51
|
Li L, Collier B, Spanu PD. Isolation of Powdery Mildew Haustoria from Infected Barley. Bio Protoc 2019; 9:e3299. [PMID: 33654812 DOI: 10.21769/bioprotoc.3299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/18/2019] [Accepted: 06/23/2019] [Indexed: 11/02/2022] Open
Abstract
Blumeria graminis is a fungus that causes powdery mildews on grasses, such as barley. Investigations of this pathogen present many challenges due to its obligate biotrophic nature. This means that the fungus can only grow in the presence of a living host plant. B. graminis forms epiphytic mycelia on the plant surface and feeding organs (haustoria) inside the epidermal cells of the host plant. Therefore, it is difficult to separate the fungus from plant tissues. This protocol shows how to obtain different fungal structures from powdery mildew infected barley leaves. The epiphytic mycelia including conidia and conidiophores can be separated after immersing the infected leaves into 5% cellulose acetate dissolved in acetone, and peeling off the cellulose acetate membrane. Then, the haustoria are isolated from dissected epidermis after cellulase degradation of plant cell walls. The isolated haustoria remain intact with few plant impurities. The haustoria may be visualized by epifluorescence microscopy after staining with the chitin-specific dye WGA-Alexa Fluor 488. Finally, dissected material can be either processed immediately or kept at -80 °C for long-term storage for studies on gene expression and protein identification, for example by mass spectrometry.
Collapse
Affiliation(s)
- Linhan Li
- Department of Life Sciences, Imperial College London, London, UK
| | - Benjamin Collier
- Department of Life Sciences, Imperial College London, London, UK
| | - Pietro D Spanu
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
52
|
Jones JDG. Flor-iculture: Ellis and Dodds' Illumination of Gene-for-Gene Biology. THE PLANT CELL 2019; 31:1204-1205. [PMID: 31036596 PMCID: PMC6588296 DOI: 10.1105/tpc.19.00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Jonathan D G Jones
- The Sainsbury Laboratory University of East AngliaNorwich, United Kingdom
| |
Collapse
|
53
|
Ma Z, Liu JJ, Zamany A. Identification and Functional Characterization of an Effector Secreted by Cronartium ribicola. PHYTOPATHOLOGY 2019; 109:942-951. [PMID: 31066346 DOI: 10.1094/phyto-11-18-0427-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cri-9402 was identified as a protein effector from Cronartium ribicola, based on the effect of its expression on growth of Pseudomonas syringae Psm ES4326 introduced into transiently transformed tobacco leaves and stably transformed Arabidopsis seedlings. In tobacco leaves transiently expressing its coding sequence, growth of P. syringae Psm ES4326 was inhibited. Expression of pathogenesis-related (PR) protein 2 (PR2), PR4a, endochitinase B, hypersensitive-related 201 (HSR201), HSR203J, and proteinase inhibitor 1 was upregulated but expression of PR1, coronatine insensitive 1, and abscisic acid 1 was significantly suppressed. In transformed Arabidopsis seedlings, the effector stimulated growth of P. syringae Psm ES4326; significantly suppressed expression of PR1, PR2, nonexpresser of pathogenesis-related genes 1 (NPR1), NPR3, NPR4, phytoalexin deficient 4, and salicylic acid induction deficient 2; and enhanced expression of plant defensin 1.2 (PDF1.2). The above results showed that the majority of responses to this effector in tobacco leaves were converse to those in transformed Arabidopsis. We could conclude that Cri-9402 promoted disease resistance in tobacco leaves and disease susceptibility in Arabidopsis seedlings. Its transcript was mainly expressed in aeciospores of C. ribicola and was probably involved in production or germination of aeciospores, and it was an effector potentially functioning in white pine-blister rust interactions.
Collapse
Affiliation(s)
- Zhenguo Ma
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
| | - Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5, Canada
| |
Collapse
|
54
|
Wan L, Koeck M, Williams SJ, Ashton AR, Lawrence GJ, Sakakibara H, Kojima M, Böttcher C, Ericsson DJ, Hardham AR, Jones DA, Ellis JG, Kobe B, Dodds PN. Structural and functional insights into the modulation of the activity of a flax cytokinin oxidase by flax rust effector AvrL567-A. MOLECULAR PLANT PATHOLOGY 2019; 20:211-222. [PMID: 30242946 PMCID: PMC6637871 DOI: 10.1111/mpp.12749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
During infection, plant pathogens secrete effector proteins to facilitate colonization. In comparison with our knowledge of bacterial effectors, the current understanding of how fungal effectors function is limited. In this study, we show that the effector AvrL567-A from the flax rust fungus Melampsora lini interacts with a flax cytosolic cytokinin oxidase, LuCKX1.1, using both yeast two-hybrid and in planta bimolecular fluorescence assays. Purified LuCKX1.1 protein shows catalytic activity against both N6-(Δ2-isopentenyl)-adenine (2iP) and trans-zeatin (tZ) substrates. Incubation of LuCKX1.1 with AvrL567-A results in increased catalytic activity against both substrates. The crystal structure of LuCKX1.1 and docking studies with AvrL567-A indicate that the AvrL567 binding site involves a flexible surface-exposed region that surrounds the cytokinin substrate access site, which may explain its effect in modulating LuCKX1.1 activity. Expression of AvrL567-A in transgenic flax plants gave rise to an epinastic leaf phenotype consistent with hormonal effects, although no difference in overall cytokinin levels was observed. We propose that, during infection, plant pathogens may differentially modify the levels of extracellular and intracellular cytokinins.
Collapse
Affiliation(s)
- Li Wan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQLD4072Australia
- Department of BiologyUniversity of North CarolinaChapel HillNorth Carolina27599‐3280USA
| | - Markus Koeck
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Simon J. Williams
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQLD4072Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Anthony R. Ashton
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Gregory J. Lawrence
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource ScienceYokohamaKanagawa230‐0045Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource ScienceYokohamaKanagawa230‐0045Japan
| | - Christine Böttcher
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodAdelaideSA5064Australia
| | - Daniel J. Ericsson
- Australian SynchrotronMacromolecular CrystallographyClaytonVictoria3168Australia
| | - Adrienne R. Hardham
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - David A. Jones
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Jeffrey G. Ellis
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQLD4072Australia
| | - Peter N. Dodds
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| |
Collapse
|
55
|
Kapos P, Devendrakumar KT, Li X. Plant NLRs: From discovery to application. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:3-18. [PMID: 30709490 DOI: 10.1016/j.plantsci.2018.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/09/2023]
Abstract
Plants require a complex immune system to defend themselves against a wide range of pathogens which threaten their growth and development. The nucleotide-binding leucine-rich repeat proteins (NLRs) are immune sensors that recognize effectors delivered by pathogens. The first NLR was cloned more than twenty years ago. Since this initial discovery, NLRs have been described as key components of plant immunity responsible for pathogen recognition and triggering defense responses. They have now been described in most of the well-studied mulitcellular plant species, with most having large NLR repertoires. As research has progressed so has the understanding of how NLRs interact with their recognition substrates and how they in turn activate downstream signalling. It has also become apparent that NLR regulation occurs at the transcriptional, post-transcriptional, translational, and post-translational levels. Even before the first NLR was cloned, breeders were utilising such genes to increase crop performance. Increased understanding of the mechanistic details of the plant immune system enable the generation of plants resistant against devastating pathogens. This review aims to give an updated summary of the NLR field.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
56
|
Liu L, Xu L, Jia Q, Pan R, Oelmüller R, Zhang W, Wu C. Arms race: diverse effector proteins with conserved motifs. PLANT SIGNALING & BEHAVIOR 2019; 14:1557008. [PMID: 30621489 PMCID: PMC6351098 DOI: 10.1080/15592324.2018.1557008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effector proteins play important roles in the infection by pathogenic oomycetes and fungi or the colonization by endophytic and mycorrhizal fungi. They are either translocated into the host plant cells via specific translocation mechanisms and function in the host's cytoplasm or nucleus, or they reside in the apoplast of the plant cells and act at the extracellular host-microbe interface. Many effector proteins possess conserved motifs (such as the RXLR, CRN, LysM, RGD, DELD, EAR, RYWT, Y/F/WXC or CFEM motifs) localized in their N- or C-terminal regions. Analysis of the functions of effector proteins, especially so-called "core effectors", is crucial for the understanding of pathogenicity/symbiosis mechanisms and plant defense strategies, and helps to develop breeding strategies for pathogen-resistant cultivars, and to increase crop yield and quality as well as abiotic stress resistance. This review summarizes current knowledge about these effector proteins with the conversed motifs and their involvement in pathogenic or mutualistic plant/fungal interactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China; Chu Wu College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
- Institute of Plant Ecology and Environmental Restoration, Yangtze University, Jingzhou, China
| |
Collapse
|
57
|
Omidvar V, Dugyala S, Li F, Rottschaefer SM, Miller ME, Ayliffe M, Moscou MJ, Kianian SF, Figueroa M. Detection of Race-Specific Resistance Against Puccinia coronata f. sp. avenae in Brachypodium Species. PHYTOPATHOLOGY 2018; 108:1443-1454. [PMID: 29923800 DOI: 10.1094/phyto-03-18-0084-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oat crown rust caused by Puccinia coronata f. sp. avenae is the most destructive foliar disease of cultivated oat. Characterization of genetic factors controlling resistance responses to Puccinia coronata f. sp. avenae in nonhost species could provide new resources for developing disease protection strategies in oat. We examined symptom development and fungal colonization levels of a collection of Brachypodium distachyon and B. hybridum accessions infected with three North American P. coronata f. sp. avenae isolates. Our results demonstrated that colonization phenotypes are dependent on both host and pathogen genotypes, indicating a role for race-specific responses in these interactions. These responses were independent of the accumulation of reactive oxygen species. Expression analysis of several defense-related genes suggested that salicylic acid and ethylene-mediated signaling but not jasmonic acid are components of resistance reaction to P. coronata f. sp. avenae. Our findings provide the basis to conduct a genetic inheritance study to examine whether effector-triggered immunity contributes to nonhost resistance to P. coronata f. sp. avenae in Brachypodium spp.
Collapse
Affiliation(s)
- Vahid Omidvar
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Sheshanka Dugyala
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Feng Li
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Susan M Rottschaefer
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Marisa E Miller
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Mick Ayliffe
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Matthew J Moscou
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Shahryar F Kianian
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Melania Figueroa
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| |
Collapse
|
58
|
Sperschneider J, Dodds PN, Gardiner DM, Singh KB, Taylor JM. Improved prediction of fungal effector proteins from secretomes with EffectorP 2.0. MOLECULAR PLANT PATHOLOGY 2018; 19:2094-2110. [PMID: 29569316 PMCID: PMC6638006 DOI: 10.1111/mpp.12682] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 05/14/2023]
Abstract
Plant-pathogenic fungi secrete effector proteins to facilitate infection. We describe extensive improvements to EffectorP, the first machine learning classifier for fungal effector prediction. EffectorP 2.0 is now trained on a larger set of effectors and utilizes a different approach based on an ensemble of classifiers trained on different subsets of negative data, offering different views on classification. EffectorP 2.0 achieves an accuracy of 89%, compared with 82% for EffectorP 1.0 and 59.8% for a small size classifier. Important features for effector prediction appear to be protein size, protein net charge as well as the amino acids serine and cysteine. EffectorP 2.0 decreases the number of predicted effectors in secretomes of fungal plant symbionts and saprophytes by 40% when compared with EffectorP 1.0. However, EffectorP 1.0 retains value, and combining EffectorP 1.0 and 2.0 results in a stringent classifier with a low false positive rate of 9%. EffectorP 2.0 predicts significant enrichments of effectors in 12 of 13 sets of infection-induced proteins from diverse fungal pathogens, whereas a small cysteine-rich classifier detects enrichment in only seven of 13. EffectorP 2.0 will fast track the prioritization of high-confidence effector candidates for functional validation and aid in improving our understanding of effector biology. EffectorP 2.0 is available at http://effectorp.csiro.au.
Collapse
Affiliation(s)
- Jana Sperschneider
- Centre for Environment and Life Sciences, CSIRO Agriculture and FoodPerth, WA 6014Australia
| | - Peter N. Dodds
- Black Mountain Laboratories, CSIRO Agriculture and FoodCanberra, ACT 2601Australia
| | - Donald M. Gardiner
- CSIRO Agriculture and FoodQueensland Bioscience PrecinctBrisbane, Qld 4067Australia
| | - Karam B. Singh
- Centre for Environment and Life Sciences, CSIRO Agriculture and FoodPerth, WA 6014Australia
- Department of Environment and Agriculture, Centre for Crop and Disease ManagementCurtin UniversityBentley, WA 6102Australia
| | - Jennifer M. Taylor
- Black Mountain Laboratories, CSIRO Agriculture and FoodCanberra, ACT 2601Australia
| |
Collapse
|
59
|
Zhang X, Farah N, Rolston L, Ericsson DJ, Catanzariti A, Bernoux M, Ve T, Bendak K, Chen C, Mackay JP, Lawrence GJ, Hardham A, Ellis JG, Williams SJ, Dodds PN, Jones DA, Kobe B. Crystal structure of the Melampsora lini effector AvrP reveals insights into a possible nuclear function and recognition by the flax disease resistance protein P. MOLECULAR PLANT PATHOLOGY 2018; 19:1196-1209. [PMID: 28817232 PMCID: PMC6638141 DOI: 10.1111/mpp.12597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 05/23/2023]
Abstract
The effector protein AvrP is secreted by the flax rust fungal pathogen (Melampsora lini) and recognized specifically by the flax (Linum usitatissimum) P disease resistance protein, leading to effector-triggered immunity. To investigate the biological function of this effector and the mechanisms of specific recognition by the P resistance protein, we determined the crystal structure of AvrP. The structure reveals an elongated zinc-finger-like structure with a novel interleaved zinc-binding topology. The residues responsible for zinc binding are conserved in AvrP effector variants and mutations of these motifs result in a loss of P-mediated recognition. The first zinc-coordinating region of the structure displays a positively charged surface and shows some limited similarities to nucleic acid-binding and chromatin-associated proteins. We show that the majority of the AvrP protein accumulates in the plant nucleus when transiently expressed in Nicotiana benthamiana cells, suggesting a nuclear pathogenic function. Polymorphic residues in AvrP and its allelic variants map to the protein surface and could be associated with differences in recognition specificity. Several point mutations of residues on the non-conserved surface patch result in a loss of recognition by P, suggesting that these residues are required for recognition.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- School of Chemistry and Molecular BiosciencesAustralian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of QueenslandBrisbaneQueensland 4072Australia
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraAustralian Capital Territory 2601Australia
| | - Nadya Farah
- Division of Plant SciencesResearch School of Biology, Australian National University, ActonAustralian Capital Territory 2601Australia
| | - Laura Rolston
- Division of Plant SciencesResearch School of Biology, Australian National University, ActonAustralian Capital Territory 2601Australia
| | - Daniel J. Ericsson
- School of Chemistry and Molecular BiosciencesAustralian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of QueenslandBrisbaneQueensland 4072Australia
- Australian Synchrotron, Macromolecular crystallographyClaytonVictoria 3168Australia
| | - Ann‐Maree Catanzariti
- Division of Plant SciencesResearch School of Biology, Australian National University, ActonAustralian Capital Territory 2601Australia
| | - Maud Bernoux
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraAustralian Capital Territory 2601Australia
| | - Thomas Ve
- School of Chemistry and Molecular BiosciencesAustralian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of QueenslandBrisbaneQueensland 4072Australia
- Institute for Glycomics, Griffith UniversitySouthportQueensland 4222Australia
| | - Katerina Bendak
- School of Molecular BioscienceUniversity of SydneySydneyNew South Wales 2006Australia
| | - Chunhong Chen
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraAustralian Capital Territory 2601Australia
| | - Joel P. Mackay
- School of Molecular BioscienceUniversity of SydneySydneyNew South Wales 2006Australia
| | - Gregory J. Lawrence
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraAustralian Capital Territory 2601Australia
| | - Adrienne Hardham
- Division of Plant SciencesResearch School of Biology, Australian National University, ActonAustralian Capital Territory 2601Australia
| | - Jeffrey G. Ellis
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraAustralian Capital Territory 2601Australia
| | - Simon J. Williams
- School of Chemistry and Molecular BiosciencesAustralian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of QueenslandBrisbaneQueensland 4072Australia
- Division of Plant SciencesResearch School of Biology, Australian National University, ActonAustralian Capital Territory 2601Australia
| | - Peter N. Dodds
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraAustralian Capital Territory 2601Australia
| | - David A. Jones
- Division of Plant SciencesResearch School of Biology, Australian National University, ActonAustralian Capital Territory 2601Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular BiosciencesAustralian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of QueenslandBrisbaneQueensland 4072Australia
| |
Collapse
|
60
|
Tang C, Xu Q, Zhao M, Wang X, Kang Z. Understanding the lifestyles and pathogenicity mechanisms of obligate biotrophic fungi in wheat: The emerging genomics era. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
61
|
Zhao M, Wang J, Ji S, Chen Z, Xu J, Tang C, Chen S, Kang Z, Wang X. Candidate Effector Pst_8713 Impairs the Plant Immunity and Contributes to Virulence of Puccinia striiformis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2018; 9:1294. [PMID: 30254653 PMCID: PMC6141802 DOI: 10.3389/fpls.2018.01294] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/17/2018] [Indexed: 05/20/2023]
Abstract
Puccinia striiformis f. sp. tritici (Pst), the causal agent of stripe rust, is an obligate biotrophic pathogen responsible for severe wheat disease epidemics worldwide. Pst and other rust fungi are acknowledged to deliver many effector proteins to the host, but little is known about the effectors' functions. Here, we report a candidate effector Pst_8713 isolated based on the genome data of CY32 and the expression of Pst_8713 is highly induced during the early infection stage. The Pst_8713 gene shows a low level of intra-species polymorphism. It has a functional N-terminal signal peptide and its product was found in the host cytoplasm and nucleus. Co-infiltrations in Nicotiana benthamiana demonsrated that Pst_8713 was capable of suppressing cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. Overexpression of Pst_8713 in plants suppressed pattern-triggered immunity (PTI) -associated callose deposition and expression of PTI-associated marker genes and promoted bacterial growth in planta. Effector-triggered immunity (ETI) induced by an avirulent Pst isolate was weakened when we overexpressed Pst_8713 in wheat leaves which accompanied by reduction of reactive oxygen species (ROS) accumulation and hypersensitive response (HR). In addition, the host induced gene silencing (HIGS) experiment showed that knockdown of Pst_8713 weakened the virulence of Pst by producing fewer uredinia. These results indicated that candidate effector Pst_8713 is involved in plant defense suppression and contributes to enhancing the Pst virulence.
Collapse
|
62
|
Xia C, Wang M, Cornejo OE, Jiwan DA, See DR, Chen X. Secretome Characterization and Correlation Analysis Reveal Putative Pathogenicity Mechanisms and Identify Candidate Avirulence Genes in the Wheat Stripe Rust Fungus Puccinia striiformis f. sp. tritici. Front Microbiol 2017; 8:2394. [PMID: 29312156 PMCID: PMC5732408 DOI: 10.3389/fmicb.2017.02394] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/20/2017] [Indexed: 12/30/2022] Open
Abstract
Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat worldwide. Planting resistant cultivars is an effective way to control this disease, but race-specific resistance can be overcome quickly due to the rapid evolving Pst population. Studying the pathogenicity mechanisms is critical for understanding how Pst virulence changes and how to develop wheat cultivars with durable resistance to stripe rust. We re-sequenced 7 Pst isolates and included additional 7 previously sequenced isolates to represent balanced virulence/avirulence profiles for several avirulence loci in seretome analyses. We observed an uneven distribution of heterozygosity among the isolates. Secretome comparison of Pst with other rust fungi identified a large portion of species-specific secreted proteins, suggesting that they may have specific roles when interacting with the wheat host. Thirty-two effectors of Pst were identified from its secretome. We identified candidates for Avr genes corresponding to six Yr genes by correlating polymorphisms for effector genes to the virulence/avirulence profiles of the 14 Pst isolates. The putative AvYr76 was present in the avirulent isolates, but absent in the virulent isolates, suggesting that deleting the coding region of the candidate avirulence gene has produced races virulent to resistance gene Yr76. We conclude that incorporating avirulence/virulence phenotypes into correlation analysis with variations in genomic structure and secretome, particularly presence/absence polymorphisms of effectors, is an efficient way to identify candidate Avr genes in Pst. The candidate effector genes provide a rich resource for further studies to determine the evolutionary history of Pst populations and the co-evolutionary arms race between Pst and wheat. The Avr candidates identified in this study will lead to cloning avirulence genes in Pst, which will enable us to understand molecular mechanisms underlying Pst-wheat interactions, to determine the effectiveness of resistance genes and further to develop durable resistance to stripe rust.
Collapse
Affiliation(s)
- Chongjing Xia
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Omar E. Cornejo
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Derick A. Jiwan
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
| | - Deven R. See
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
| |
Collapse
|
63
|
Cooper B, Campbell KB. Protection Against Common Bean Rust Conferred by a Gene-Silencing Method. PHYTOPATHOLOGY 2017; 107:920-927. [PMID: 28437139 DOI: 10.1094/phyto-03-17-0095-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rust disease of the dry bean plant, Phaseolus vulgaris, is caused by the fungus Uromyces appendiculatus. The fungus acquires its nutrients and energy from bean leaves using a specialized cell structure, the haustorium, through which it secretes effector proteins that contribute to pathogenicity by defeating the plant immune system. Candidate effectors have been identified by DNA sequencing and motif analysis, and some candidates have been observed in infected leaves by mass spectrometry. To assess their roles in pathogenicity, we have inserted small fragments of genes for five candidates into Bean pod mottle virus. Plants were infected with recombinant virus and then challenged with U. appendiculatus. Virus-infected plants expressing gene fragments for four of five candidate effectors accumulated lower amounts of rust and had dramatically less rust disease. By contrast, controls that included a fungal gene fragment for a septin protein not expressed in the haustorium died from a synergistic reaction between the virus and the fungus. The results imply that RNA generated in the plant moved across the fungal haustorium to silence effector genes important to fungal pathogenicity. This study shows that four bean rust fungal genes encode pathogenicity determinants and that the expression of fungal RNA in the plant can be an effective method for protecting bean plants from rust.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| | - Kimberly B Campbell
- Soybean Genomics and Improvement Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705
| |
Collapse
|
64
|
Abstract
The interactions between fungi and plants encompass a spectrum of ecologies ranging from saprotrophy (growth on dead plant material) through pathogenesis (growth of the fungus accompanied by disease on the plant) to symbiosis (growth of the fungus with growth enhancement of the plant). We consider pathogenesis in this article and the key roles played by a range of pathogen-encoded molecules that have collectively become known as effectors.
Collapse
|
65
|
Franceschetti M, Maqbool A, Jiménez-Dalmaroni MJ, Pennington HG, Kamoun S, Banfield MJ. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Microbiol Mol Biol Rev 2017; 81:e00066-16. [PMID: 28356329 PMCID: PMC5485802 DOI: 10.1128/mmbr.00066-16] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungi and oomycetes are filamentous microorganisms that include a diversity of highly developed pathogens of plants. These are sophisticated modulators of plant processes that secrete an arsenal of effector proteins to target multiple host cell compartments and enable parasitic infection. Genome sequencing revealed complex catalogues of effectors of filamentous pathogens, with some species harboring hundreds of effector genes. Although a large fraction of these effector genes encode secreted proteins with weak or no sequence similarity to known proteins, structural studies have revealed unexpected similarities amid the diversity. This article reviews progress in our understanding of effector structure and function in light of these new insights. We conclude that there is emerging evidence for multiple pathways of evolution of effectors of filamentous plant pathogens but that some families have probably expanded from a common ancestor by duplication and diversification. Conserved folds, such as the oomycete WY and the fungal MAX domains, are not predictive of the precise function of the effectors but serve as a chassis to support protein structural integrity while providing enough plasticity for the effectors to bind different host proteins and evolve unrelated activities inside host cells. Further effector evolution and diversification arise via short linear motifs, domain integration and duplications, and oligomerization.
Collapse
Affiliation(s)
- Marina Franceschetti
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Abbas Maqbool
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Helen G Pennington
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
66
|
Yin L, An Y, Qu J, Li X, Zhang Y, Dry I, Wu H, Lu J. Genome sequence of Plasmopara viticola and insight into the pathogenic mechanism. Sci Rep 2017. [PMID: 28417959 DOI: 10.1038/srep4655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
Plasmopara viticola causes downy mildew disease of grapevine which is one of the most devastating diseases of viticulture worldwide. Here we report a 101.3 Mb whole genome sequence of P. viticola isolate 'JL-7-2' obtained by a combination of Illumina and PacBio sequencing technologies. The P. viticola genome contains 17,014 putative protein-coding genes and has ~26% repetitive sequences. A total of 1,301 putative secreted proteins, including 100 putative RXLR effectors and 90 CRN effectors were identified in this genome. In the secretome, 261 potential pathogenicity genes and 95 carbohydrate-active enzymes were predicted. Transcriptional analysis revealed that most of the RXLR effectors, pathogenicity genes and carbohydrate-active enzymes were significantly up-regulated during infection. Comparative genomic analysis revealed that P. viticola evolved independently from the Arabidopsis downy mildew pathogen Hyaloperonospora arabidopsidis. The availability of the P. viticola genome provides a valuable resource not only for comparative genomic analysis and evolutionary studies among oomycetes, but also enhance our knowledge on the mechanism of interactions between this biotrophic pathogen and its host.
Collapse
Affiliation(s)
- Ling Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yunhe An
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Center for Physical and Chemical Analysis, Beijing 100089, China
| | - Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xinlong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ian Dry
- CSIRO Agriculture &Food, Wine Innovation West Building, Hartley Grove, Urrbrae, SA 5064, Australia
| | - Huijuan Wu
- Beijing Center for Physical and Chemical Analysis, Beijing 100089, China
| | - Jiang Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200024, China
| |
Collapse
|
67
|
Yin L, An Y, Qu J, Li X, Zhang Y, Dry I, Wu H, Lu J. Genome sequence of Plasmopara viticola and insight into the pathogenic mechanism. Sci Rep 2017; 7:46553. [PMID: 28417959 PMCID: PMC5394536 DOI: 10.1038/srep46553] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/22/2017] [Indexed: 12/17/2022] Open
Abstract
Plasmopara viticola causes downy mildew disease of grapevine which is one of the most devastating diseases of viticulture worldwide. Here we report a 101.3 Mb whole genome sequence of P. viticola isolate 'JL-7-2' obtained by a combination of Illumina and PacBio sequencing technologies. The P. viticola genome contains 17,014 putative protein-coding genes and has ~26% repetitive sequences. A total of 1,301 putative secreted proteins, including 100 putative RXLR effectors and 90 CRN effectors were identified in this genome. In the secretome, 261 potential pathogenicity genes and 95 carbohydrate-active enzymes were predicted. Transcriptional analysis revealed that most of the RXLR effectors, pathogenicity genes and carbohydrate-active enzymes were significantly up-regulated during infection. Comparative genomic analysis revealed that P. viticola evolved independently from the Arabidopsis downy mildew pathogen Hyaloperonospora arabidopsidis. The availability of the P. viticola genome provides a valuable resource not only for comparative genomic analysis and evolutionary studies among oomycetes, but also enhance our knowledge on the mechanism of interactions between this biotrophic pathogen and its host.
Collapse
Affiliation(s)
- Ling Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yunhe An
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Beijing Center for Physical and Chemical Analysis, Beijing 100089, China
| | - Junjie Qu
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xinlong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ian Dry
- CSIRO Agriculture & Food, Wine Innovation West Building, Hartley Grove, Urrbrae, SA 5064, Australia
| | - Huijuan Wu
- Beijing Center for Physical and Chemical Analysis, Beijing 100089, China
| | - Jiang Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200024, China
| |
Collapse
|
68
|
de Carvalho MCDCG, Costa Nascimento L, Darben LM, Polizel‐Podanosqui AM, Lopes‐Caitar VS, Qi M, Rocha CS, Carazzolle MF, Kuwahara MK, Pereira GAG, Abdelnoor RV, Whitham SA, Marcelino‐Guimarães FC. Prediction of the in planta Phakopsora pachyrhizi secretome and potential effector families. MOLECULAR PLANT PATHOLOGY 2017; 18:363-377. [PMID: 27010366 PMCID: PMC6638266 DOI: 10.1111/mpp.12405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, can cause losses greater than 80%. Despite its economic importance, there is no soybean cultivar with durable ASR resistance. In addition, the P. pachyrhizi genome is not yet available. However, the availability of other rust genomes, as well as the development of sample enrichment strategies and bioinformatics tools, has improved our knowledge of the ASR secretome and its potential effectors. In this context, we used a combination of laser capture microdissection (LCM), RNAseq and a bioinformatics pipeline to identify a total of 36 350 P. pachyrhizi contigs expressed in planta and a predicted secretome of 851 proteins. Some of the predicted secreted proteins had characteristics of candidate effectors: small size, cysteine rich, do not contain PFAM domains (except those associated with pathogenicity) and strongly expressed in planta. A comparative analysis of the predicted secreted proteins present in Pucciniales species identified new members of soybean rust and new Pucciniales- or P. pachyrhizi-specific families (tribes). Members of some families were strongly up-regulated during early infection, starting with initial infection through haustorium formation. Effector candidates selected from two of these families were able to suppress immunity in transient assays, and were localized in the plant cytoplasm and nuclei. These experiments support our bioinformatics predictions and show that these families contain members that have functions consistent with P. pachyrhizi effectors.
Collapse
Affiliation(s)
| | - Leandro Costa Nascimento
- Laboratório de Genômica e Expressão (LGE) – Instituto de Biologia ‐ Universidade Estadual de CampinasCampinasSão PauloCEP 13083‐862Brazil
| | - Luana M. Darben
- Embrapa sojaPlant BiotechnologyLondrinaParanáCEP 70770‐901Brazil
| | | | - Valéria S. Lopes‐Caitar
- Embrapa sojaPlant BiotechnologyLondrinaParanáCEP 70770‐901Brazil
- Universidade Estadual de LondrinaLondrinaParanáCEP 86057‐970Brazil
| | - Mingsheng Qi
- Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | | | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Expressão (LGE) – Instituto de Biologia ‐ Universidade Estadual de CampinasCampinasSão PauloCEP 13083‐862Brazil
| | | | - Goncalo A. G. Pereira
- Laboratório de Genômica e Expressão (LGE) – Instituto de Biologia ‐ Universidade Estadual de CampinasCampinasSão PauloCEP 13083‐862Brazil
| | | | - Steven A. Whitham
- Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | | |
Collapse
|
69
|
Jing L, Guo D, Hu W, Niu X. The prediction of a pathogenesis-related secretome of Puccinia helianthi through high-throughput transcriptome analysis. BMC Bioinformatics 2017; 18:166. [PMID: 28284182 PMCID: PMC5346188 DOI: 10.1186/s12859-017-1577-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 03/03/2017] [Indexed: 11/11/2022] Open
Abstract
Background Many plant pathogen secretory proteins are known to be elicitors or pathogenic factors,which play an important role in the host-pathogen interaction process. Bioinformatics approaches make possible the large scale prediction and analysis of secretory proteins from the Puccinia helianthi transcriptome. The internet-based software SignalP v4.1, TargetP v1.01, Big-PI predictor, TMHMM v2.0 and ProtComp v9.0 were utilized to predict the signal peptides and the signal peptide-dependent secreted proteins among the 35,286 ORFs of the P. helianthi transcriptome. Results 908 ORFs (accounting for 2.6% of the total proteins) were identified as putative secretory proteins containing signal peptides. The length of the majority of proteins ranged from 51 to 300 amino acids (aa), while the signal peptides were from 18 to 20 aa long. Signal peptidase I (SpI) cleavage sites were found in 463 of these putative secretory signal peptides. 55 proteins contained the lipoprotein signal peptide recognition site of signal peptidase II (SpII). Out of 908 secretory proteins, 581 (63.8%) have functions related to signal recognition and transduction, metabolism, transport and catabolism. Additionally, 143 putative secretory proteins were categorized into 27 functional groups based on Gene Ontology terms, including 14 groups in biological process, seven in cellular component, and six in molecular function. Gene ontology analysis of the secretory proteins revealed an enrichment of hydrolase activity. Pathway associations were established for 82 (9.0%) secretory proteins. A number of cell wall degrading enzymes and three homologous proteins specific to Phytophthora sojae effectors were also identified, which may be involved in the pathogenicity of the sunflower rust pathogen. Conclusions This investigation proposes a new approach for identifying elicitors and pathogenic factors. The eventual identification and characterization of 908 extracellularly secreted proteins will advance our understanding of the molecular mechanisms of interactions between sunflower and rust pathogen and will enhance our ability to intervene in disease states. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1577-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lan Jing
- Department of Plant Pathology, Inner Mongolia Agricultural University, Hohhot, 010019, China.
| | - Dandan Guo
- Department of Plant Pathology, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Wenjie Hu
- Department of Plant Pathology, Inner Mongolia Agricultural University, Hohhot, 010019, China
| | - Xiaofan Niu
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
70
|
Cheng Y, Wu K, Yao J, Li S, Wang X, Huang L, Kang Z. PSTha5a23, a candidate effector from the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici, is involved in plant defense suppression and rust pathogenicity. Environ Microbiol 2017; 19:1717-1729. [PMID: 27871149 DOI: 10.1111/1462-2920.13610] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/16/2016] [Indexed: 11/26/2022]
Abstract
During the infection of host plants, pathogens can deliver virulence-associated 'effector' proteins to promote plant susceptibility. However, little is known about effector function in the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici (Pst) that is an important fungal pathogen in wheat production worldwide. Here, they report their findings on an in planta highly induced candidate effector from Pst, PSTha5a23. The PSTha5a23 gene is unique to Pst and shows a low level of intra-species polymorphism. It has a functional N-terminal signal peptide and is translocated to the host cytoplasm after infection. Overexpression of PSTha5a23 in Nicotiana benthamiana was found to suppress the programmed cell death triggered by BAX, PAMP-INF1 and two resistance-related mitogen-activated protein kinases (MKK1 and NPK1). Overexpression of PSTha5a23 in wheat also suppressed pattern-triggered immunity (PTI)-associated callose deposition. In addition, silencing of PSTha5a23 did not change Pst virulence phenotypes; however, overexpression of PSTha5a23 significantly enhanced Pst virulence in wheat. These results indicate that the Pst candidate effector PSTha5a23 plays an important role in plant defense suppression and rust pathogenicity, and also highlight the utility of gene overexpression in plants as a tool for studying effectors from obligate biotrophic pathogens.
Collapse
Affiliation(s)
- Yulin Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Kuan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Juanni Yao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Shumin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Shaanxi, Yangling, 712100, China
| |
Collapse
|
71
|
Wu JQ, Sakthikumar S, Dong C, Zhang P, Cuomo CA, Park RF. Comparative Genomics Integrated with Association Analysis Identifies Candidate Effector Genes Corresponding to Lr20 in Phenotype-Paired Puccinia triticina Isolates from Australia. FRONTIERS IN PLANT SCIENCE 2017; 8:148. [PMID: 28232843 PMCID: PMC5298990 DOI: 10.3389/fpls.2017.00148] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/24/2017] [Indexed: 05/05/2023]
Abstract
Leaf rust is one of the most common and damaging diseases of wheat, and is caused by an obligate biotrophic basidiomycete, Puccinia triticina (Pt). In the present study, 20 Pt isolates from Australia, comprising 10 phenotype-matched pairs with contrasting pathogenicity for Lr20, were analyzed using whole genome sequencing. Compared to the reference genome of the American Pt isolate 1-1 BBBD Race 1, an average of 404,690 single nucleotide polymorphisms (SNPs) per isolate was found and the proportion of heterozygous SNPs was above 87% in the majority of the isolates, demonstrating a high level of polymorphism and a high rate of heterozygosity. From the genome-wide SNPs, a phylogenetic tree was inferred, which consisted of a large clade of 15 isolates representing diverse presumed clonal lineages including 14 closely related isolates and the more diverged isolate 670028, and a small clade of five isolates characterized by lower heterozygosity level. Principle component analysis detected three distinct clusters, corresponding exactly to the two major subsets of the small clade and the large clade comprising all 15 isolates without further separation of isolate 670028. While genome-wide association analysis identified 302 genes harboring at least one SNP associated with Lr20 virulence (p < 0.05), a Wilcoxon rank sum test revealed that 36 and 68 genes had significant (p < 0.05) and marginally significant (p < 0.1) differences in the counts of non-synonymous mutations between Lr20 avirulent and virulent groups, respectively. Twenty of these genes were predicted to have a signal peptide without a transmembrane segment, and hence identified as candidate effector genes corresponding to Lr20. SNP analysis also implicated the potential involvement of epigenetics and small RNA in Pt pathogenicity. Future studies are thus warranted to investigate the biological functions of the candidate effectors as well as the gene regulation mechanisms at epigenetic and post-transcription levels. Our study is the first to integrate phenotype-genotype association with effector prediction in Pt genomes, an approach that may circumvent some of the technical difficulties in working with obligate rust fungi and accelerate avirulence gene identification.
Collapse
Affiliation(s)
- Jing Qin Wu
- Faculty of Agriculture and Environment, Plant Breeding Institute, The University of SydneyNarellan, NSW, Australia
| | - Sharadha Sakthikumar
- Genome Sequencing and Analysis Program, Broad Institute of Massachusetts Institute of Technology (MIT) and HarvardCambridge, MA, USA
| | - Chongmei Dong
- Faculty of Agriculture and Environment, Plant Breeding Institute, The University of SydneyNarellan, NSW, Australia
| | - Peng Zhang
- Faculty of Agriculture and Environment, Plant Breeding Institute, The University of SydneyNarellan, NSW, Australia
| | - Christina A. Cuomo
- Genome Sequencing and Analysis Program, Broad Institute of Massachusetts Institute of Technology (MIT) and HarvardCambridge, MA, USA
| | - Robert F. Park
- Faculty of Agriculture and Environment, Plant Breeding Institute, The University of SydneyNarellan, NSW, Australia
| |
Collapse
|
72
|
Kamel L, Tang N, Malbreil M, San Clemente H, Le Marquer M, Roux C, Frei dit Frey N. The Comparison of Expressed Candidate Secreted Proteins from Two Arbuscular Mycorrhizal Fungi Unravels Common and Specific Molecular Tools to Invade Different Host Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:124. [PMID: 28223991 PMCID: PMC5293756 DOI: 10.3389/fpls.2017.00124] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/20/2017] [Indexed: 05/19/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF), belonging to the fungal phylum Glomeromycota, form mutualistic symbioses with roots of almost 80% of land plants. The release of genomic data from the ubiquitous AMF Rhizophagus irregularis revealed that this species possesses a large set of putative secreted proteins (RiSPs) that could be of major importance for establishing the symbiosis. In the present study, we aimed to identify SPs involved in the establishment of AM symbiosis based on comparative gene expression analyses. We first curated the secretome of the R. irregularis DAOM 197198 strain based on two available genomic assemblies. Then we analyzed the expression patterns of the putative RiSPs obtained from the fungus in symbiotic association with three phylogenetically distant host plants-a monocot, a dicot and a liverwort-in comparison with non-symbiotic stages. We found that 33 out of 84 RiSPs induced in planta were commonly up-regulated in these three hosts. Most of these common RiSPs are small proteins of unknown function that may represent putative host non-specific effector proteins. We further investigated the expressed secretome of Gigaspora rosea, an AM fungal species phylogenetically distant from R. irregularis. G. rosea also presents original symbiotic features, a narrower host spectrum and a restrictive geographic distribution compared to R. irregularis. Interestingly, when analyzing up-regulated G. rosea SPs (GrSPs) in different hosts, a higher ratio of host-specific GrSPs was found compared to RiSPs. Such difference of expression patterns may mirror the restrained host spectrum of G. rosea compared to R. irregularis. Finally, we identified a set of conserved SPs, commonly up-regulated by both fungi in all hosts tested, that could correspond to common keys of AMF to colonize host plants. Our data thus highlight the specificities of two distant AM fungi and help in understanding their conserved and specific strategies to invade different hosts.
Collapse
Affiliation(s)
- Laurent Kamel
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
- Agronutrition, Laboratoire de BiotechnologiesLabege, France
| | - Nianwu Tang
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Mathilde Malbreil
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Morgane Le Marquer
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Nicolas Frei dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| |
Collapse
|
73
|
Maia T, Badel JL, Marin‐Ramirez G, Rocha CDM, Fernandes MB, da Silva JCF, de Azevedo‐Junior GM, Brommonschenkel SH. The Hemileia vastatrix effector HvEC-016 suppresses bacterial blight symptoms in coffee genotypes with the S H 1 rust resistance gene. THE NEW PHYTOLOGIST 2017; 213:1315-1329. [PMID: 27918080 PMCID: PMC6079635 DOI: 10.1111/nph.14334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/16/2016] [Indexed: 05/03/2023]
Abstract
A number of genes that confer resistance to coffee leaf rust (SH 1-SH 9) have been identified within the genus Coffea, but despite many years of research on this pathosystem, the complementary avirulence genes of Hemileia vastatrix have not been reported. After identification of H. vastatrix effector candidate genes (HvECs) expressed at different stages of its lifecycle, we established an assay to characterize HvEC proteins by delivering them into coffee cells via the type-three secretion system (T3SS) of Pseudomonas syringae pv. garcae (Psgc). Employing a calmodulin-dependent adenylate cyclase assay, we demonstrate that Psgc recognizes a heterologous P. syringae T3SS secretion signal which enables us to translocate HvECs into the cytoplasm of coffee cells. Using this Psgc-adapted effector detector vector (EDV) system, we found that HvEC-016 suppresses the growth of Psgc on coffee genotypes with the SH 1 resistance gene. Suppression of bacterial blight symptoms in SH 1 plants was associated with reduced bacterial multiplication. By contrast, HvEC-016 enhanced bacterial multiplication in SH 1-lacking plants. Our findings suggest that HvEC-016 may be recognized by the plant immune system in a SH 1-dependent manner. Thus, our experimental approach is an effective tool for the characterization of effector/avirulence proteins of this important pathogen.
Collapse
Affiliation(s)
- Thiago Maia
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Jorge L. Badel
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Gustavo Marin‐Ramirez
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Cynthia de M. Rocha
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Michelle B. Fernandes
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - José C. F. da Silva
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Gilson M. de Azevedo‐Junior
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| | - Sérgio H. Brommonschenkel
- Departamento de Fitopatologia and National Institute for Plant‐Pest Interactions/Instituto de Biotecnologia Aplicada a Agropecuária‐BIOAGROUniversidade Federal de ViçosaViçosaMG 36570‐000Brazil
| |
Collapse
|
74
|
Zhang X, Nguyen N, Breen S, Outram MA, Dodds PN, Kobe B, Solomon PS, Williams SJ. Production of small cysteine-rich effector proteins in Escherichia coli for structural and functional studies. MOLECULAR PLANT PATHOLOGY 2017; 18:141-151. [PMID: 26915457 PMCID: PMC6638209 DOI: 10.1111/mpp.12385] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/22/2016] [Accepted: 02/22/2016] [Indexed: 05/22/2023]
Abstract
Although the lifestyles and infection strategies of plant pathogens are diverse, a prevailing feature is the use of an arsenal of secreted proteins, known as effectors, which aid in microbial infection. In the case of eukaryotic filamentous pathogens, such as fungi and oomycetes, effector proteins are typically dissimilar, at the protein sequence level, to known protein families and functional domains. Consequently, we currently have a limited understanding of how fungal and oomycete effectors promote disease. Protein biochemistry and structural biology are two methods that can contribute greatly to the understanding of protein function. Both techniques are dependent on obtaining proteins that are pure and functional, and generally require the use of heterologous recombinant protein expression systems. Here, we present a general scheme and methodology for the production and characterization of small cysteine-rich (SCR) effectors utilizing Escherichia coli expression systems. Using this approach, we successfully produced cysteine-rich effectors derived from the biotrophic fungal pathogen Melampsora lini and the necrotrophic fungal pathogen Parastagonospora nodorum. Access to functional recombinant proteins facilitated crystallization and functional experiments. These results are discussed in the context of a general workflow that may serve as a template for others interested in understanding the function of SCR effector(s) from their plant pathogen(s) of interest.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research CentreUniversity of QueenslandBrisbaneQld4072Australia
| | - Neal Nguyen
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research CentreUniversity of QueenslandBrisbaneQld4072Australia
| | - Susan Breen
- Research School of BiologyThe Australian National UniversityCanberraACT 0200Australia
| | - Megan A. Outram
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research CentreUniversity of QueenslandBrisbaneQld4072Australia
| | | | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research CentreUniversity of QueenslandBrisbaneQld4072Australia
| | - Peter S. Solomon
- Research School of BiologyThe Australian National UniversityCanberraACT 0200Australia
| | - Simon J. Williams
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research CentreUniversity of QueenslandBrisbaneQld4072Australia
| |
Collapse
|
75
|
Čerekovic N, Poltronieri P. Plant signaling pathways activating defence response and interfering mechanisms by pathogen effectors, protein decoys and bodyguards. AIMS MOLECULAR SCIENCE 2017; 4:370-388. [DOI: 10.3934/molsci.2017.3.370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
|
76
|
Sperschneider J, Dodds PN, Taylor JM, Duplessis S. Computational Methods for Predicting Effectors in Rust Pathogens. Methods Mol Biol 2017; 1659:73-83. [PMID: 28856642 DOI: 10.1007/978-1-4939-7249-4_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Lower costs and improved sequencing technologies have led to a large number of high-quality rust pathogen genomes and deeper characterization of gene expression profiles during early and late infection stages. However, the set of secreted proteins expressed during infection is too large for experimental investigations and contains not only effectors but also proteins that play a role in niche colonization or in fighting off competing microbes. Therefore, accurate computational prediction is essential for identifying high-priority rust effector candidates from secretomes.
Collapse
Affiliation(s)
- Jana Sperschneider
- Centre for Environmental and Life Sciences, CSIRO Agriculture and Food, Underwood Avenue, Floreat, WA, Australia.
| | - Peter N Dodds
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Jennifer M Taylor
- Black Mountain Laboratories, CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Sébastien Duplessis
- INRA, Unité Mixte de Recherche INRA/Université de Lorraine 1136 Interactions Arbres-Microorganismes, INRA Centre Grand Est - Nancy, Champenoux, France
| |
Collapse
|
77
|
Ramachandran SR, Yin C, Kud J, Tanaka K, Mahoney AK, Xiao F, Hulbert SH. Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses. PHYTOPATHOLOGY 2017; 107:75-83. [PMID: 27503371 DOI: 10.1094/phyto-02-16-0083-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Fungi that cause cereal rust diseases (genus Puccinia) are important pathogens of wheat globally. Upon infection, the fungus secretes a number of effector proteins. Although a large repository of putative effectors has been predicted using bioinformatic pipelines, the lack of available high-throughput effector screening systems has limited functional studies on these proteins. In this study, we mined the available transcriptomes of Puccinia graminis and P. striiformis to look for potential effectors that suppress host hypersensitive response (HR). Twenty small (<300 amino acids), secreted proteins, with no predicted functions were selected for the HR suppression assay using Nicotiana benthamiana, in which each of the proteins were transiently expressed and evaluated for their ability to suppress HR caused by four cytotoxic effector-R gene combinations (Cp/Rx, ATR13/RPP13, Rpt2/RPS-2, and GPA/RBP-1) and one mutated R gene-Pto(Y207D). Nine out of twenty proteins, designated Shr1 to Shr9 (suppressors of hypersensitive response), were found to suppress HR in N. benthamiana. These effectors varied in the effector-R gene defenses they suppressed, indicating these pathogens can interfere with a variety of host defense pathways. In addition to HR suppression, effector Shr7 also suppressed PAMP-triggered immune response triggered by flg22. Finally, delivery of Shr7 through Pseudomonas fluorescens EtHAn suppressed nonspecific HR induced by Pseudomonas syringae DC3000 in wheat, confirming its activity in a homologous system. Overall, this study provides the first evidence for the presence of effectors in Puccinia species suppressing multiple plant defense responses.
Collapse
Affiliation(s)
- Sowmya R Ramachandran
- First, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430; and third and sixth authors: Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
| | - Chuntao Yin
- First, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430; and third and sixth authors: Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
| | - Joanna Kud
- First, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430; and third and sixth authors: Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
| | - Kiwamu Tanaka
- First, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430; and third and sixth authors: Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
| | - Aaron K Mahoney
- First, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430; and third and sixth authors: Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
| | - Fangming Xiao
- First, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430; and third and sixth authors: Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
| | - Scot H Hulbert
- First, second, fourth, fifth, and seventh authors: Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430; and third and sixth authors: Plant, Soil and Entomological Sciences, University of Idaho, Moscow, ID 83844-2339
| |
Collapse
|
78
|
Liao HL, Chen Y, Vilgalys R. Metatranscriptomic Study of Common and Host-Specific Patterns of Gene Expression between Pines and Their Symbiotic Ectomycorrhizal Fungi in the Genus Suillus. PLoS Genet 2016; 12:e1006348. [PMID: 27736883 PMCID: PMC5065116 DOI: 10.1371/journal.pgen.1006348] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/08/2016] [Indexed: 01/19/2023] Open
Abstract
Ectomycorrhizal fungi (EMF) represent one of the major guilds of symbiotic fungi associated with roots of forest trees, where they function to improve plant nutrition and fitness in exchange for plant carbon. Many groups of EMF exhibit preference or specificity for different plant host genera; a good example is the genus Suillus, which grows in association with the conifer family Pinaceae. We investigated genetics of EMF host-specificity by cross-inoculating basidiospores of five species of Suillus onto ten species of Pinus, and screened them for their ability to form ectomycorrhizae. Several Suillus spp. including S. granulatus, S. spraguei, and S. americanus readily formed ectomycorrhizae (compatible reaction) with white pine hosts (subgenus Strobus), but were incompatible with other pine hosts (subgenus Pinus). Metatranscriptomic analysis of inoculated roots reveals that plant and fungus each express unique gene sets during incompatible vs. compatible pairings. The Suillus-Pinus metatranscriptomes utilize highly conserved gene regulatory pathways, including fungal G-protein signaling, secretory pathways, leucine-rich repeat and pathogen resistance proteins that are similar to those associated with host-pathogen interactions in other plant-fungal systems. Metatranscriptomic study of the combined Suillus-Pinus transcriptome has provided new insight into mechanisms of adaptation and coevolution of forest trees with their microbial community, and revealed that genetic regulation of ectomycorrhizal symbiosis utilizes universal gene regulatory pathways used by other types of fungal-plant interactions including pathogenic fungal-host interactions. Ectomycorrhizal fungi (EMF) comprise the dominant group of symbiotic fungi associated with plant roots in temperate and boreal forests. We examined host-specificity and gene-expression of five EMF Suillus species that exhibited strong patterns of mycorrhizal compatibility/incompatibility with either white pines (Pinus subg. Strobus) or hard pines (subg. Pinus). Using RNA-Seq, we identified conserved transcriptomic responses associated with compatible versus incompatible Pinus-Suillus species pairings. Comparative metatranscriptomic analysis of compatible vs. incompatible pairings allowed us to identify unique sets of fungal and plant genes associated with symbiont recognition and specificity. Comparativ transcriptomic study of the Suillus-Pinus system provides insight into the core functions involved in ectomycorrhizal symbiosis, and the mechanisms by which host-symbiont pairs recognize one another.
Collapse
Affiliation(s)
- Hui-Ling Liao
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Yuan Chen
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
79
|
Qi M, Link TI, Müller M, Hirschburger D, Pudake RN, Pedley KF, Braun E, Voegele RT, Baum TJ, Whitham SA. A Small Cysteine-Rich Protein from the Asian Soybean Rust Fungus, Phakopsora pachyrhizi, Suppresses Plant Immunity. PLoS Pathog 2016; 12:e1005827. [PMID: 27676173 PMCID: PMC5038961 DOI: 10.1371/journal.ppat.1005827] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 07/26/2016] [Indexed: 11/25/2022] Open
Abstract
The Asian soybean rust fungus, Phakopsora pachyrhizi, is an obligate biotrophic pathogen causing severe soybean disease epidemics. Molecular mechanisms by which P. pachyrhizi and other rust fungi interact with their host plants are poorly understood. The genomes of all rust fungi encode many small, secreted cysteine-rich proteins (SSCRP). While these proteins are thought to function within the host, their roles are completely unknown. Here, we present the characterization of P. pachyrhizi effector candidate 23 (PpEC23), a SSCRP that we show to suppress plant immunity. Furthermore, we show that PpEC23 interacts with soybean transcription factor GmSPL12l and that soybean plants in which GmSPL12l is silenced have constitutively active immunity, thereby identifying GmSPL12l as a negative regulator of soybean defenses. Collectively, our data present evidence for a virulence function of a rust SSCRP and suggest that PpEC23 is able to suppress soybean immune responses and physically interact with soybean transcription factor GmSPL12l, a negative immune regulator.
Collapse
Affiliation(s)
- Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Tobias I. Link
- Institut für Phytomedizin, Universität Hohenheim, Stuttgart, Germany
| | - Manuel Müller
- Institut für Phytomedizin, Universität Hohenheim, Stuttgart, Germany
| | | | - Ramesh N. Pudake
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, India
| | - Kerry F. Pedley
- Foreign Disease-Weed Science Research Unit, United States Department of Agriculture–Agricultural Research Service, Ft. Detrick, Maryland, United States of America
| | - Edward Braun
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Ralf T. Voegele
- Institut für Phytomedizin, Universität Hohenheim, Stuttgart, Germany
| | - Thomas J. Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Steven A. Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
80
|
Anderson C, Khan MA, Catanzariti AM, Jack CA, Nemri A, Lawrence GJ, Upadhyaya NM, Hardham AR, Ellis JG, Dodds PN, Jones DA. Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini. BMC Genomics 2016; 17:667. [PMID: 27550217 PMCID: PMC4994203 DOI: 10.1186/s12864-016-3011-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/11/2016] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Rust fungi are an important group of plant pathogens that cause devastating losses in agricultural, silvicultural and natural ecosystems. Plants can be protected from rust disease by resistance genes encoding receptors that trigger a highly effective defence response upon recognition of specific pathogen avirulence proteins. Identifying avirulence genes is crucial for understanding how virulence evolves in the field. RESULTS To facilitate avirulence gene cloning in the flax rust fungus, Melampsora lini, we constructed a high-density genetic linkage map using single nucleotide polymorphisms detected in restriction site-associated DNA sequencing (RADseq) data. The map comprises 13,412 RADseq markers in 27 linkage groups that together span 5860 cM and contain 2756 recombination bins. The marker sequences were used to anchor 68.9 % of the M. lini genome assembly onto the genetic map. The map and anchored assembly were then used to: 1) show that M. lini has a high overall meiotic recombination rate, but recombination distribution is uneven and large coldspots exist; 2) show that substantial genome rearrangements have occurred in spontaneous loss-of-avirulence mutants; and 3) identify the AvrL2 and AvrM14 avirulence genes by map-based cloning. AvrM14 is a dual-specificity avirulence gene that encodes a predicted nudix hydrolase. AvrL2 is located in the region of the M. lini genome with the lowest recombination rate and encodes a small, highly-charged proline-rich protein. CONCLUSIONS The M. lini high-density linkage map has greatly advanced our understanding of virulence mechanisms in this pathogen by providing novel insights into genome variability and enabling identification of two new avirulence genes.
Collapse
Affiliation(s)
- Claire Anderson
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| | - Muhammad Adil Khan
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
- Current address: ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Ann-Maree Catanzariti
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| | - Cameron A. Jack
- ANU Bioinformatics Consulting Unit, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Acton, ACT 2601 Australia
| | - Adnane Nemri
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601 Australia
- Current address: KWS SAAT SE, Grimsehlstraße 31, Einbeck, 37574 Germany
| | | | | | - Adrienne R. Hardham
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| | | | - Peter N. Dodds
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601 Australia
| | - David A. Jones
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| |
Collapse
|
81
|
Contributions of host cellular trafficking and organization to the outcomes of plant-pathogen interactions. Semin Cell Dev Biol 2016; 56:163-173. [DOI: 10.1016/j.semcdb.2016.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/16/2016] [Accepted: 05/20/2016] [Indexed: 11/23/2022]
|
82
|
Cooper B, Campbell KB, Beard HS, Garrett WM, Islam N. Putative Rust Fungal Effector Proteins in Infected Bean and Soybean Leaves. PHYTOPATHOLOGY 2016; 106:491-9. [PMID: 26780434 DOI: 10.1094/phyto-11-15-0310-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The plant-pathogenic fungi Uromyces appendiculatus and Phakopsora pachyrhizi cause debilitating rust diseases on common bean and soybean. These rust fungi secrete effector proteins that allow them to infect plants, but their effector repertoires are not understood. The discovery of rust fungus effectors may eventually help guide decisions and actions that mitigate crop production loss. Therefore, we used mass spectrometry to identify thousands of proteins in infected beans and soybeans and in germinated fungal spores. The comparative analysis between the two helped differentiate a set of 24 U. appendiculatus proteins targeted for secretion that were specifically found in infected beans and a set of 34 U. appendiculatus proteins targeted for secretion that were found in germinated spores and infected beans. The proteins specific to infected beans included family 26 and family 76 glycoside hydrolases that may contribute to degrading plant cell walls. There were also several types of proteins with structural motifs that may aid in stabilizing the specialized fungal haustorium cell that interfaces the plant cell membrane during infection. There were 16 P. pachyrhizi proteins targeted for secretion that were found in infected soybeans, and many of these proteins resembled the U. appendiculatus proteins found in infected beans, which implies that these proteins are important to rust fungal pathology in general. This data set provides insight to the biochemical mechanisms that rust fungi use to overcome plant immune systems and to parasitize cells.
Collapse
Affiliation(s)
- Bret Cooper
- First, second, and third authors: Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705; fourth author: Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705; and fifth author: Department of Nutrition and Food Science, University of Maryland, College Park 20742
| | - Kimberly B Campbell
- First, second, and third authors: Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705; fourth author: Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705; and fifth author: Department of Nutrition and Food Science, University of Maryland, College Park 20742
| | - Hunter S Beard
- First, second, and third authors: Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705; fourth author: Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705; and fifth author: Department of Nutrition and Food Science, University of Maryland, College Park 20742
| | - Wesley M Garrett
- First, second, and third authors: Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705; fourth author: Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705; and fifth author: Department of Nutrition and Food Science, University of Maryland, College Park 20742
| | - Nazrul Islam
- First, second, and third authors: Soybean Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD 20705; fourth author: Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville, MD 20705; and fifth author: Department of Nutrition and Food Science, University of Maryland, College Park 20742
| |
Collapse
|
83
|
Selin C, de Kievit TR, Belmonte MF, Fernando WGD. Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges. Front Microbiol 2016; 7:600. [PMID: 27199930 PMCID: PMC4846801 DOI: 10.3389/fmicb.2016.00600] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as “effectors” is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR/Cas9 technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function.
Collapse
Affiliation(s)
- Carrie Selin
- Department of Plant Science, University of Manitoba Winnipeg, MB, Canada
| | | | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba Winnipeg, MB, Canada
| | | |
Collapse
|
84
|
Kunjeti SG, Iyer G, Johnson E, Li E, Broglie KE, Rauscher G, Rairdan GJ. Identification of Phakopsora pachyrhizi Candidate Effectors with Virulence Activity in a Distantly Related Pathosystem. FRONTIERS IN PLANT SCIENCE 2016; 7:269. [PMID: 27014295 PMCID: PMC4781881 DOI: 10.3389/fpls.2016.00269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/21/2016] [Indexed: 05/26/2023]
Abstract
Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, a disease that causes enormous economic losses, most markedly in South America. P. pachyrhizi is a biotrophic pathogen that utilizes specialized feeding structures called haustoria to colonize its hosts. In rusts and other filamentous plant pathogens, haustoria have been shown to secrete effector proteins into their hosts to permit successful completion of their life cycle. We have constructed a cDNA library from P. pachyrhizi haustoria using paramagnetic bead-based methodology and have identified 35 P. pachyrhizi candidate effector (CE) genes from this library which are described here. In addition, we quantified the transcript expression pattern of six of these genes and show that two of these CEs are able to greatly increase the susceptibility of Nicotiana benthamiana to Phytophthora infestans. This strongly suggests that these genes play an important role in P. pachyrhizi virulence on its hosts.
Collapse
|
85
|
Torres MF, Ghaffari N, Buiate EAS, Moore N, Schwartz S, Johnson CD, Vaillancourt LJ. A Colletotrichum graminicola mutant deficient in the establishment of biotrophy reveals early transcriptional events in the maize anthracnose disease interaction. BMC Genomics 2016; 17:202. [PMID: 26956617 PMCID: PMC4782317 DOI: 10.1186/s12864-016-2546-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colletotrichum graminicola is a hemibiotrophic fungal pathogen that causes maize anthracnose disease. It progresses through three recognizable phases of pathogenic development in planta: melanized appressoria on the host surface prior to penetration; biotrophy, characterized by intracellular colonization of living host cells; and necrotrophy, characterized by host cell death and symptom development. A "Mixed Effects" Generalized Linear Model (GLM) was developed and applied to an existing Illumina transcriptome dataset, substantially increasing the statistical power of the analysis of C. graminicola gene expression during infection and colonization. Additionally, the in planta transcriptome of the wild-type was compared with that of a mutant strain impaired in the establishment of biotrophy, allowing detailed dissection of events occurring specifically during penetration, and during early versus late biotrophy. RESULTS More than 2000 fungal genes were differentially transcribed during appressorial maturation, penetration, and colonization. Secreted proteins, secondary metabolism genes, and membrane receptors were over-represented among the differentially expressed genes, suggesting that the fungus engages in an intimate and dynamic conversation with the host, beginning prior to penetration. This communication process probably involves reception of plant signals triggering subsequent developmental progress in the fungus, as well as production of signals that induce responses in the host. Later phases of biotrophy were more similar to necrotrophy, with increased production of secreted proteases, inducers of plant cell death, hydrolases, and membrane bound transporters for the uptake and egress of potential toxins, signals, and nutrients. CONCLUSIONS This approach revealed, in unprecedented detail, fungal genes specifically expressed during critical phases of host penetration and biotrophic establishment. Many encoded secreted proteins, secondary metabolism enzymes, and receptors that may play roles in host-pathogen communication necessary to promote susceptibility, and thus may provide targets for chemical or biological controls to manage this important disease. The differentially expressed genes could be used as 'landmarks' to more accurately identify developmental progress in compatible versus incompatible interactions involving genetic variants of both host and pathogen.
Collapse
Affiliation(s)
- Maria F Torres
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.
- Present Address: Functional Genomics Laboratory, Weill Cornell Medical College, Cornell University, Qatar Foundation - Education City, Doha, Qatar.
| | - Noushin Ghaffari
- AgriLife Genomics and Bioinformatics, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77845, USA.
| | - Ester A S Buiate
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.
- Present Address: Monsanto Company Brazil, Uberlândia, Minas Gerais, Brazil.
| | - Neil Moore
- Department of Computer Science, University of Kentucky, Davis Marksbury Building, 328 Rose Street, Lexington, KY, 40506-0633, USA.
| | - Scott Schwartz
- AgriLife Genomics and Bioinformatics, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77845, USA.
- Present Address: Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA.
| | - Charles D Johnson
- AgriLife Genomics and Bioinformatics, Texas A&M AgriLife Research, Texas A&M University, College Station, TX, 77845, USA.
| | - Lisa J Vaillancourt
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, Lexington, KY, 40546-0312, USA.
- Present Address: Department of Integrative Biology, University of Texas, Austin, TX, 78712, USA.
| |
Collapse
|
86
|
Oomycete interactions with plants: infection strategies and resistance principles. Microbiol Mol Biol Rev 2016; 79:263-80. [PMID: 26041933 DOI: 10.1128/mmbr.00010-15] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Oomycota include many economically significant microbial pathogens of crop species. Understanding the mechanisms by which oomycetes infect plants and identifying methods to provide durable resistance are major research goals. Over the last few years, many elicitors that trigger plant immunity have been identified, as well as host genes that mediate susceptibility to oomycete pathogens. The mechanisms behind these processes have subsequently been investigated and many new discoveries made, marking a period of exciting research in the oomycete pathology field. This review provides an introduction to our current knowledge of the pathogenic mechanisms used by oomycetes, including elicitors and effectors, plus an overview of the major principles of host resistance: the established R gene hypothesis and the more recently defined susceptibility (S) gene model. Future directions for development of oomycete-resistant plants are discussed, along with ways that recent discoveries in the field of oomycete-plant interactions are generating novel means of studying how pathogen and symbiont colonizations overlap.
Collapse
|
87
|
Secreted protein gene derived-single nucleotide polymorphisms (SP-SNPs) reveal population diversity and differentiation of Puccinia striiformis f. sp. tritici in the United States. Fungal Biol 2016; 120:729-44. [PMID: 27109369 DOI: 10.1016/j.funbio.2016.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 02/18/2016] [Accepted: 02/23/2016] [Indexed: 11/21/2022]
Abstract
Single nucleotide polymorphism (SNP) is a powerful molecular marker technique that has been widely used in population genetics and molecular mapping studies for various organisms. However, the technique has not been used for studying Puccinia striiformis f. sp. tritici (Pst), the wheat stripe rust pathogen. In this study, we developed over a hundred secreted protein gene-derived SNP (SP-SNP) markers and used 92 markers to study the population structure of Pst. From 352 isolates collected in the United States, we identified 242 multi-locus genotypes. The SP-SNP genotypes had a moderate, but significant correlation with the virulence phenotype data. Clustering of the multi-locus genotypes was consistent by various analyses, revealing distinct genetic groups. Analysis of molecular variance detected significant differences between the eastern and western US Pst populations. High heterozygosity was found in the US population with significant differences identified among epidemiological regions. Analysis of population differentiation revealed that populations between the eastern and western US were highly differentiated while moderate differentiation was found in populations within the western or eastern US. Isolates from the western US were more diverse than isolates from the eastern US. The information is useful for guiding the disease management in different epidemiological regions.
Collapse
|
88
|
Figueroa M, Upadhyaya NM, Sperschneider J, Park RF, Szabo LJ, Steffenson B, Ellis JG, Dodds PN. Changing the Game: Using Integrative Genomics to Probe Virulence Mechanisms of the Stem Rust Pathogen Puccinia graminis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2016; 7:205. [PMID: 26941766 PMCID: PMC4764693 DOI: 10.3389/fpls.2016.00205] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/06/2016] [Indexed: 05/03/2023]
Abstract
The recent resurgence of wheat stem rust caused by new virulent races of Puccinia graminis f. sp. tritici (Pgt) poses a threat to food security. These concerns have catalyzed an extensive global effort toward controlling this disease. Substantial research and breeding programs target the identification and introduction of new stem rust resistance (Sr) genes in cultivars for genetic protection against the disease. Such resistance genes typically encode immune receptor proteins that recognize specific components of the pathogen, known as avirulence (Avr) proteins. A significant drawback to deploying cultivars with single Sr genes is that they are often overcome by evolution of the pathogen to escape recognition through alterations in Avr genes. Thus, a key element in achieving durable rust control is the deployment of multiple effective Sr genes in combination, either through conventional breeding or transgenic approaches, to minimize the risk of resistance breakdown. In this situation, evolution of pathogen virulence would require changes in multiple Avr genes in order to bypass recognition. However, choosing the optimal Sr gene combinations to deploy is a challenge that requires detailed knowledge of the pathogen Avr genes with which they interact and the virulence phenotypes of Pgt existing in nature. Identifying specific Avr genes from Pgt will provide screening tools to enhance pathogen virulence monitoring, assess heterozygosity and propensity for mutation in pathogen populations, and confirm individual Sr gene functions in crop varieties carrying multiple effective resistance genes. Toward this goal, much progress has been made in assembling a high quality reference genome sequence for Pgt, as well as a Pan-genome encompassing variation between multiple field isolates with diverse virulence spectra. In turn this has allowed prediction of Pgt effector gene candidates based on known features of Avr genes in other plant pathogens, including the related flax rust fungus. Upregulation of gene expression in haustoria and evidence for diversifying selection are two useful parameters to identify candidate Avr genes. Recently, we have also applied machine learning approaches to agnostically predict candidate effectors. Here, we review progress in stem rust pathogenomics and approaches currently underway to identify Avr genes recognized by wheat Sr genes.
Collapse
Affiliation(s)
- Melania Figueroa
- Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. Paul, MN, USA
| | - Narayana M. Upadhyaya
- Agriculture, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Jana Sperschneider
- Agriculture, Centre for Environment and Life Sciences, Commonwealth Scientific and Industrial Research OrganisationPerth, WA, Australia
| | - Robert F. Park
- Faculty of Agriculture and Environment, Plant Breeding Institute, The University of SydneyNarellan, NSW, Australia
| | - Les J. Szabo
- Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. Paul, MN, USA
- Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research ServiceSt. Paul, MN, USA
| | - Brian Steffenson
- Department of Plant Pathology and the Stakman-Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. Paul, MN, USA
| | - Jeff G. Ellis
- Agriculture, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| | - Peter N. Dodds
- Agriculture, Commonwealth Scientific and Industrial Research OrganisationCanberra, ACT, Australia
| |
Collapse
|
89
|
McCotter SW, Horianopoulos LC, Kronstad JW. Regulation of the fungal secretome. Curr Genet 2016; 62:533-45. [DOI: 10.1007/s00294-016-0578-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 02/07/2023]
|
90
|
Di X, Gomila J, Ma L, van den Burg HA, Takken FLW. Uptake of the Fusarium Effector Avr2 by Tomato Is Not a Cell Autonomous Event. FRONTIERS IN PLANT SCIENCE 2016; 7:1915. [PMID: 28066471 PMCID: PMC5175262 DOI: 10.3389/fpls.2016.01915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/02/2016] [Indexed: 05/19/2023]
Abstract
Pathogens secrete effector proteins to manipulate the host for their own proliferation. Currently it is unclear whether the uptake of effector proteins from extracellular spaces is a host autonomous process. We study this process using the Avr2 effector protein from Fusarium oxysporum f. sp. lycopersici (Fol). Avr2 is an important virulence factor that is secreted into the xylem sap of tomato following infection. Besides that, it is also an avirulence factor triggering immune responses in plants carrying the I-2 resistance gene. Recognition of Avr2 by I-2 occurs inside the plant nucleus. Here, we show that pathogenicity of an Avr2 knockout Fusarium (FolΔAvr2) strain is fully complemented on transgenic tomato lines that express either a secreted (Avr2) or cytosolic Avr2 (ΔspAvr2) protein, indicating that Avr2 exerts its virulence functions inside the host cells. Furthermore, our data imply that secreted Avr2 is taken up from the extracellular spaces in the presence of the fungus. Grafting studies were performed in which scions of I-2 tomato plants were grafted onto either a ΔspAvr2 or on an Avr2 rootstock. Although the Avr2 protein could readily be detected in the xylem sap of the grafted plant tissues, no I-2-mediated immune responses were induced suggesting that I-2-expressing tomato cells cannot autonomously take up the effector protein from the xylem sap. Additionally, ΔspAvr2 and Avr2 plants were crossed with I-2 plants. Whereas ΔspAvr2/I-2 F1 plants showed a constitutive immune response, immunity was not triggered in the Avr2/I-2 plants confirming that Avr2 is not autonomously taken up from the extracellular spaces to trigger I-2. Intriguingly, infiltration of Agrobacterium tumefaciens in leaves of Avr2/I-2 plants triggered I-2 mediated cell death, which indicates that Agrobacterium triggers effector uptake. To test whether, besides Fol, effector uptake could also be induced by other fungal pathogens the ΔspAvr2 and Avr2 transgenic lines were inoculated with Verticillium dahliae. Whereas ΔspAvr2 plants became hyper-susceptible to infection, no difference in disease development was found in the Avr2 plants as compared to wild-type plants. These data suggest that effector uptake is not a host autonomous process and that Fol and A. tumefaciens, but not V. dahliae, facilitate Avr2 uptake by tomato cells from extracellular spaces.
Collapse
|
91
|
Irieda H, Ogawa S, Takano Y. Focal effector accumulation in a biotrophic interface at the primary invasion sites of Colletotrichum orbiculare in multiple susceptible plants. PLANT SIGNALING & BEHAVIOR 2016; 11:e1137407. [PMID: 26829249 PMCID: PMC4883915 DOI: 10.1080/15592324.2015.1137407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/25/2015] [Indexed: 05/30/2023]
Abstract
We identified virulence-related effectors of a hemibiotrophic fungal pathogen Colletotrichum orbiculare, and found that a novel interface was generated by a biotrophic interaction between C. orbiculare and the host cucumber, in which the effectors secreted from the pathogen accumulated preferentially. The interface was located around the biotrophic primary hyphal neck. Here, we showed that C. orbiculare also developed this interface in a biotrophic interaction with melon, which belongs to Cucurbitaceae. Furthermore, C. orbiculare developed interface in the interaction with a susceptible plant, Nicotiana benthamiana, which is distantly related to Cucurbitaceae, suggesting that the spatial regulation strategy for effectors in C. orbiculare is not specific to cucumber; rather, it is conserved among the various plants that are susceptible to this pathogen.
Collapse
Affiliation(s)
- Hiroki Irieda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Suthitar Ogawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
92
|
Badet T, Peyraud R, Raffaele S. Common protein sequence signatures associate with Sclerotinia borealis lifestyle and secretion in fungal pathogens of the Sclerotiniaceae. FRONTIERS IN PLANT SCIENCE 2015; 6:776. [PMID: 26442085 DOI: 10.3389/fpls.2015.00776issn=1664-462x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/10/2015] [Indexed: 05/25/2023]
Abstract
Fungal plant pathogens produce secreted proteins adapted to function outside fungal cells to facilitate colonization of their hosts. In many cases such as for fungi from the Sclerotiniaceae family the repertoire and function of secreted proteins remains elusive. In the Sclerotiniaceae, whereas Sclerotinia sclerotiorum and Botrytis cinerea are cosmopolitan broad host-range plant pathogens, Sclerotinia borealis has a psychrophilic lifestyle with a low optimal growth temperature, a narrow host range and geographic distribution. To spread successfully, S. borealis must synthesize proteins adapted to function in its specific environment. The search for signatures of adaptation to S. borealis lifestyle may therefore help revealing proteins critical for colonization of the environment by Sclerotiniaceae fungi. Here, we analyzed amino acids usage and intrinsic protein disorder in alignments of groups of orthologous proteins from the three Sclerotiniaceae species. We found that enrichment in Thr, depletion in Glu and Lys, and low disorder frequency in hot loops are significantly associated with S. borealis proteins. We designed an index to report bias in these properties and found that high index proteins were enriched among secreted proteins in the three Sclerotiniaceae fungi. High index proteins were also enriched in function associated with plant colonization in S. borealis, and in in planta-induced genes in S. sclerotiorum. We highlight a novel putative antifreeze protein and a novel putative lytic polysaccharide monooxygenase identified through our pipeline as candidate proteins involved in colonization of the environment. Our findings suggest that similar protein signatures associate with S. borealis lifestyle and with secretion in the Sclerotiniaceae. These signatures may be useful for identifying proteins of interest as targets for the management of plant diseases.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441 Castanet-Tolosan, France ; Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594 Castanet-Tolosan, France
| | - Rémi Peyraud
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441 Castanet-Tolosan, France ; Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594 Castanet-Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique, UMR441 Castanet-Tolosan, France ; Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, UMR2594 Castanet-Tolosan, France
| |
Collapse
|
93
|
Liu JJ, Sturrock RN, Sniezko RA, Williams H, Benton R, Zamany A. Transcriptome analysis of the white pine blister rust pathogen Cronartium ribicola: de novo assembly, expression profiling, and identification of candidate effectors. BMC Genomics 2015; 16:678. [PMID: 26338692 PMCID: PMC4559923 DOI: 10.1186/s12864-015-1861-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022] Open
Abstract
Background The fungus Cronartium ribicola (Cri) is an economically and ecologically important forest pathogen that causes white pine blister rust (WPBR) disease on five-needle pines. To cause stem cankers and kill white pine trees the fungus elaborates a life cycle with five stages of spore development on five-needle pines and the alternate host Ribes plants. To increase our understanding of molecular WP-BR interactions, here we report genome-wide transcriptional profile analysis of C. ribicola using RNA-seq. Results cDNA libraries were constructed from aeciospore, urediniospore, and western white pine (Pinus monticola) tissues post Cri infection. Over 200 million RNA-seq 100-bp paired-end (PE) reads from rust fungal spores were de novo assembled and a reference transcriptome was generated with 17,880 transcripts that were expressed from 13,629 unigenes. A total of 734 unique proteins were predicted as a part of the Cri secretome from complete open reading frames (ORFs), and 41 % of them were Cronartium-specific. This study further identified a repertoire of candidate effectors and other pathogenicity determinants. Differentially expressed genes (DEGs) were identified to gain an understanding of molecular events important during the WPBR fungus life cycle by comparing Cri transcriptomes at different infection stages. Large-scale changes of in planta gene expression profiles were observed, revealing that multiple fungal biosynthetic pathways were enhanced during mycelium growth inside infected pine stem tissues. Conversely, many fungal genes that were up-regulated at the urediniospore stage appeared to be signalling components and transporters. The secreted fungal protein genes that were up-regulated in pine needle tissues during early infection were primarily associated with cell wall modifications, possibly to mask the rust pathogen from plant defenses. Conclusion This comprehensive transcriptome profiling substantially improves our current understanding of molecular WP-BR interactions. The repertoire of candidate effectors and other putative pathogenicity determinants identified here are valuable for future functional analysis of Cri virulence and pathogenicity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1861-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada.
| | - Rona N Sturrock
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada.
| | - Richard A Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Road, Cottage Grove, OR, 97424, USA.
| | - Holly Williams
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada.
| | - Ross Benton
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada.
| | - Arezoo Zamany
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada.
| |
Collapse
|
94
|
Ghanbarnia K, Fudal I, Larkan NJ, Links MG, Balesdent MH, Profotova B, Fernando WGD, Rouxel T, Borhan MH. Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach. MOLECULAR PLANT PATHOLOGY 2015; 16:699-709. [PMID: 25492575 PMCID: PMC6638346 DOI: 10.1111/mpp.12228] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Five avirulence genes from Leptosphaeria maculans, the causal agent of blackleg of canola (Brassica napus), have been identified previously through map-based cloning. In this study, a comparative genomic approach was used to clone the previously mapped AvrLm2. Given the lack of a presence-absence gene polymorphism coincident with the AvrLm2 phenotype, 36 L. maculans isolates were resequenced and analysed for single-nucleotide polymorphisms (SNPs) in predicted small secreted protein-encoding genes present within the map interval. Three SNPs coincident with the AvrLm2 phenotype were identified within LmCys1, previously identified as a putative effector-coding gene. Complementation of a virulent isolate with LmCys1, as the candidate AvrLm2 allele, restored the avirulent phenotype on Rlm2-containing B. napus lines. AvrLm2 encodes a small cysteine-rich protein with low similarity to other proteins in the public databases. Unlike other avirulence genes, AvrLm2 resides in a small GC island within an AT-rich isochore of the genome, and was never found to be deleted completely in virulent isolates.
Collapse
Affiliation(s)
- Kaveh Ghanbarnia
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | | | - Nicholas J Larkan
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
| | - Matthew G Links
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5C9
| | | | | | | | | | - M Hossein Borhan
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
| |
Collapse
|
95
|
Meng Y, Zhang Q, Zhang M, Gu B, Huang G, Wang Q, Shan W. The protein disulfide isomerase 1 of Phytophthora parasitica (PpPDI1) is associated with the haustoria-like structures and contributes to plant infection. FRONTIERS IN PLANT SCIENCE 2015; 6:632. [PMID: 26347756 PMCID: PMC4539480 DOI: 10.3389/fpls.2015.00632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/30/2015] [Indexed: 05/23/2023]
Abstract
Protein disulfide isomerase (PDI) is a ubiquitous and multifunction enzyme belonging to the thioredoxin (TRX) superfamily, which can reduce, oxidize, and catalyze dithiol-disulfide exchange reactions. Other than performing housekeeping functions in helping to maintain proteins in a more stable conformation, there is some evidence to indicate that PDI is involved in pathogen infection processes. In a high-throughput screening for necrosis-inducing factors by Agrobacterium tumefaciens-mediated transient expression assay, a typical PDI gene from Phytophthora parasitica (PpPDI1) was identified and confirmed to induce strong cell death in Nicotiana benthamiana leaves. PpPDI1 is conserved in eukaryotes but predicted to be a secreted protein. Deletion mutant analyses showed that the first CGHC motif in the active domain of PpPDI1 is essential for inducing cell death. Using P. parasitica transformation method, the silencing efficiency was found to be very low, suggesting that PpPDI1 is essential for the pathogen. Translational fusion to the enhanced green fluorescent protein (EGFP) in stable P. parasitica transformants showed that PpPDI1 is associated with haustoria-like structures during pathogen infection. Furthermore, the PpPDI1-EGFP-expressing transformants increase the number of haustoria-like structures and exhibit enhanced virulence to N. benthamiana. These results indicate that PpPDI1 might be a virulence factor of P. parasitica and contributes to plant infection.
Collapse
Affiliation(s)
- Yuling Meng
- College of Plant Protection, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Qiang Zhang
- College of Plant Protection, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Meixiang Zhang
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Biao Gu
- College of Plant Protection, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Weixing Shan
- College of Plant Protection, Northwest A&F UniversityYangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F UniversityYangling, China
| |
Collapse
|
96
|
Yin C, Downey SI, Klages-Mundt NL, Ramachandran S, Chen X, Szabo LJ, Pumphrey M, Hulbert SH. Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia. BMC Genomics 2015; 16:579. [PMID: 26238441 PMCID: PMC4524123 DOI: 10.1186/s12864-015-1791-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 07/22/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The cereal rust fungi are destructive pathogens that affect grain production worldwide. Although the genomic and transcript sequences for three Puccinia species that attack wheat have been released, the functions of large repertories of genes from Puccinia still need to be addressed to understand the infection process of these obligate parasites. Host-induced gene silencing (HIGS) has emerged a useful tool to examine the importance of rust fungus genes while growing within host plants. In this study, HIGS was used to test genes from Puccinia with transcripts enriched in haustoria for their ability to interfere with full development of the rust fungi. RESULTS Approximately 1200 haustoria enriched genes from Puccinia graminis f. sp. tritici (Pgt) were identified by comparative RNA sequencing. Virus-induced gene silencing (VIGS) constructs with fragments of 86 Puccinia genes, were tested for their ability to interfere with full development of these rust fungi. Most of the genes tested had no noticeable effects, but 10 reduced Pgt development after co-inoculation with the gene VIGS constructs and Pgt. These included a predicted glycolytic enzyme, two other proteins that are probably secreted and involved in carbohydrate or sugar metabolism, a protein involved in thiazol biosynthesis, a protein involved in auxin biosynthesis, an amino acid permease, two hypothetical proteins with no conserved domains, a predicted small secreted protein and another protein predicted to be secreted with similarity to bacterial proteins involved in membrane transport. Transient silencing of four of these genes reduced development of P. striiformis (Pst), and three of also caused reduction of P. triticina (Pt) development. CONCLUSIONS Partial suppression of transcripts involved in a large variety of biological processes in haustoria cells of Puccinia rusts can disrupt their development. Silencing of three genes resulted in suppression of all three rust diseases indicating that it may be possible to engineer durable resistance to multiple rust pathogens with a single gene in transgenic wheat plants for sustainable control of cereal rusts.
Collapse
Affiliation(s)
- Chuntao Yin
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Samantha I Downey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6430, USA
| | - Naeh L Klages-Mundt
- Department of Biology, Carleton College, One North College St., Northfield, MN, 55057, USA
| | - Sowmya Ramachandran
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Xianming Chen
- US Department of Agriculture, Agricultural Research Service, Wheat Genetics, Quality, Physiology and Disease Research Unit, Pullman, WA, 99164-6430, USA
| | - Les J Szabo
- US Department of Agriculture, Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108, USA
| | - Michael Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164-6430, USA
| | - Scot H Hulbert
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA.
| |
Collapse
|
97
|
Genome plasticity in filamentous plant pathogens contributes to the emergence of novel effectors and their cellular processes in the host. Curr Genet 2015; 62:47-51. [PMID: 26228744 DOI: 10.1007/s00294-015-0509-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/21/2022]
Abstract
Plant diseases cause extensive yield loss of crops worldwide, and secretory 'warfare' occurs between plants and pathogenic organisms all the time. Filamentous plant pathogens have evolved the ability to manipulate host processes and facilitate colonization through secreting effectors inside plant cells. The stresses from hosts and environment can drive the genome dynamics of plant pathogens. Remarkable advances in plant pathology have been made owing to these adaptable genome regions of several lineages of filamentous phytopathogens. Characterization new effectors and interaction analyses between pathogens and plants have provided molecular insights into the plant pathways perturbed during the infection process. In this mini-review, we highlight promising approaches of identifying novel effectors based on the genome plasticity. We also discuss the interaction mechanisms between plants and their filamentous pathogens and outline the possibilities of effector gene expression under epigenetic control that will be future directions for research.
Collapse
|
98
|
Figueroa M, Castell-Miller CV, Li F, Hulbert SH, Bradeen JM. Pushing the boundaries of resistance: insights from Brachypodium-rust interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:558. [PMID: 26284085 PMCID: PMC4519692 DOI: 10.3389/fpls.2015.00558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/07/2015] [Indexed: 05/20/2023]
Abstract
The implications of global population growth urge transformation of current food and bioenergy production systems to sustainability. Members of the family Poaceae are of particular importance both in food security and for their applications as biofuel substrates. For centuries, rust fungi have threatened the production of valuable crops such as wheat, barley, oat, and other small grains; similarly, biofuel crops can also be susceptible to these pathogens. Emerging rust pathogenic races with increased virulence and recurrent rust epidemics around the world point out the vulnerability of monocultures. Basic research in plant immunity, especially in model plants, can make contributions to understanding plant resistance mechanisms and improve disease management strategies. The development of the grass Brachypodium distachyon as a genetically tractable model for monocots, especially temperate cereals and grasses, offers the possibility to overcome the experimental challenges presented by the genetic and genomic complexities of economically valuable crop plants. The numerous resources and tools available in Brachypodium have opened new doors to investigate the underlying molecular and genetic bases of plant-microbe interactions in grasses and evidence demonstrating the applicability and advantages of working with B. distachyon is increasing. Importantly, several interactions between B. distachyon and devastating plant pathogens, such rust fungi, have been examined in the context of non-host resistance. Here, we discuss the use of B. distachyon in these various pathosystems. Exploiting B. distachyon to understand the mechanisms underpinning disease resistance to non-adapted rust fungi may provide effective and durable approaches to fend off these pathogens. The close phylogenetic relationship among Brachypodium spp. and grasses with industrial and agronomic value support harnessing this model plant to improve cropping systems and encourage its use in translational research.
Collapse
Affiliation(s)
- Melania Figueroa
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Claudia V. Castell-Miller
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Feng Li
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Scot H. Hulbert
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - James M. Bradeen
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA
- Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
99
|
Sanju S, Siddappa S, Thakur A, Shukla PK, Srivastava N, Pattanayak D, Sharma S, Singh BP. Host-mediated gene silencing of a single effector gene from the potato pathogen Phytophthora infestans imparts partial resistance to late blight disease. Funct Integr Genomics 2015; 15:697-706. [PMID: 26077032 DOI: 10.1007/s10142-015-0446-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 11/26/2022]
Abstract
RNA interference (RNAi) has proved a powerful genetic tool for silencing genes in plants. Host-induced gene silencing of pathogen genes has provided a gene knockout strategy for a wide range of biotechnological applications. The RXLR effector Avr3a gene is largely responsible for virulence of oomycete plant pathogen Phytophthora infestans. In this study, we attempted to silence the Avr3a gene of P. infestans through RNAi technology. The P. infestans inoculation resulted in lower disease progression and a reduction in pathogen load, as demonstrated by disease scoring and quantification of pathogen biomass in terms of Pi08 repetitive elements, respectively. Transgenic plants induced moderate silencing of Avr3a, and the presence and/or expression of small interfering RNAs, as determined through Northern hybridization, indicated siRNA targeted against Avr3a conferred moderate resistance to P. infestans. The single effector gene did not provide complete resistance against P. infestans. Although the Avr3a effector gene could confer moderate resistance, for complete resistance, the cumulative effect of effector genes in addition to Avr3a needs to be considered. In this study, we demonstrated that host-induced RNAi is an effective strategy for functional genomics in oomycetes.
Collapse
Affiliation(s)
- Suman Sanju
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Sundaresha Siddappa
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| | - Aditi Thakur
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Pradeep K Shukla
- Sam Higginbottom Institute of Agriculture, School of Biological Sciences, Allahabad, 211007, Uttara Pradesh, India.
| | | | - Debasis Pattanayak
- ICAR-National Research Centre for Plant Biotechnology, IARI, New Delhi, 110012, India.
| | - Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - B P Singh
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| |
Collapse
|
100
|
Petre B, Saunders DGO, Sklenar J, Lorrain C, Win J, Duplessis S, Kamoun S. Candidate Effector Proteins of the Rust Pathogen Melampsora larici-populina Target Diverse Plant Cell Compartments. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:689-700. [PMID: 25650830 DOI: 10.1094/mpmi-01-15-0003-r] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Rust fungi are devastating crop pathogens that deliver effector proteins into infected tissues to modulate plant functions and promote parasitic growth. The genome of the poplar leaf rust fungus Melampsora larici-populina revealed a large catalog of secreted proteins, some of which have been considered candidate effectors. Unraveling how these proteins function in host cells is a key to understanding pathogenicity mechanisms and developing resistant plants. In this study, we used an effectoromics pipeline to select, clone, and express 20 candidate effectors in Nicotiana benthamiana leaf cells to determine their subcellular localization and identify the plant proteins they interact with. Confocal microscopy revealed that six candidate effectors target the nucleus, nucleoli, chloroplasts, mitochondria, and discrete cellular bodies. We also used coimmunoprecipitation (coIP) and mass spectrometry to identify 606 N. benthamiana proteins that associate with the candidate effectors. Five candidate effectors specifically associated with a small set of plant proteins that may represent biologically relevant interactors. We confirmed the interaction between the candidate effector MLP124017 and TOPLESS-related protein 4 from poplar by in planta coIP. Altogether, our data enable us to validate effector proteins from M. larici-populina and reveal that these proteins may target multiple compartments and processes in plant cells. It also shows that N. benthamiana can be a powerful heterologous system to study effectors of obligate biotrophic pathogens.
Collapse
Affiliation(s)
- Benjamin Petre
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
- 2 INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
- 3 Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandoeuvre-lès-Nancy, France
| | - Diane G O Saunders
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
- 4 The Genome Analysis Centre, Norwich Research Park, NR4 7UH Norwich, U.K
- 5 The John Innes Centre, Norwich Research Park, NR4 7UH Norwich, U.K
| | - Jan Sklenar
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
| | - Cécile Lorrain
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
- 2 INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
- 3 Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandoeuvre-lès-Nancy, France
| | - Joe Win
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
| | - Sébastien Duplessis
- 2 INRA, UMR 1136 Interactions Arbres/Microorganismes, Centre INRA Nancy Lorraine, 54280 Champenoux, France
- 3 Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, Faculté des Sciences et Technologies, 54506 Vandoeuvre-lès-Nancy, France
| | - Sophien Kamoun
- 1 The Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, U.K
| |
Collapse
|