51
|
Active-Site Protonation States in an Acyl-Enzyme Intermediate of a Class A β-Lactamase with a Monobactam Substrate. Antimicrob Agents Chemother 2016; 61:AAC.01636-16. [PMID: 27795378 PMCID: PMC5192116 DOI: 10.1128/aac.01636-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/29/2016] [Indexed: 11/20/2022] Open
Abstract
The monobactam antibiotic aztreonam is used to treat cystic fibrosis patients with chronic pulmonary infections colonized by Pseudomonas aeruginosa strains expressing CTX-M extended-spectrum β-lactamases. The protonation states of active-site residues that are responsible for hydrolysis have been determined previously for the apo form of a CTX-M β-lactamase but not for a monobactam acyl-enzyme intermediate. Here we used neutron and high-resolution X-ray crystallography to probe the mechanism by which CTX-M extended-spectrum β-lactamases hydrolyze monobactam antibiotics. In these first reported structures of a class A β-lactamase in an acyl-enzyme complex with aztreonam, we directly observed most of the hydrogen atoms (as deuterium) within the active site. Although Lys 234 is fully protonated in the acyl intermediate, we found that Lys 73 is neutral. These findings are consistent with Lys 73 being able to serve as a general base during the acylation part of the catalytic mechanism, as previously proposed.
Collapse
|
52
|
Yano N, Yamada T, Hosoya T, Ohhara T, Tanaka I, Kusaka K. Application of profile fitting method to neutron time-of-flight protein single crystal diffraction data collected at the iBIX. Sci Rep 2016; 6:36628. [PMID: 27905404 PMCID: PMC5131355 DOI: 10.1038/srep36628] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/17/2016] [Indexed: 12/13/2022] Open
Abstract
We developed and employed a profile fitting method for the peak integration of neutron time-of-flight diffraction data collected by the IBARAKI Biological Crystal Diffractometer (iBIX) at the Japan Proton Accelerator Research Complex (J-PARC) for protein ribonuclease A and α-thrombin single crystals. In order to determine proper fitting functions, four asymmetric functions were evaluated using strong intensity peaks. A Gaussian convolved with two back-to-back exponentials was selected as the most suitable fitting function, and a profile fitting algorithm for the integration method was developed. The intensity and structure refinement data statistics of the profile fitting method were compared to those of the summation integration method. It was clearly demonstrated that the profile fitting method provides more accurate integrated intensities and model structures than the summation integration method at higher resolution shells. The integration component with the profile fitting method has already been implemented in the iBIX data processing software STARGazer and its user manual has been prepared.
Collapse
Affiliation(s)
- Naomine Yano
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Taro Yamada
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Takaaki Hosoya
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan.,College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan
| | - Takashi Ohhara
- Neutron Science Section, J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195, Japan
| | - Ichiro Tanaka
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan.,College of Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan
| | - Katsuhiro Kusaka
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
53
|
Manzoni F, Saraboji K, Sprenger J, Kumar R, Noresson AL, Nilsson UJ, Leffler H, Fisher SZ, Schrader TE, Ostermann A, Coates L, Blakeley MP, Oksanen E, Logan DT. Perdeuteration, crystallization, data collection and comparison of five neutron diffraction data sets of complexes of human galectin-3C. Acta Crystallogr D Struct Biol 2016; 72:1194-1202. [PMID: 27841752 PMCID: PMC5108347 DOI: 10.1107/s2059798316015540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/03/2016] [Indexed: 11/11/2022] Open
Abstract
Galectin-3 is an important protein in molecular signalling events involving carbohydrate recognition, and an understanding of the hydrogen-bonding patterns in the carbohydrate-binding site of its C-terminal domain (galectin-3C) is important for the development of new potent inhibitors. The authors are studying these patterns using neutron crystallography. Here, the production of perdeuterated human galectin-3C and successive improvement in crystal size by the development of a crystal-growth protocol involving feeding of the crystallization drops are described. The larger crystals resulted in improved data quality and reduced data-collection times. Furthermore, protocols for complete removal of the lactose that is necessary for the production of large crystals of apo galectin-3C suitable for neutron diffraction are described. Five data sets have been collected at three different neutron sources from galectin-3C crystals of various volumes. It was possible to merge two of these to generate an almost complete neutron data set for the galectin-3C-lactose complex. These data sets provide insights into the crystal volumes and data-collection times necessary for the same system at sources with different technologies and data-collection strategies, and these insights are applicable to other systems.
Collapse
Affiliation(s)
- Francesco Manzoni
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
- European Spallation Source ERIC, Box 176, S-221 00 Lund, Sweden
| | - Kadhirvel Saraboji
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Janina Sprenger
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Rohit Kumar
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Ann-Louise Noresson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Ulf J. Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Section MIG, Lund University, S-221 00 Lund, Sweden
| | - S. Zoë Fisher
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Tobias E. Schrader
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Esko Oksanen
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
- European Spallation Source ERIC, Box 176, S-221 00 Lund, Sweden
| | - Derek T. Logan
- Biochemistry and Structural Biology, Department of Chemistry, Lund University, S-221 00 Lund, Sweden
| |
Collapse
|
54
|
Cuypers MG, Mason SA, Mossou E, Haertlein M, Forsyth VT, Mitchell EP. Macromolecular structure phasing by neutron anomalous diffraction. Sci Rep 2016; 6:31487. [PMID: 27511806 PMCID: PMC4980602 DOI: 10.1038/srep31487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/20/2016] [Indexed: 01/07/2023] Open
Abstract
In this report we show for the first time that neutron anomalous dispersion can be used in a practical manner to determine experimental phases of a protein crystal structure, providing a new tool for structural biologists. The approach is demonstrated through the use of a state-of-the-art monochromatic neutron diffractometer at the Institut Laue-Langevin (ILL) in combination with crystals of perdeuterated protein that minimise the level of hydrogen incoherent scattering and enhance the visibility of the anomalous signal. The protein used was rubredoxin in which cadmium replaced the iron at the iron-sulphur site. While this study was carried out using a steady-state neutron beam source, the results will be of major interest for capabilities at existing and emerging spallation neutron sources where time-of-flight instruments provide inherent energy discrimination. In particular this capability may be expected to offer unique opportunities to a rapidly developing structural biology community where there is increasing interest in the identification of protonation states, protein/water interactions and protein-ligand interactions - all of which are of central importance to a wide range of fundamental and applied areas in the biosciences.
Collapse
Affiliation(s)
- Maxime G. Cuypers
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, United Kingdom
- ILL, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Sax A. Mason
- ILL, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Estelle Mossou
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, United Kingdom
- ILL, 71 avenue des Martyrs, 38000 Grenoble, France
| | | | - V. Trevor Forsyth
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, United Kingdom
- ILL, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Edward P. Mitchell
- Faculty of Natural Sciences, Keele University, Staffordshire, ST5 5BG, United Kingdom
- ESRF, 71 avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
55
|
The use of neutron scattering to determine the functional structure of glycoside hydrolase. Curr Opin Struct Biol 2016; 40:54-61. [PMID: 27494120 DOI: 10.1016/j.sbi.2016.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 11/21/2022]
Abstract
Neutron diffraction provides different information from X-ray diffraction, because neutrons are scattered by atomic nuclei, whereas X-rays are scattered by electrons. One of the key advantages of neutron crystallography is the ability to visualize hydrogen and deuterium atoms, making it possible to observe the protonation state of amino acid residues, hydrogen bonds, networks of water molecules and proton relay pathways in enzymes. But, because of technical difficulties, less than 100 enzyme structures have been evaluated by neutron crystallography to date. In this review, we discuss the advantages and disadvantages of neutron crystallography as a tool to investigate the functional structure of glycoside hydrolases, with some examples.
Collapse
|
56
|
O'Dell WB, Bodenheimer AM, Meilleur F. Neutron protein crystallography: A complementary tool for locating hydrogens in proteins. Arch Biochem Biophys 2016; 602:48-60. [DOI: 10.1016/j.abb.2015.11.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
|
57
|
Evolution and characterization of a new reversibly photoswitching chromogenic protein, Dathail. J Mol Biol 2016; 428:1776-89. [DOI: 10.1016/j.jmb.2016.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 12/11/2022]
|
58
|
McFeeters H, Vandavasi VG, Weiss KL, Coates L, McFeeters RL. Neutron diffraction analysis of Pseudomonas aeruginosa peptidyl-tRNA hydrolase 1. Acta Crystallogr F Struct Biol Commun 2016; 72:220-3. [PMID: 26919526 PMCID: PMC4774881 DOI: 10.1107/s2053230x16001813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/29/2016] [Indexed: 11/11/2022] Open
Abstract
Perdeuterated peptidyl-tRNA hydrolase 1 from Pseudomonas aeruginosa was crystallized for structural analysis using neutron diffraction. Crystals of perdeuterated protein were grown to 0.15 mm(3) in size using batch crystallization in 22.5% polyethylene glycol 4000, 100 mM Tris pH 7.5, 10%(v/v) isopropyl alcohol with a 20-molar excess of trilysine as an additive. Neutron diffraction data were collected from a crystal at room temperature using the MaNDi single-crystal diffractometer at Oak Ridge National Laboratory.
Collapse
Affiliation(s)
- Hana McFeeters
- Department of Chemistry, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899, USA
| | - Venu Gopal Vandavasi
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Kevin L. Weiss
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA
| | - Robert L. McFeeters
- Department of Chemistry, University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899, USA
| |
Collapse
|
59
|
Bacik JP, Mekasha S, Forsberg Z, Kovalevsky A, Nix JC, Cuneo MJ, Coates L, Vaaje-Kolstad G, Chen JCH, Eijsink VGH, Unkefer CJ. Neutron and high-resolution room-temperature X-ray data collection from crystallized lytic polysaccharide monooxygenase. Acta Crystallogr F Struct Biol Commun 2015; 71:1448-52. [PMID: 26527275 PMCID: PMC4631597 DOI: 10.1107/s2053230x15019743] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
Bacteria and fungi express lytic polysaccharide monooxgyenase (LPMO) enzymes that act in conjunction with canonical hydrolytic sugar-processing enzymes to rapidly convert polysaccharides such as chitin, cellulose and starch to single monosaccharide products. In order to gain a better understanding of the structure and oxidative mechanism of these enzymes, large crystals (1-3 mm(3)) of a chitin-processing LPMO from the Gram-positive soil bacterium Jonesia denitrificans were grown and screened for their ability to diffract neutrons. In addition to the collection of neutron diffraction data, which were processed to 2.1 Å resolution, a high-resolution room-temperature X-ray diffraction data set was collected and processed to 1.1 Å resolution in space group P212121. To our knowledge, this work marks the first successful neutron crystallographic experiment on an LPMO. Joint X-ray/neutron refinement of the resulting data will reveal new details of the structure and mechanism of this recently discovered class of enzymes.
Collapse
Affiliation(s)
- John-Paul Bacik
- Protein Crystallography Station, Bioscience Division, Los Alamos National Laboratory, TA-03, Bldg 4200, MS T007, Los Alamos, NM 87545, USA
| | - Sophanit Mekasha
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1430 Ås, Norway
| | - Zarah Forsberg
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1430 Ås, Norway
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, PO Box 2008, Oak Ridge, NM 37831, USA
| | - Jay C. Nix
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Matthew J. Cuneo
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, PO Box 2008, Oak Ridge, NM 37831, USA
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, PO Box 2008, Oak Ridge, NM 37831, USA
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1430 Ås, Norway
| | - Julian C.-H. Chen
- Protein Crystallography Station, Bioscience Division, Los Alamos National Laboratory, TA-03, Bldg 4200, MS T007, Los Alamos, NM 87545, USA
| | - Vincent G. H. Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1430 Ås, Norway
| | - Clifford J. Unkefer
- Protein Crystallography Station, Bioscience Division, Los Alamos National Laboratory, TA-03, Bldg 4200, MS T007, Los Alamos, NM 87545, USA
| |
Collapse
|
60
|
Direct determination of protonation states and visualization of hydrogen bonding in a glycoside hydrolase with neutron crystallography. Proc Natl Acad Sci U S A 2015; 112:12384-9. [PMID: 26392527 DOI: 10.1073/pnas.1504986112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycoside hydrolase (GH) enzymes apply acid/base chemistry to catalyze the decomposition of complex carbohydrates. These ubiquitous enzymes accept protons from solvent and donate them to substrates at close to neutral pH by modulating the pKa values of key side chains during catalysis. However, it is not known how the catalytic acid residue acquires a proton and transfers it efficiently to the substrate. To better understand GH chemistry, we used macromolecular neutron crystallography to directly determine protonation and ionization states of the active site residues of a family 11 GH at multiple pD (pD=pH+0.4) values. The general acid glutamate (Glu) cycles between two conformations, upward and downward, but is protonated only in the downward orientation. We performed continuum electrostatics calculations to estimate the pKa values of the catalytic Glu residues in both the apo- and substrate-bound states of the enzyme. The calculated pKa of the Glu increases substantially when the side chain moves down. The energy barrier required to rotate the catalytic Glu residue back to the upward conformation, where it can protonate the glycosidic oxygen of the substrate, is 4.3 kcal/mol according to free energy simulations. These findings shed light on the initial stage of the glycoside hydrolysis reaction in which molecular motion enables the general acid catalyst to obtain a proton from the bulk solvent and deliver it to the glycosidic oxygen.
Collapse
|