51
|
Lu H, Zhang C, Albrecht U, Shimizu R, Wang G, Bowman KD. Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:157. [PMID: 23761797 PMCID: PMC3669760 DOI: 10.3389/fpls.2013.00157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/07/2013] [Indexed: 05/20/2023]
Abstract
Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach relies on a thorough understanding of defense mechanisms of citrus. Studies of Arabidopsis and other plants have provided a framework for us to better understand defense mechanisms of citrus. Salicylic acid (SA) is a key signaling molecule involved in basal defense and resistance (R) gene-mediated defense against broad-spectrum pathogens. The Arabidopsis gene NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE 1) is a positive regulator of SA accumulation and is specifically required for signaling mediated by a subset of R genes upon recognition of their cognate pathogen effectors. Our bioinformatic analysis identified an ortholog of NDR1 from citrus, CsNDR1. Overexpression of CsNDR1 complemented susceptibility conferred by the Arabidopsis ndr1-1 mutant to Pseudomonas syringae strains and also led to enhanced resistance to an oomycete pathogen Hyaloperonospora arabidopsidis. Such heightened resistance is associated with increased SA production and expression of the defense marker gene PATHOGENESIS RELATED 1 (PR1). In addition, we found that expression of PR1 and accumulation of SA were induced to modest levels in citrus infected with Candidatus Liberibacter asiaticus, the bacterial pathogen associated with HLB disease. Thus, our data suggest that CsNDR1 is a functional ortholog of Arabidopsis NDR1. Since Ca. L. asiaticus infection only activates modest levels of defense responses in citrus, we propose that genetically increasing SA/NDR1-mediated pathways could potentially lead to enhanced resistance against HLB, citrus canker, and other destructive diseases challenging global citrus production.
Collapse
Affiliation(s)
- Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimore, MD, USA
| | - Chong Zhang
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimore, MD, USA
| | - Ute Albrecht
- United States Horticultural Research Laboratory, Agricultural Research Service, United States Department of AgricultureFort Pierce, FL, USA
| | - Rena Shimizu
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimore, MD, USA
| | - Guanfeng Wang
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimore, MD, USA
| | - Kim D. Bowman
- United States Horticultural Research Laboratory, Agricultural Research Service, United States Department of AgricultureFort Pierce, FL, USA
| |
Collapse
|
52
|
Lu H, Zhang C, Albrecht U, Shimizu R, Wang G, Bowman KD. Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:157. [PMID: 23761797 DOI: 10.3389/fpls.2013.00157.4:157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/07/2013] [Indexed: 05/23/2023]
Abstract
Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach relies on a thorough understanding of defense mechanisms of citrus. Studies of Arabidopsis and other plants have provided a framework for us to better understand defense mechanisms of citrus. Salicylic acid (SA) is a key signaling molecule involved in basal defense and resistance (R) gene-mediated defense against broad-spectrum pathogens. The Arabidopsis gene NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE 1) is a positive regulator of SA accumulation and is specifically required for signaling mediated by a subset of R genes upon recognition of their cognate pathogen effectors. Our bioinformatic analysis identified an ortholog of NDR1 from citrus, CsNDR1. Overexpression of CsNDR1 complemented susceptibility conferred by the Arabidopsis ndr1-1 mutant to Pseudomonas syringae strains and also led to enhanced resistance to an oomycete pathogen Hyaloperonospora arabidopsidis. Such heightened resistance is associated with increased SA production and expression of the defense marker gene PATHOGENESIS RELATED 1 (PR1). In addition, we found that expression of PR1 and accumulation of SA were induced to modest levels in citrus infected with Candidatus Liberibacter asiaticus, the bacterial pathogen associated with HLB disease. Thus, our data suggest that CsNDR1 is a functional ortholog of Arabidopsis NDR1. Since Ca. L. asiaticus infection only activates modest levels of defense responses in citrus, we propose that genetically increasing SA/NDR1-mediated pathways could potentially lead to enhanced resistance against HLB, citrus canker, and other destructive diseases challenging global citrus production.
Collapse
Affiliation(s)
- Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
53
|
Wang X, Sager R, Cui W, Zhang C, Lu H, Lee JY. Salicylic acid regulates Plasmodesmata closure during innate immune responses in Arabidopsis. THE PLANT CELL 2013; 25:2315-29. [PMID: 23749844 PMCID: PMC3723628 DOI: 10.1105/tpc.113.110676] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In plants, mounting an effective innate immune strategy against microbial pathogens involves triggering local cell death within infected cells as well as boosting the immunity of the uninfected neighboring and systemically located cells. Although not much is known about this, it is evident that well-coordinated cell-cell signaling is critical in this process to confine infection to local tissue while allowing for the spread of systemic immune signals throughout the whole plant. In support of this notion, direct cell-to-cell communication was recently found to play a crucial role in plant defense. Here, we provide experimental evidence that salicylic acid (SA) is a critical hormonal signal that regulates cell-to-cell permeability during innate immune responses elicited by virulent bacterial infection in Arabidopsis thaliana. We show that direct exogenous application of SA or bacterial infection suppresses cell-cell coupling and that SA pathway mutants are impaired in this response. The SA- or infection-induced suppression of cell-cell coupling requires an enhanced desease resistance1- and nonexpressor of pathogenesis-related genes1-dependent SA pathway in conjunction with the regulator of plasmodesmal gating Plasmodesmata-located protein5. We discuss a model wherein the SA signaling pathway and plasmodesmata-mediated cell-to-cell communication converge under an intricate regulatory loop.
Collapse
Affiliation(s)
- Xu Wang
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Ross Sager
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Weier Cui
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Chong Zhang
- University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Hua Lu
- University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
- Address correspondence to
| |
Collapse
|
54
|
Ho YP, Tan CM, Li MY, Lin H, Deng WL, Yang JY. The AvrB_AvrC domain of AvrXccC of Xanthomonas campestris pv. campestris is required to elicit plant defense responses and manipulate ABA homeostasis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:419-30. [PMID: 23252460 DOI: 10.1094/mpmi-06-12-0164-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant disease induced by Xanthomonas campestris pv. campestris depends on type III effectors but the molecular basis is poorly understood. Here, AvrXccC8004 was characterized, and it was found that the AvrB_AvrC domain was essential and sufficient to elicit defense responses in an Arabidopsis-resistant ecotype (Col-0). An upregulation of genes in responding to the AvrB_AvrC domain of AvrXccC8004 was shown in a profile of host gene expression. The molecular changes were correlated with morphological changes observed in phenotypic and ultrastructural characterizations. Interestingly, the abscisic acid (ABA)-signaling pathway was also a prominent target for the AvrB_AvrC domain of AvrXccC8004. The highly elicited NCED5, encoding a key enzyme of ABA biosynthesis, was increased in parallel with ABA levels in AvrXccC8004 transgenic plants. Consistently, the X. campestris pv. campestris 8004 ΔavrXccC mutant was severely impaired in the ability to manipulate the accumulation of ABA and induction of ABA-related genes in challenged leaves. Moreover, exogenous application of ABA also enhanced the susceptibility of Arabidopsis to the X. campestris pv. campestris strains. These results indicate that the AvrB_AvrC domain of AvrXccC8004 alone has the activity to manipulate ABA homeostasis, which plays an important role in regulating the interactions of X. campestris pv. campestris and Arabidopsis.
Collapse
Affiliation(s)
- Yi-Ping Ho
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
55
|
Mei J, Ding Y, Lu K, Wei D, Liu Y, Disi JO, Li J, Liu L, Liu S, McKay J, Qian W. Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:549-56. [PMID: 23096003 DOI: 10.1007/s00122-012-2000-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/06/2012] [Indexed: 05/22/2023]
Abstract
The lack of resistant source has greatly restrained resistance breeding of rapeseed (Brassica napus, AACC) against Sclerotinia sclerotiorum which causes severe yield losses in rapeseed production all over the world. Recently, several wild Brassica oleracea accessions (CC) with high level of resistance have been identified (Mei et al. in Euphytica 177:393-400, 2011), bringing a new hope to improve Sclerotinia resistance of rapeseed. To map quantitative trait loci (QTL) for Sclerotinia resistance from wild B. oleracea, an F2 population consisting of 149 genotypes, with several clones of each genotypes, was developed from one F1 individual derived from the cross between a resistant accession of wild B. oleracea (B. incana) and a susceptible accession of cultivated B. oleracea var. alboglabra. The F2 population was evaluated for Sclerotinia reaction in 2009 and 2010 under controlled condition. Significant differences among genotypes and high heritability for leaf and stem reaction indicated that genetic components accounted for a large portion of the phenotypic variance. A total of 12 QTL for leaf resistance and six QTL for stem resistance were identified in 2 years, each explaining 2.2-28.4 % of the phenotypic variation. The combined effect of alleles from wild B. oleracea reduced the relative susceptibility by 22.5 % in leaves and 15 % in stems on average over 2 years. A 12.8-cM genetic region on chromosome C09 of B. oleracea consisting of two major QTL intervals for both leaf and stem resistance was assigned into a 2.7-Mb genomic region on chromosome A09 of B. rapa, harboring about 30 putative resistance-related genes. Significant negative corrections were found between flowering time and relative susceptibility of leaf and stem. The association of flowering time with Sclerotinia resistance is discussed.
Collapse
Affiliation(s)
- Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Liu J, Li W, Ning Y, Shirsekar G, Cai Y, Wang X, Dai L, Wang Z, Liu W, Wang GL. The U-Box E3 ligase SPL11/PUB13 is a convergence point of defense and flowering signaling in plants. PLANT PHYSIOLOGY 2012; 160:28-37. [PMID: 22659522 PMCID: PMC3440206 DOI: 10.1104/pp.112.199430] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/30/2012] [Indexed: 05/19/2023]
|
57
|
Li W, Ahn IP, Ning Y, Park CH, Zeng L, Whitehill JG, Lu H, Zhao Q, Ding B, Xie Q, Zhou JM, Dai L, Wang GL. The U-Box/ARM E3 ligase PUB13 regulates cell death, defense, and flowering time in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:239-50. [PMID: 22383540 PMCID: PMC3366716 DOI: 10.1104/pp.111.192617] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/27/2012] [Indexed: 05/18/2023]
Abstract
The components in plant signal transduction pathways are intertwined and affect each other to coordinate plant growth, development, and defenses to stresses. The role of ubiquitination in connecting these pathways, particularly plant innate immunity and flowering, is largely unknown. Here, we report the dual roles for the Arabidopsis (Arabidopsis thaliana) Plant U-box protein13 (PUB13) in defense and flowering time control. In vitro ubiquitination assays indicated that PUB13 is an active E3 ubiquitin ligase and that the intact U-box domain is required for the E3 ligase activity. Disruption of the PUB13 gene by T-DNA insertion results in spontaneous cell death, the accumulation of hydrogen peroxide and salicylic acid (SA), and elevated resistance to biotrophic pathogens but increased susceptibility to necrotrophic pathogens. The cell death, hydrogen peroxide accumulation, and resistance to necrotrophic pathogens in pub13 are enhanced when plants are pretreated with high humidity. Importantly, pub13 also shows early flowering under middle- and long-day conditions, in which the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and FLOWERING LOCUS T is induced while FLOWERING LOCUS C expression is suppressed. Finally, we found that two components involved in the SA-mediated signaling pathway, SID2 and PAD4, are required for the defense and flowering-time phenotypes caused by the loss of function of PUB13. Taken together, our data demonstrate that PUB13 acts as an important node connecting SA-dependent defense signaling and flowering time regulation in Arabidopsis.
Collapse
|
58
|
Sager R, Lee JY. To close or not to close: plasmodesmata in defense. PLANT SIGNALING & BEHAVIOR 2012; 7:431-436. [PMID: 22499206 PMCID: PMC3443928 DOI: 10.4161/psb.19151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cell death is a biological process that occurs during differentiation and maturation of certain cell types, during senescence, or as part of a defense mechanism against microbial pathogens. Intercellular coordination is thought to be necessary to restrict the spread of death signals, although little is known about how cell death is controlled at the tissue level. The recent characterization of a plasmodesmal protein, PDLP5, has revealed an important role for plasmodesmal control during salicylic acid-mediated cell death responses. Here, we discuss molecular factors that are potentially involved in PDLP5 expression, and explore possible signaling networks that PDLP5 interacts with during basal defense responses.
Collapse
|
59
|
Tsuchiya T, Eulgem T. EMSY-like genes are required for full RPP7-mediated race-specific immunity and basal defense in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1573-81. [PMID: 21830950 DOI: 10.1094/mpmi-05-11-0123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Arabidopsis thaliana gene enhanced downy mildew 2 (EDM2) encodes a nuclear protein required for RPP7-mediated race-specific disease resistance against Hyaloperonospora arabidopsidis, proper floral transition and additional developmental processes. Transcript levels of the disease-resistance gene RPP7 are enhanced by EDM2 while those of the floral suppressor FLC are repressed by EDM2. By yeast two-hybrid screening for EDM2-interacting proteins, we identified AtEML1, a member of a small group of four Arabidopsis proteins containing an EMSY N-terminal domain, a central Agenet domain, and a C-terminal coiled-coil motif. Using T-DNA mutants combined with silencing by artificial microRNAs, we found AtEML1, AtEML2, and, likely, AtEML4 to contribute to RPP7-mediated immunity. Besides this, AtEML1 and AtEML2 participate in a second EDM2-dependent function and affect floral transition. Unlike EDM2, whose role in immunity appears to be limited to RPP7-mediated disease resistance, some AtEML members contribute to basal defense, an unspecific general defense mechanism. Domain architectures of EDM2 as well as AtEML proteins suggest roles of these proteins in the regulation of chromatin states. Thus, possible cooperation of AtEML members with EDM2 at the level of chromatin dynamics may link race-specific pathogen recognition to general defense mechanisms.
Collapse
Affiliation(s)
- Tokuji Tsuchiya
- Department of Botany and Plant Sciences, University of California, CA, USA
| | | |
Collapse
|
60
|
Alcázar R, Parker JE. The impact of temperature on balancing immune responsiveness and growth in Arabidopsis. TRENDS IN PLANT SCIENCE 2011; 16:666-75. [PMID: 21963982 DOI: 10.1016/j.tplants.2011.09.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/28/2011] [Accepted: 09/05/2011] [Indexed: 05/21/2023]
Abstract
Plants have evolved polymorphic immune receptors to recognize pathogens causing disease. However, triggering of resistance needs to be tuned to the local environment to maintain a balance between defense and growth. We consider here the impact of temperature as a key environmental factor influencing immune pathway activation in Arabidopsis. Genetic compensatory and molecular buffering mechanisms affecting the diversification, functionality and subcellular dynamics of immune receptors, reveal multiple points at which temperature intersects with host resistance signaling systems, including a role of at least one receptor in sensing temperature change. Analysis of temperature-dependent autoimmunity caused by allelic mismatches in hybrids of evolutionary diverged Arabidopsis accessions is illuminating processes by which plants maintain 'poise' between immune responsiveness and fitness in natural populations.
Collapse
Affiliation(s)
- Rubén Alcázar
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany.
| | | |
Collapse
|
61
|
Abstract
Properly coordinated defense signaling networks are critical for the fitness of plants. One hub of the defense networks is centered on salicylic acid (SA), which plays a key role in activating disease resistance in plants. However, while a number of genes are known to affect SA-mediated defense, relatively little is known about how these gene interact genetically with each other. Here we exploited the unique defense-sensitized Arabidopsis mutant accelerated cell death (acd) 6-1 to dissect functional relationships among key components in the SA hub. We show that while enhanced disease susceptibility (eds) 1-2 and phytoalexin deficient (pad) 4-1 suppressed acd6-1-conferred small size, cell death, and defense phenotypes, a combination of these two mutations did not incur additive suppression. This suggests that EDS1 and PAD4 act in the same signaling pathway. To further evaluate genetic interactions among SA regulators, we constructed 10 pairwise crosses in the acd6-1 background among mutants defective in: SA INDUCTION-DEFICIENT 2 for SA biosynthesis; AGD2-LIKE DEFENSE 1, EDS5, and PAD4 for SA accumulation; and NONEXPRESSOR OF PR GENES 1 for SA signaling. Systematic analysis of the triple mutants based on their suppression of acd6-1-conferred phenotypes revealed complex and interactive genetic relationships among the tested SA genes. Our results suggest a more comprehensive view of the gene networks governing SA function and provide a framework for further interrogation of the important roles of SA and possibly other signaling molecules in regulating plant disease resistance.
Collapse
|
62
|
Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF. Salicylic Acid biosynthesis and metabolism. THE ARABIDOPSIS BOOK 2011; 9:e0156. [PMID: 22303280 PMCID: PMC3268552 DOI: 10.1199/tab.0156] [Citation(s) in RCA: 413] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented.
Collapse
Affiliation(s)
| | | | - Mary C. Wildermuth
- Department of Plant and Microbial Biology, 221 Koshland Hall, University of California, Berkeley, California 94720-3102
- Address correspondence to and
| | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- Address correspondence to and
| |
Collapse
|