51
|
Saripalli G, Gupta PK. AGPase: its role in crop productivity with emphasis on heat tolerance in cereals. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1893-1916. [PMID: 26152573 DOI: 10.1007/s00122-015-25652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/16/2015] [Indexed: 05/26/2023]
Abstract
AGPase, a key enzyme of starch biosynthetic pathway, has a significant role in crop productivity. Thermotolerant variants of AGPase in cereals may be used for developing cultivars, which may enhance productivity under heat stress. Improvement of crop productivity has always been the major goal of plant breeders to meet the global demand for food. However, crop productivity itself is influenced in a large measure by a number of abiotic stresses including heat, which causes major losses in crop productivity. In cereals, crop productivity in terms of grain yield mainly depends upon the seed starch content so that starch biosynthesis and the enzymes involved in this process have been a major area of investigation for plant physiologists and plant breeders alike. Considerable work has been done on AGPase and its role in crop productivity, particularly under heat stress, because this enzyme is one of the major enzymes, which catalyses the rate-limiting first committed key enzymatic step of starch biosynthesis. Keeping the above in view, this review focuses on the basic features of AGPase including its structure, regulatory mechanisms involving allosteric regulators, its sub-cellular localization and its genetics. Major emphasis, however, has been laid on the genetics of AGPases and its manipulation for developing high yielding cultivars that will have comparable productivity under heat stress. Some important thermotolerant variants of AGPase, which mainly involve specific amino acid substitutions, have been highlighted, and the prospects of using these thermotolerant variants of AGPase in developing cultivars for heat prone areas have been discussed. The review also includes a brief account on transgenics for AGPase, which have been developed for basic studies and crop improvement.
Collapse
Affiliation(s)
- Gautam Saripalli
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India
| | - Pushpendra Kumar Gupta
- Molecular Biology Laboratory, Department of Genetics and Plant Breeding, Ch.Charan Singh University, Meerut, 250004, India.
| |
Collapse
|
52
|
Baute J, Herman D, Coppens F, De Block J, Slabbinck B, Dell'Acqua M, Pè ME, Maere S, Nelissen H, Inzé D. Correlation analysis of the transcriptome of growing leaves with mature leaf parameters in a maize RIL population. Genome Biol 2015; 16:168. [PMID: 26357925 PMCID: PMC4566308 DOI: 10.1186/s13059-015-0735-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/30/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND To sustain the global requirements for food and renewable resources, unraveling the molecular networks underlying plant growth is becoming pivotal. Although several approaches to identify genes and networks involved in final organ size have been proven successful, our understanding remains fragmentary. RESULTS Here, we assessed variation in 103 lines of the Zea mays B73xH99 RIL population for a set of final leaf size and whole shoot traits at the seedling stage, complemented with measurements capturing growth dynamics, and cellular measurements. Most traits correlated well with the size of the division zone, implying that the molecular basis of final leaf size is already defined in dividing cells of growing leaves. Therefore, we searched for association between the transcriptional variation in dividing cells of the growing leaf and final leaf size and seedling biomass, allowing us to identify genes and processes correlated with the specific traits. A number of these genes have a known function in leaf development. Additionally, we illustrated that two independent mechanisms contribute to final leaf size, maximal growth rate and the duration of growth. CONCLUSIONS Untangling complex traits such as leaf size by applying in-depth phenotyping allows us to define the relative contributions of the components and their mutual associations, facilitating dissection of the biological processes and regulatory networks underneath.
Collapse
Affiliation(s)
- Joke Baute
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Dorota Herman
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Frederik Coppens
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Jolien De Block
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Bram Slabbinck
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Matteo Dell'Acqua
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Steven Maere
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Hilde Nelissen
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Dirk Inzé
- Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, Technologiepark 927, 9052, Ghent, Belgium. .,Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
55
|
Zhang M, Ma CY, Lv DW, Zhen SM, Li XH, Yan YM. Comparative phosphoproteome analysis of the developing grains in bread wheat (Triticum aestivum L.) under well-watered and water-deficit conditions. J Proteome Res 2014; 13:4281-97. [PMID: 25145454 DOI: 10.1021/pr500400t] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Wheat (Triticum aestivum), one of the most important cereal crops, is often threatened by drought. In this study, water deficit significantly reduced the height of plants and yield of grains. To explore further the effect of drought stress on the development and yield of grains, we first performed a large scale phosphoproteome analysis of developing grains in wheat. A total of 590 unique phosphopeptides, representing 471 phosphoproteins, were identified under well-watered conditions. Motif-X analysis showed that four motifs were enriched, including [sP], [Rxxs], [sDxE], and [sxD]. Through comparative phosphoproteome analysis between well-watered and water-deficit conditions, we found that 63 unique phosphopeptides, corresponding to 61 phosphoproteins, showed significant changes in phosphorylation level (≥2-fold intensities). Functional analysis suggested that some of these proteins may be involved in signal transduction, embryo and endosperm development of grains, and drought response and defense under water-deficit conditions. Moreover, we also found that some chaperones may play important roles in protein refolding or degradation when the plant is subjected to water stress. These results provide a detailed insight into the stress response and defense mechanisms of developmental grains at the phosphoproteome level. They also suggested some potential candidates for further study of transgenosis and drought stress as well as incorporation into molecular breeding for drought resistance.
Collapse
Affiliation(s)
- Ming Zhang
- College of Life Science, Capital Normal University , 100048 Beijing, China
| | | | | | | | | | | |
Collapse
|
57
|
Burrieza HP, López-Fernández MP, Maldonado S. Analogous reserve distribution and tissue characteristics in quinoa and grass seeds suggest convergent evolution. FRONTIERS IN PLANT SCIENCE 2014; 5:546. [PMID: 25360139 PMCID: PMC4199267 DOI: 10.3389/fpls.2014.00546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/24/2014] [Indexed: 05/09/2023]
Abstract
Quinoa seeds are highly nutritious due to the quality of their proteins and lipids and the wide range of minerals and vitamins they store. Three compartments can be distinguished within the mature seed: embryo, endosperm, and perisperm. The distribution of main storage reserves is clearly different in those areas: the embryo and endosperm store proteins, lipids, and minerals, and the perisperm stores starch. Tissues equivalent (but not homologous) to those found in grasses can be identified in quinoa, suggesting the effectiveness of this seed reserve distribution strategy; as in cells of grass starchy endosperm, the cells of the quinoa perisperm endoreduplicate, increase in size, synthesize starch, and die during development. In addition, both systems present an extra-embryonic tissue that stores proteins, lipids and minerals: in gramineae, the aleurone layer(s) of the endosperm; in quinoa, the micropylar endosperm; in both cases, the tissues are living. Moreover, the quinoa micropylar endosperm and the coleorhiza in grasses play similar roles, protecting the root in the quiescent seed and controlling dormancy during germination. This investigation is just the beginning of a broader and comparative study of the development of quinoa and grass seeds. Several questions arise from this study, such as: how are synthesis and activation of seed proteins and enzymes regulated during development and germination, what are the genes involved in these processes, and lastly, what is the genetic foundation justifying the analogy to grasses.
Collapse
Affiliation(s)
- Hernán P. Burrieza
- Instituto de Biodiversidad y Biologia Experimental y Aplicada – Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos AiresArgentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos AiresArgentina
| | - María P. López-Fernández
- Instituto de Biodiversidad y Biologia Experimental y Aplicada – Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos AiresArgentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos AiresArgentina
| | - Sara Maldonado
- Instituto de Biodiversidad y Biologia Experimental y Aplicada – Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos AiresArgentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos AiresArgentina
- *Correspondence: Sara Maldonado, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires C1428EGA, Argentina e-mail:
| |
Collapse
|