425-008-0869-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 11/24/2008] [Indexed: 05/27/2023]
Abstract
In land plants plastocyanin is indispensable and therefore copper (Cu) availability is a prerequisite for growth. When Cu supply is limited, higher plants prioritize the Cu delivery to plastocyanin by down-regulation of other Cu proteins. Arabidopsis has two plastocyanin genes (PETE1 and PETE2). PETE2 is the predominant isoform in soil-grown plants and in hydroponic cultures it is accumulated in response to Cu addition. It functions as a Cu sink when more Cu is available, in addition to its role as an electron carrier. PETE1 is not affected by Cu feeding and it is the isoform that drives electron transport under Cu-deficiency. Cu feeding rescued the defect in photosystem II electron flux (Phi(PSII)) in the pete1 mutant whereas Phi(PSII) was not changed in the pete2 mutant as Cu was added. Plants with mutations in the plastocyanin genes had altered Cu homeostasis. The pete2 mutant accumulated more Cu/Zn superoxide dismutase (CSD2 and CSD1) and Cu chaperone (CCS) whereas the pete1 mutant accumulated less. On the other hand, less iron superoxide dismutase (FeSOD) and microRNA398b were observed in the pete2 mutant, whereas more were accumulated in the pete1 mutant. Our data suggest that plastocyanin isoforms are different in their response to Cu and the absence of either one changes the Cu homeostasis. Also a small amount of plastocyanin is enough to support efficient electron transport and more PETE2 is accumulated as more Cu is added, presumably, to buffer the excess Cu.
Collapse
Affiliation(s)
- Salah Esmat Abdel-Ghany
- Biology Department, Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
54
|
Jahns P, Latowski D, Strzalka K. Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:3-14. [PMID: 18976630 DOI: 10.1016/j.bbabio.2008.09.013] [Citation(s) in RCA: 302] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/23/2008] [Accepted: 09/23/2008] [Indexed: 11/28/2022]
Abstract
The violaxanthin cycle describes the reversible conversion of violaxanthin to zeaxanthin via the intermediate antheraxanthin. This light-dependent xanthophyll conversion is essential for the adaptation of plants and algae to different light conditions and allows a reversible switch of photosynthetic light-harvesting complexes between a light-harvesting state under low light and a dissipative state under high light. The photoprotective functions of zeaxanthin have been intensively studied during the last decade, but much less attention has been directed to the mechanism and regulation of xanthophyll conversion. In this review, an overview is given on recent progress in the understanding of the role of (i) xanthophyll binding by antenna proteins and of (ii) the lipid properties of the thylakoid membrane in the regulation of xanthophyll conversion. The consequences of these findings for the mechanism and regulation of xanthophyll conversion in the thylakoid membrane will be discussed.
Collapse
Affiliation(s)
- Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr.1, D-40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
55
|
Mulo P, Sirpiö S, Suorsa M, Aro EM. Auxiliary proteins involved in the assembly and sustenance of photosystem II. PHOTOSYNTHESIS RESEARCH 2008; 98:489-501. [PMID: 18618287 DOI: 10.1007/s11120-008-9320-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/11/2008] [Indexed: 05/20/2023]
Abstract
Chloroplast proteins that regulate the biogenesis, performance and acclimation of the photosynthetic protein complexes are currently under intense research. Dozens, possibly even hundreds, of such proteins in the stroma, thylakoid membrane and the lumen assist the biogenesis and constant repair of the water splitting photosystem (PS) II complex. During the repair cycle, assistance is required at several levels including the degradation of photodamaged D1 protein, de novo synthesis, membrane insertion, folding of the nascent protein chains and the reassembly of released protein subunits and different co-factors into PSII in order to guarantee the maintenance of the PSII function. Here we review the present knowledge of the auxiliary proteins, which have been reported to be involved in the biogenesis and maintenance of PSII.
Collapse
Affiliation(s)
- Paula Mulo
- Department of Biology, Laboratory of Plant Physiology and Molecular Biology, University of Turku, 20014 Turku, Finland
| | | | | | | |
Collapse
|
56
|
Wang Q, Jantaro S, Lu B, Majeed W, Bailey M, He Q. The high light-inducible polypeptides stabilize trimeric photosystem I complex under high light conditions in Synechocystis PCC 6803. PLANT PHYSIOLOGY 2008; 147:1239-50. [PMID: 18502976 PMCID: PMC2442545 DOI: 10.1104/pp.108.121087] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 05/19/2008] [Indexed: 05/21/2023]
Abstract
The high light-inducible polypeptides (HLIPs) are critical for survival under high light (HL) conditions in Synechocystis PCC 6803. In this article, we determined the localization of all four HLIPs in thylakoid protein complexes and examined effects of hli gene deletion on the photosynthetic protein complexes. The HliA and HliB proteins were found to be associated with trimeric photosystem I (PSI) complexes and the Slr1128 protein, whereas HliC was associated with PsaL and TMP14. The HliD was associated with partially dissociated PSI complexes. The PSI activities of the hli mutants were 3- to 4-fold lower than that of the wild type. The hli single mutants lost more than 30% of the PSI trimers after they were incubated in intermediate HL for 12 h. The reduction of PSI trimers were further augmented in these cells by the increase of light intensity. The quadruple hli deletion mutant contained less than one-half of PSI trimers following 12-h incubation in intermediate HL. It lost essentially all of the PSI trimers upon exposure to HL for 12 h. Furthermore, a mutant lacking both PSI trimers and Slr1128 showed growth defects similar to that of the quadruple hli deletion mutant under different light conditions. These results suggest that the HLIPs stabilize PSI trimers, interact with Slr1128, and protect cells under HL conditions.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Applied Science, University of Arkansas, Little Rock, Arkansas 72204, USA
| | | | | | | | | | | |
Collapse
|
57
|
Abdel-Ghany SE, Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 2008; 283:15932-45. [PMID: 18408011 PMCID: PMC3259626 DOI: 10.1074/jbc.m801406200] [Citation(s) in RCA: 367] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/03/2008] [Indexed: 11/06/2022] Open
Abstract
In plants, copper is an essential micronutrient required for photosynthesis. Two of the most abundant copper proteins, plastocyanin and copper/zinc superoxide dismutase, are found in chloroplasts. Whereas plastocyanin is essential for photo-autotrophic growth, copper/zinc superoxide dismutase is dispensable and in plastids can be replaced by an iron superoxide dismutase when copper is limiting. The down-regulation of copper/zinc superoxide dismutase expression in response to low copper involves a microRNA, miR398. Interestingly, in Arabidopsis and other plants, three additional microRNA families, miR397, miR408, and miR857, are predicted to target the transcripts for the copper protein plantacyanin and members of the laccase copper protein family. We confirmed the predicted targets of miR397, miR408, and miR857 experimentally by cleavage site analysis. To study the spatial expression pattern of these microRNAs and the effect of copper on their expression, we analyzed Arabidopsis grown hydroponically on different copper regimes. On low amounts of copper the plants accumulated miR397, miR408, and miR857. The microRNA expression pattern was negatively correlated with the accumulation of transcripts for plantacyanin and laccases. Furthermore, the expression of other laccases that are not predicted targets for known microRNAs was similarly regulated in response to copper. For some of these laccases, the regulation was disrupted in a microRNA maturation mutant (hen1-1), suggesting the presence of other copper-regulated microRNAs. Thus, in Arabidopsis, microRNA-mediated down-regulation is a general mechanism to regulate nonessential copper proteins. We propose that this mechanism allows plants to save copper for the most essential functions during limited copper supply.
Collapse
Affiliation(s)
- Salah E. Abdel-Ghany
- Biology Department and Program in
Molecular Plant Biology, Colorado State University, Fort Collins, Colorado
80523 and Botany Department, Faculty of Science,
Zagazig University, Zagazig 44519, Egypt
| | - Marinus Pilon
- Biology Department and Program in
Molecular Plant Biology, Colorado State University, Fort Collins, Colorado
80523 and Botany Department, Faculty of Science,
Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
58
|
A Protein Family Saga: From Photoprotection to Light-Harvesting (and Back?). PHOTOPROTECTION, PHOTOINHIBITION, GENE REGULATION, AND ENVIRONMENT 2008. [DOI: 10.1007/1-4020-3579-9_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
59
|
|
60
|
Kilian O, Steunou AS, Grossman AR, Bhaya D. A novel two domain-fusion protein in cyanobacteria with similarity to the CAB/ELIP/HLIP superfamily: evolutionary implications and regulation. MOLECULAR PLANT 2008; 1:155-166. [PMID: 20031922 DOI: 10.1093/mp/ssm019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Vascular plants contain abundant, light-harvesting complexes in the thylakoid membrane that are non-covalently associated with chlorophylls and carotenoids. These light-harvesting chlorophyll a/b binding (LHC) proteins are members of an extended CAB/ELIP/HLIP superfamily of distantly related polypeptides, which have between one and four transmembrane helices (TMH). This superfamily includes the single TMH, high-light-inducible proteins (Hlips), found in cyanobacteria that are induced by various stress conditions, including high light, and are considered ancestral to the LHC proteins. The roles of, and evolutionary relationships between, these superfamily members are of particular interest, since they function in both light harvesting and photoprotection and may have evolved through tandem gene duplication and fusion events. We have investigated the Hlips (hli gene family) in the thermophilic unicellular cyanobacterium Synechococcus OS-B'. The five hli genes present on the genome of Synechococcus OS-B' are relatively similar, but transcript analyses indicate that there are different patterns of transcript accumulation when the cells are exposed to various growth conditions, suggesting that different Hlips may have specific functions. Hlip5 has an additional TMH at the N-terminus as a result of a novel fusion event. This additional TMH is very similar to a conserved hypothetical, single membrane-spanning polypeptide present in most cyanobacteria. The evolutionary significance of these results is discussed.
Collapse
Affiliation(s)
- Oliver Kilian
- Department of Plant Biology, The Carnegie Institution, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
61
|
Koziol AG, Borza T, Ishida KI, Keeling P, Lee RW, Durnford DG. Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms. PLANT PHYSIOLOGY 2007; 143:1802-16. [PMID: 17307901 PMCID: PMC1851817 DOI: 10.1104/pp.106.092536] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The light-harvesting complexes (LHCs) of land plants and green algae have essential roles in light capture and photoprotection. Though the functional diversity of the individual LHC proteins are well described in many land plants, the extent of this family in the majority of green algal groups is unknown. To examine the evolution of the chlorophyll a/b antennae system and to infer its ancestral state, we initiated several expressed sequence tag projects from a taxonomically broad range of chlorophyll a/b-containing protists. This included representatives from the Ulvophyceae (Acetabularia acetabulum), the Mesostigmatophyceae (Mesostigma viride), and the Prasinophyceae (Micromonas sp.), as well as one representative from each of the Euglenozoa (Euglena gracilis) and Chlorarachniophyta (Bigelowiella natans), whose plastids evolved secondarily from a green alga. It is clear that the core antenna system was well developed prior to green algal diversification and likely consisted of the CP29 (Lhcb4) and CP26 (Lhcb5) proteins associated with photosystem II plus a photosystem I antenna composed of proteins encoded by at least Lhca3 and two green algal-specific proteins encoded by the Lhca2 and 9 genes. In organisms containing secondary plastids, we found no evidence for orthologs to the plant/algal antennae with the exception of CP29. We also identified PsbS homologs in the Ulvophyceae and the Prasinophyceae, indicating that this distinctive protein appeared prior to green algal diversification. This analysis provides a snapshot of the antenna systems in diverse green algae, and allows us to infer the changing complexity of the antenna system during green algal evolution.
Collapse
Affiliation(s)
- Adam G Koziol
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3
| | | | | | | | | | | |
Collapse
|
62
|
Van Hoewyk D, Abdel-Ghany SE, Cohu CM, Herbert SK, Kugrens P, Pilon M, Pilon-Smits EAH. Chloroplast iron-sulfur cluster protein maturation requires the essential cysteine desulfurase CpNifS. Proc Natl Acad Sci U S A 2007; 104:5686-91. [PMID: 17372218 PMCID: PMC1838476 DOI: 10.1073/pnas.0700774104] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Indexed: 11/18/2022] Open
Abstract
NifS-like proteins provide the sulfur (S) for the formation of iron-sulfur (Fe-S) clusters, an ancient and essential type of cofactor found in all three domains of life. Plants are known to contain two distinct NifS-like proteins, localized in the mitochondria (MtNifS) and the chloroplast (CpNifS). In the chloroplast, five different Fe-S cluster types are required in various proteins. These plastid Fe-S proteins are involved in a variety of biochemical pathways including photosynthetic electron transport and nitrogen and sulfur assimilation. In vitro, the chloroplastic cysteine desulfurase CpNifS can release elemental sulfur from cysteine for Fe-S cluster biogenesis in ferredoxin. However, because of the lack of a suitable mutant allele, the role of CpNifS has not been studied thus far in planta. To study the role of CpNifS in Fe-S cluster biogenesis in vivo, the gene was silenced by using an inducible RNAi (interference) approach. Plants with reduced CpNifS expression exhibited chlorosis, a disorganized chloroplast structure, and stunted growth and eventually became necrotic and died before seed set. Photosynthetic electron transport and carbon dioxide assimilation were severely impaired in the silenced plant lines. The silencing of CpNifS decreased the abundance of all chloroplastic Fe-S proteins tested, representing all five Fe-S cluster types. Mitochondrial Fe-S proteins and respiration were not affected, suggesting that mitochondrial and chloroplastic Fe-S assembly operate independently. These findings indicate that CpNifS is necessary for the maturation of all plastidic Fe-S proteins and, thus, essential for plant growth.
Collapse
Affiliation(s)
- Douglas Van Hoewyk
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| | - Salah E. Abdel-Ghany
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| | - Christopher M. Cohu
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| | - Stephen K. Herbert
- Department of Botany, University of Wyoming, 1000 East University Avenue, Laramie, WY 82071
| | - Paul Kugrens
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| | - Marinus Pilon
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| | - Elizabeth A. H. Pilon-Smits
- *Biology Department and Program in Molecular Plant Biology, Colorado State University, Fort Collins, CO, 80526-1878; and
| |
Collapse
|
63
|
Heddad M, Norén H, Reiser V, Dunaeva M, Andersson B, Adamska I. Differential expression and localization of early light-induced proteins in Arabidopsis. PLANT PHYSIOLOGY 2006; 142:75-87. [PMID: 16829586 PMCID: PMC1557597 DOI: 10.1104/pp.106.081489] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The early light-induced proteins (Elips) in higher plants are nuclear-encoded, light stress-induced proteins located in thylakoid membranes and related to light-harvesting chlorophyll (LHC) a/b-binding proteins. A photoprotective function was proposed for Elips. Here we showed that after 2 h exposure of Arabidopsis (Arabidopsis thaliana) leaves to light stress Elip1 and Elip2 coisolate equally with monomeric (mLhcb) and trimeric (tLhcb) populations of the major LHC from photosystem II (PSII) as based on the Elip:Lhcb protein ratio. A longer exposure to light stress resulted in increased amounts of Elips in tLhcb as compared to mLhcb, due to a reduction of tLhcb amounts. We demonstrated further that the expression of Elip1 and Elip2 transcripts was differentially regulated in green leaves exposed to light stress. The accumulation of Elip1 transcripts and proteins increased almost linearly with increasing light intensities and correlated with the degree of photoinactivation and photodamage of PSII reaction centers. A stepwise accumulation of Elip2 was induced when 40% of PSII reaction centers became photodamaged. The differential expression of Elip1 and Elip2 occurred also in light stress-preadapted or senescent leaves exposed to light stress but there was a lack of correlation between transcript and protein accumulation. Also in this system the accumulation of Elip1 but not Elip2 correlated with the degree of PSII photodamage. Based on pigment analysis, measurements of PSII activity, and assays of the oxidation status of proteins we propose that the discrepancy between amounts of Elip transcripts and proteins in light stress-preadapted or senescent leaves is related to a presence of photoprotective anthocyanins or to lower chlorophyll availability, respectively.
Collapse
Affiliation(s)
- Mounia Heddad
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
64
|
Promnares K, Komenda J, Bumba L, Nebesarova J, Vacha F, Tichy M. Cyanobacterial small chlorophyll-binding protein ScpD (HliB) is located on the periphery of photosystem II in the vicinity of PsbH and CP47 subunits. J Biol Chem 2006; 281:32705-13. [PMID: 16923804 DOI: 10.1074/jbc.m606360200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteria contain several genes coding for small one-helix proteins called SCPs or HLIPs with significant sequence similarity to chlorophyll a/b-binding proteins. To localize one of these proteins, ScpD, in the cells of the cyanobacterium Synechocystis sp. PCC 6803, we constructed several mutants in which ScpD was expressed as a His-tagged protein (ScpDHis). Using two-dimensional native-SDS electrophoresis of thylakoid membranes or isolated Photosystem II (PSII), we determined that after high-light treatment most of the ScpDHis protein in a cell is associated with PSII. The ScpDHis protein was present in both monomeric and dimeric PSII core complexes and also in the core subcomplex lacking CP43. However, the association with PSII was abolished in the mutant lacking the PSII subunit PsbH. In a PSII mutant lacking cytochrome b(559), which does not accumulate PSII, ScpDHis is associated with CP47. The interaction of ScpDHis with PsbH and CP47 was further confirmed by electron microscopy of PSII labeled with Ni-NTA Nanogold. Single particle image analysis identified the location of the labeled ScpDHis at the periphery of the PSII core complex in the vicinity of the PsbH and CP47. Because of the fact that ScpDHis did not form any large structures bound to PSII and because of its accumulation in PSII subcomplexes containing CP47 and PsbH we suggest that ScpD is involved in a process of PSII assembly/repair during the turnover of pigment-binding proteins, particularly CP47.
Collapse
Affiliation(s)
- Kamoltip Promnares
- Faculty of Biological Sciences, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic
| | | | | | | | | | | |
Collapse
|
65
|
Rossini S, Casazza AP, Engelmann ECM, Havaux M, Jennings RC, Soave C. Suppression of both ELIP1 and ELIP2 in Arabidopsis does not affect tolerance to photoinhibition and photooxidative stress. PLANT PHYSIOLOGY 2006; 141:1264-73. [PMID: 16778010 PMCID: PMC1533944 DOI: 10.1104/pp.106.083055] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
ELIPs (early light-induced proteins) are thylakoid proteins transiently induced during greening of etiolated seedlings and during exposure to high light stress conditions. This expression pattern suggests that these proteins may be involved in the protection of the photosynthetic apparatus against photooxidative damage. To test this hypothesis, we have generated Arabidopsis (Arabidopsis thaliana) mutant plants null for both elip genes (Elip1 and Elip2) and have analyzed their sensitivity to light during greening of seedlings and to high light and cold in mature plants. In particular, we have evaluated the extent of damage to photosystem II, the level of lipid peroxidation, the presence of uncoupled chlorophyll molecules, and the nonphotochemical quenching of excitation energy. The absence of ELIPs during greening at moderate light intensities slightly reduced the rate of chlorophyll accumulation but did not modify the extent of photoinhibition. In mature plants, the absence of ELIP1 and ELIP2 did not modify the sensitivity to photoinhibition and photooxidation or the ability to recover from light stress. This raises questions about the photoprotective function of these proteins. Moreover, no compensatory accumulation of other ELIP-like proteins (SEPs, OHPs) was found in the elip1/elip2 double mutant during high light stress. elip1/elip2 mutant plants show only a slight reduction in the chlorophyll content in mature leaves and greening seedlings and a lower zeaxanthin accumulation in high light conditions, suggesting that ELIPs could somehow affect the stability or synthesis of these pigments. On the basis of these results, we make a number of suggestions concerning the biological function of ELIPs.
Collapse
Affiliation(s)
- Silvia Rossini
- Dipartimento di Biologia, Università degli Studi di Milano, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
66
|
Zarter CR, Adams WW, Ebbert V, Adamska I, Jansson S, Demmig-Adams B. Winter acclimation of PsbS and related proteins in the evergreen Arctostaphylos uva-ursi as influenced by altitude and light environment. PLANT, CELL & ENVIRONMENT 2006; 29:869-78. [PMID: 17087470 DOI: 10.1111/j.1365-3040.2005.01466.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The evergreen groundcover bearberry (Arctostaphylos uva-ursi [L.] Sprengel) was characterized over two successive years (2002-2004) from both sun-exposed and shaded sites at a montane ponderosa pine and subalpine forest community of 1900- and 2800-m-high altitudes, respectively. During summer, photosynthetic capacities and pre-dawn photosystem II (PSII) efficiency were similarly high in all four populations, and in winter, only the sun-exposed and shaded populations at 2800 m exhibited complete down-regulation of photosynthetic oxygen evolution capacity and consistent sustained down-regulation of PSII efficiency. This photosynthetic down-regulation at high altitude involved a substantial decrease in PSII components [pheophytin, D1 protein, oxygen evolving complex ([OEC)], a strong up-regulation of several anti-early-light-inducible protein (Elip)- and anti-high-light-inducible protein (Hlip)-reactive bands and a warm-sustained retention of zeaxanthin and antheraxanthin (Z + A). PsbS, the protein modulating the rapid engagement and disengagement of Z +A in energy dissipation, exhibited its most pronounced winter increases in the shade at 1900 m, and thus apparently assumes a greater role in providing rapidly reversible zeaxanthin-dependent photoprotection during winter when light becomes excessive in the shaded population, which remains photosynthetically active. It is attractive to hypothesize that PsbS relatives (Elips/Hlips) may be involved in sustained zeaxanthin-dependent photoprotection under the more extreme winter conditions at 2800 m.
Collapse
Affiliation(s)
- C Ryan Zarter
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | | | | | | | | | | |
Collapse
|
67
|
Park S, Polle JEW, Melis A, Lee TK, Jin E. Up-regulation of photoprotection and PSII-repair gene expression by irradiance in the unicellular green alga Dunaliella salina. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2006; 8:120-8. [PMID: 16525865 DOI: 10.1007/s10126-005-5030-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Accepted: 07/06/2005] [Indexed: 05/07/2023]
Abstract
The unicellular green alga Dunaliella salina is an attractive model organism for studying photoacclimation responses and the photosystem II (PSII) damage and repair process in the photosynthetic apparatus. Irradiance during cell growth defines both the photoacclimation and the PSII repair status of the cells. To identify genes specific to these processes, a cDNA library was created from irradiance-stressed D. salina. From the cDNA library, 1112 randomly selected expressed sequence tags (ESTs) were analyzed. Because ESTs constitute the expressed part of the genome, the strategy of randomly sequencing cDNA clones at their 5'-ends allowed us to obtain information about the transcript level of numerous genes in light-stressed D. salina. The results of a BLASTX search performed on the obtained total set of ESTs showed that approximately 1% of the ESTs could be assigned to genes coding for proteins that are known to be up-regulated in response to high-light stress. Specifically, after 48 h of high-light exposure of the cells, an increase in the expression level of antioxidant genes, such as Fe-SOD and APX, was observed, as well as elevated levels of the Cbr transcript, a light-harvesting Chl-protein homolog. Further, the ATP-dependent Clp protease gene was also up-regulated in D. salina cells after 48 h of exposure to high light. The results provide initial insight into the global gene regulation process in response to irradiance.
Collapse
Affiliation(s)
- Seunghye Park
- Department of Life Science, Hanyang University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
68
|
Klimmek F, Sjödin A, Noutsos C, Leister D, Jansson S. Abundantly and rarely expressed Lhc protein genes exhibit distinct regulation patterns in plants. PLANT PHYSIOLOGY 2006; 140:793-804. [PMID: 16524980 PMCID: PMC1400566 DOI: 10.1104/pp.105.073304] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/27/2005] [Accepted: 12/27/2005] [Indexed: 05/07/2023]
Abstract
We have analyzed gene regulation of the Lhc supergene family in poplar (Populus spp.) and Arabidopsis (Arabidopsis thaliana) using digital expression profiling. Multivariate analysis of the tissue-specific, environmental, and developmental Lhc expression patterns in Arabidopsis and poplar was employed to characterize four rarely expressed Lhc genes, Lhca5, Lhca6, Lhcb7, and Lhcb4.3. Those genes have high expression levels under different conditions and in different tissues than the abundantly expressed Lhca1 to 4 and Lhcb1 to 6 genes that code for the 10 major types of higher plant light-harvesting proteins. However, in some of the datasets analyzed, the Lhcb4 and Lhcb6 genes as well as an Arabidopsis gene not present in poplar (Lhcb2.3) exhibited minor differences to the main cooperative Lhc gene expression pattern. The pattern of the rarely expressed Lhc genes was always found to be more similar to that of PsbS and the various light-harvesting-like genes, which might indicate distinct physiological functions for the rarely and abundantly expressed Lhc proteins. The previously undetected Lhcb7 gene encodes a novel plant Lhcb-type protein that possibly contains an additional, fourth, transmembrane N-terminal helix with a highly conserved motif. As the Lhcb4.3 gene seems to be present only in Eurosid species and as its regulation pattern varies significantly from that of Lhcb4.1 and Lhcb4.2, we conclude it to encode a distinct Lhc protein type, Lhcb8.
Collapse
Affiliation(s)
- Frank Klimmek
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Sweden
| | | | | | | | | |
Collapse
|
69
|
Demmig-Adams B, Adams WW. Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. THE NEW PHYTOLOGIST 2006; 172:11-21. [PMID: 16945085 DOI: 10.1111/j.1469-8137.2006.01835.x] [Citation(s) in RCA: 375] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This review places photoprotection into the context of ecology and species diversity. The focus is on photoprotection via the safe removal - as thermal energy - of excess solar energy absorbed by the light collecting system, which counteracts the formation of reactive oxygen species. An update on the surprisingly complex, multiple variations of thermal energy dissipation is presented, placing these different forms into ecological and genetic contexts. Zeaxanthin-facilitated, flexible thermal dissipation associated with the PsbS protein and controlled by the trans-thylakoid pH gradient apparently occurs ubiquitously in plants, and can become sustained (and thus less flexible) at low temperatures. Long-lived, slow-growing plants with low intrinsic capacities for photosynthesis have greater capacities for this flexible dissipation than short-lived, fast-growing species. Furthermore, potent, but inflexible (zeaxanthin-facilitated) thermal dissipation, prominent in evergreen species under prolonged environmental stress, is characterized with respect to the involvement of photosystem II core rearrangement and/or degradation as well as the absence of control by trans-thylakoid pH and, possibly, PsbS. A role of PsbS-related proteins in photoprotection is discussed.
Collapse
Affiliation(s)
- Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA.
| | | |
Collapse
|
70
|
Casazza AP, Rossini S, Rosso MG, Soave C. Mutational and expression analysis of ELIP1 and ELIP2 in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2005; 58:41-51. [PMID: 16028115 DOI: 10.1007/s11103-005-4090-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 03/20/2005] [Indexed: 05/03/2023]
Abstract
Plants exposed to photoinhibitory conditions respond by accumulation of the early light-induced proteins (ELIPs) with a potential photoprotective function. In Arabidopsis thaliana two genes (Elip1 and Elip2) encode for two ELIP proteins: evidence exists that the two genes are differentially regulated but their precise function is unclear. Mutants null for one or the other Elip gene can help in elucidating ELIPs role and here we describe the expression profile of ELIP1 and ELIP2, and the phenotype of such null mutants. Both ELIPs accumulate during greening of etiolated seedlings and in mature plants the transcripts fluctuate diurnally without protein accumulation. Steady-state transcript level of both genes increases in response to high light with transcription of Elip1 much more sensitive than that of Elip2 to increasing irradiation at 22 degrees C. At 4 degrees C instead Elip2 is strongly transcribed even at growing light. Furthermore, only ELIP1 accumulates under high light at 22 degrees C while both proteins accumulate at 4 degrees C. These results indicate the existence of a differential regulation of ELIPs expression in response to light or chilling stress with mechanisms active either at transcriptional and post-transcriptional level. Phenotypically, the mutants behave as the wild type as far as sensitivity to light- or light and cold-induced short-term photoinhibition, while both ELIPs are necessary to ensure a high rate of chlorophyll accumulation during deetiolation in continuous high light.
Collapse
|
71
|
Klenell M, Morita S, Tiemblo-Olmo M, Mühlenbock P, Karpinski S, Karpinska B. Involvement of the Chloroplast Signal Recognition Particle cpSRP43 in Acclimation to Conditions Promoting Photooxidative Stress in Arabidopsis. ACTA ACUST UNITED AC 2005; 46:118-29. [PMID: 15659446 DOI: 10.1093/pcp/pci010] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, we have investigated the role of the CAO gene (coding for the chloroplast recognition particle cpSRP43) in the protection against and acclimation to environmental conditions that promote photooxidative stress. Deficiency of cpSRP43 in the Arabidopsis mutant chaos has been shown previously to lead to partial loss of a number of proteins of the photosystem II (PSII) antennae. In addition, as reported here, mutant plants have lower growth rates and reduced lignin contents under laboratory conditions. However, chaos seedlings showed significantly higher tolerance to photooxidative stress under both tightly controlled laboratory conditions and highly variable conditions in the field. This greater tolerance of chaos plants was manifested in less photooxidative damage together with faster growth recovery in young seedlings. It was also associated with a lower production of H2O2, lower ascorbate levels and less induction of ascorbate peroxidases. Under field conditions, chaos exhibited better overall photosynthetic performance and had higher survival rates. Expression of the CAO gene may be regulated by a light-dependent chloroplastic redox signalling pathway, and was inhibited during acclimation to high light and chilling temperatures, simultaneously with induction of ascorbate peroxidases. It is concluded that the presence/absence of the CAO gene has an impact on photo-produced H2O2, lignification in the hypocotyls and on the plant's susceptibility to photooxidative stress. Therefore, regulation of the CAO gene may be part of the plant's system for acclimation to high light and chilling temperatures.
Collapse
Affiliation(s)
- Markus Klenell
- Department of Botany, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
72
|
Ganeteg U, Klimmek F, Jansson S. Lhca5--an LHC-type protein associated with photosystem I. PLANT MOLECULAR BIOLOGY 2004; 54:641-651. [PMID: 15356385 DOI: 10.1023/b:plan.0000040813.05224.94] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The light-harvesting antenna of higher plant photosystem (PS) I is known to be composed of four different types of light-harvesting complex (LHC) proteins (Lhca1-4). However, the genomic sequence of Arabidopsis thaliana contains open reading frames coding for two additional LHC type proteins (Lhca5-6) that are presumably associated with PSI. While Lhca6 might not be expressed at all, ESTs have been detected for the Lhca5 gene in Arabidopsis and a number of other plant species. Here we demonstrate the presence of the Lhca5 gene product in the thylakoid membrane of Arabidopsis as an additional type of Lhca-protein associated with PSI. Lhca5 seems to be regulated differently from the other LHC proteins since Lhca5 mRNA levels increase under high light conditions. Analyses reported here of Lhca5 in plants lacking individual Lhca1-4 proteins show that it is more abundant in plants lacking Lhca1/4, and suggest that it interacts in a direct physical fashion with Lhca2 or Lhca3. We propose that Lhca5 binds chlorophylls in a similar fashion to the other Lhca proteins and is associated with PSI only in sub-stoichiometric amounts.
Collapse
Affiliation(s)
- Ulrika Ganeteg
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, S-901 87 Umeå, Sweden.
| | | | | |
Collapse
|
73
|
Friso G, Giacomelli L, Ytterberg AJ, Peltier JB, Rudella A, Sun Q, Wijk KJV. In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. THE PLANT CELL 2004; 16:478-99. [PMID: 14729914 PMCID: PMC341918 DOI: 10.1105/tpc.017814] [Citation(s) in RCA: 345] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2003] [Accepted: 11/06/2003] [Indexed: 05/17/2023]
Abstract
An extensive analysis of the Arabidopsis thaliana peripheral and integral thylakoid membrane proteome was performed by sequential extractions with salt, detergent, and organic solvents, followed by multidimensional protein separation steps (reverse-phase HPLC and one- and two-dimensional electrophoresis gels), different enzymatic and nonenzymatic protein cleavage techniques, mass spectrometry, and bioinformatics. Altogether, 154 proteins were identified, of which 76 (49%) were alpha-helical integral membrane proteins. Twenty-seven new proteins without known function but with predicted chloroplast transit peptides were identified, of which 17 (63%) are integral membrane proteins. These new proteins, likely important in thylakoid biogenesis, include two rubredoxins, a potential metallochaperone, and a new DnaJ-like protein. The data were integrated with our analysis of the lumenal-enriched proteome. We identified 83 out of 100 known proteins of the thylakoid localized photosynthetic apparatus, including several new paralogues and some 20 proteins involved in protein insertion, assembly, folding, or proteolysis. An additional 16 proteins are involved in translation, demonstrating that the thylakoid membrane surface is an important site for protein synthesis. The high coverage of the photosynthetic apparatus and the identification of known hydrophobic proteins with low expression levels, such as cpSecE, Ohp1, and Ohp2, indicate an excellent dynamic resolution of the analysis. The sequential extraction process proved very helpful to validate transmembrane prediction. Our data also were cross-correlated to chloroplast subproteome analyses by other laboratories. All data are deposited in a new curated plastid proteome database (PPDB) with multiple search functions (http://cbsusrv01.tc.cornell.edu/users/ppdb/). This PPDB will serve as an expandable resource for the plant community.
Collapse
Affiliation(s)
- Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|