51
|
Farhoosh R. New insights into the kinetic and thermodynamic evaluations of lipid peroxidation. Food Chem 2021; 375:131659. [PMID: 34865926 DOI: 10.1016/j.foodchem.2021.131659] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/01/2021] [Accepted: 11/20/2021] [Indexed: 11/27/2022]
Abstract
Simultaneous evaluations over the whole practical range of peroxidation, including the initiation and propagation phases, provide more informative and reliable data than single-parameter analyses being mostly employed only over the course of the initiation phase. Besides an overview on the dominant mechanisms governing the initiation and propagation phases, this article highlights a number of unifying parameters that represent inclusively the two phases. Then, the reliable method to calculate induction period and critical reverse micelle concentration of lipid hydroperoxides as the two interstitial parameters when transitioning from the initiation to the propagation phase is reviewed. Next, a reconsidered form of the conventional methodology on the kinetics of chain-breaking antioxidants is presented. After that, the Arrhenius kinetic and thermodynamic Eyring-Polanyi parameters calculated from the initiation, composite, and decomposition rate constants are compared in order to assess oxidative stabilities. Finally, shelf-life predictions based on a number of proposed end-points of peroxidation are addressed.
Collapse
Affiliation(s)
- Reza Farhoosh
- Ferdowsi University of Mashhad, Faculty of Agriculture, Department of Food Science and Technology, P.O. Box: 91775-1163, Mashhad, Iran.
| |
Collapse
|
52
|
Kurnia D, Ajiati D, Heliawati L, Sumiarsa D. Antioxidant Properties and Structure-Antioxidant Activity Relationship of Allium Species Leaves. Molecules 2021; 26:7175. [PMID: 34885755 PMCID: PMC8659087 DOI: 10.3390/molecules26237175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/04/2023] Open
Abstract
Allium is a genus that is widely consumed and used as traditional medicine in several countries. This genus has two major species, namely cultivated species and wild species. Cultivated species consist of A. cepa L., A. sativum L., A. fistulosum L. and A. schoenoprasum L. and wild species consist of A. ursinum L., A. flavum L., A. scorodoprasum L., A. vineale L. and A. atroviolaceum Boiss. Several studies report that the Allium species contain secondary metabolites such as polyphenols, flavonoids and tannins and have bioactivity such as antioxidants, antibacterial, antifungal, anti-inflammatory, pancreatic α-amylase, glucoamylase enzyme inhibitors and antiplatelets. This review summarizes some information regarding the types of Allium species (ethnobotany and ethnopharmacology), the content of compounds of Allium species leaves with various isolation methods, bioactivities, antioxidant properties and the structure-antioxidant activity relationship (SAR) of Allium compounds.
Collapse
Affiliation(s)
- Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.S.)
| | - Dwipa Ajiati
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.S.)
| | - Leny Heliawati
- Study Program of Chemistry, Faculty of Mathematics and Natural Science, Universitas Pakuan, Bogor 16143, Indonesia;
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia; (D.A.); (D.S.)
| |
Collapse
|
53
|
Ruiz-Hurtado PA, Garduño-Siciliano L, Domínguez-Verano P, Balderas-Cordero D, Gorgua-Jiménez G, Canales-Álvarez O, Canales-Martínez MM, Rodríguez-Monroy MA. Propolis and Its Gastroprotective Effects on NSAID-Induced Gastric Ulcer Disease: A Systematic Review. Nutrients 2021; 13:nu13093169. [PMID: 34579045 PMCID: PMC8466107 DOI: 10.3390/nu13093169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Gastric ulcer disease induced by the consumption of NSAIDs is a major public health problem. The therapy used for its treatment causes adverse effects in the patient. Propolis is a natural product that has been used for the treatments of different diseases around the world. Nevertheless, there is little information about the activity of propolis in gastric ulcers caused by treatment with NSAIDs. Therefore, this review evaluates and compares the gastroprotective potential of propolis and its function against NSAID-induced gastric ulcers, for which a systematic search was carried out in the PubMed and ScienceDirect databases. The main criteria were articles that report the gastroprotective activity of propolis against the damage produced by NSAIDs in the gastric mucosa. Gastroprotection was related to the antioxidant, antisecretory, and cytoprotective effects, as well as the phenolic compounds present in the chemical composition of propolis. However, most of the studies used different doses of NSAIDs and propolis and evaluated different parameters. Propolis has proven to be a good alternative for the treatment of gastric ulcer disease. However, future studies should be carried out to identify the compounds responsible for these effects and to determine their potential use in people.
Collapse
Affiliation(s)
- Porfirio Alonso Ruiz-Hurtado
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico; (P.A.R.-H.); (L.G.-S.)
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Leticia Garduño-Siciliano
- Laboratorio de Toxicología de Productos Naturales, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico; (P.A.R.-H.); (L.G.-S.)
| | - Pilar Domínguez-Verano
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Daniela Balderas-Cordero
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
| | - Gustavo Gorgua-Jiménez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Laboratorio de Genética, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - Octavio Canales-Álvarez
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Laboratorio de Genética, Departamento de Farmacia, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu, Gustavo A. Madero, Ciudad de México 07738, Mexico
| | - María Margarita Canales-Martínez
- Laboratorio de Farmacognosia, UBIPRO, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico;
| | - Marco Aurelio Rodríguez-Monroy
- Laboratorio de Investigación Biomédica en Productos Naturales, Carrera de Medicina, UNAM, FES-Iztacala, Avenida de los Barrios Número 1, Colonia Los Reyes Iztacala, Estado de México 54090, Mexico; (P.D.-V.); (D.B.-C.); (G.G.-J.); (O.C.-Á.)
- Correspondence: ; Tel.: +52-5545-205-185
| |
Collapse
|
54
|
Phytochemical Composition, Antioxidant, and Enzyme Inhibition Activities of Methanolic Extracts of Two Endemic Onosma Species. PLANTS 2021; 10:plants10071373. [PMID: 34371578 PMCID: PMC8309465 DOI: 10.3390/plants10071373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 01/05/2023]
Abstract
Onosma species have been used as a dye for hundreds of years due to their dark red pigments. These species have also been used by mankind in the treatment of various diseases since ancient times. This work analyzed the phytochemical composition in methanol extract of two endemic Onosma species (O. lycaonica and O. papillosa). Methanolic extract of these species varied in the content of flavonoids and phenolics. The flavonoids were found higher in O. papillosa [32.9 ± 0.3 mg QEs (quercetin equivalent)/g extracts] while the phenolics were higher in O. lycaonica [43.5 ± 1.5 mg GAEs (gallic acid equivalent)/g extracts]. ESI-MS/MS (electrospray ionization-mass spectrometry) revealed the presence of 25 compounds in O. lycaonica and 24 compounds in O. papillosa. The former was richer than the latter for apigenin, luteolin, eriodictyol, pinoresinol, apigenin 7-glucoside, rosmarinic acid, luteolin 7-glucoside, ferulic acid, vanillin, caffeic acid, 4-hydroxybenzoic acid, (+)-catechin3,4-dihydroxyphenylacetic acid. The O. papillosa exhibited low EC50 (1.90 ± 0.07 mg/mL) which indicated its strong phosphomolybdenum scavenging activity as compared to O. lycaonica. However, the O. lycaonica showed low IC50 or EC50 for 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), cupric reducing antioxidant power (CUPRAC), ferric reducing antioxidant power (FRAP) and ferrous ion chelating activity, as compared to O. papillosa. The results proved the presence of potent antioxidant compounds in O. lycaonica. Further, the plant extracts significantly varied for enzyme inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), but the plant extracts did not significantly differ for inhibition of α-glucosidase, α-amylase, and tyrosinase. Onosma species deserve further research towards developing novel drugs to treat oxidative diseases.
Collapse
|
55
|
Farooq S, Abdullah, Zhang H, Weiss J. A comprehensive review on polarity, partitioning, and interactions of phenolic antioxidants at oil-water interface of food emulsions. Compr Rev Food Sci Food Saf 2021; 20:4250-4277. [PMID: 34190411 DOI: 10.1111/1541-4337.12792] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/07/2021] [Accepted: 05/23/2021] [Indexed: 11/27/2022]
Abstract
There has been a growing interest in developing effective strategies to inhibit lipid oxidation in emulsified food products by utilization of natural phenolic antioxidants owing to their growing popularity over the past decades. However, due to the complexity of emulsified systems, the inhibition mechanism of phenolic antioxidants against lipid oxidation is rather complicated and not yet fully understood. In order to highlight the importance of polarity of phenolic antioxidants in emulsified systems according to the polar paradox, this review covers the recent progress on chemical, enzymatic, and chemoenzymatic lipophilization techniques used to modify the polarity of antioxidants. The partitioning behavior of phenolic antioxidants at the oil-water interface, which can be influenced by the presence of synthetic surfactants and/or antioxidant emulsifiers (e.g., polysaccharides, proteins, and phospholipids), is discussed. In addition, the emerging phenolic antioxidants among phenolic acids, flavonoids, tocopherols, and stilbenes applied in food emulsions are elaborated. As well, the interactions of polar-nonpolar antioxidants are stressed as a promising strategy to induce synergistic interactions at oil-water interface for improved oxidative stability of emulsions.
Collapse
Affiliation(s)
- Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Abdullah
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
56
|
Ak G, Gevrenova R, Sinan KI, Zengin G, Zheleva D, Mahomoodally MF, Senkardes I, Brunetti L, Leone S, Di Simone SC, Recinella L, Chiavaroli A, Menghini L, Orlando G, Ferrante C. Tanacetum vulgare L. (Tansy) as an effective bioresource with promising pharmacological effects from natural arsenal. Food Chem Toxicol 2021; 153:112268. [PMID: 34015423 DOI: 10.1016/j.fct.2021.112268] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 01/24/2023]
Abstract
The Tanacetum genus is a big treasure with the presence of biologically-active compounds and members of this genus are widely used for the treatment of several diseases in traditional medicine system. Considering this fact, we aimed to analyze the extracts from Tanacetum vulgare L. in case of chemical profiles and biological effects. Chemical characterization was performed by using UHPLC-HRMS technique and showed the presence of several phytochemical groups (107 compounds were identified, including phenolic acids, flavonoids, terpenoids and fatty acids. Biological abilities were examined by using antioxidant (DPPH, ABTS, FRAP, CUPRAC, metal chelating and phosphomolybdenum assays) and enzyme inhibition (tyrosinase, amylase, glucosidase and cholinesterase) properties. Pharmaco-toxicological investigations were also performed with the aim to identify limits of biocompatibility, anti-oxidant and neuromodulatory effects, in hypothalamic HypoE22 cells. A bioinformatic analysis was also carried to unravel the putative protein-targets for the observed biological effects. Generally, the tested hexane and hydroalcoholic extracts displayed stronger activities in antioxidant and enzyme inhibitory assays, when compared with water. In addition, multivariate analysis was performed to understand the differences in both solvents and plant parts and we clearly observed the separation of these parameters. The extracts (10 μg/mL) also stimulated DAT and inhibited TNFα and BDNF gene expression, in HypoE22 cells. In parallel, the extracts were also able to stimulate norepinephrine release from this cell line. By contrast, in the concentration range 50-100 μg/mL, the extracts reduced the HypoE22 viability, thus demonstrating cytotoxicity at concentrations 5-10 fold higher compared to those effective as neuromodulatory. Our observations manifested that T. vulgare has several beneficial effects and it can be used as a potential natural raw material for designing further health-promoting applications in nutraceutical, cosmeceutical, and pharmaceutical areas.
Collapse
Affiliation(s)
- Gunes Ak
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, Bulgaria
| | - Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Turkey.
| | - Dimitrina Zheleva
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, Bulgaria
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, 230 Réduit, Mauritius
| | - Ismail Senkardes
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Luigi Brunetti
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| | - Simonetta Cristina Di Simone
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy.
| | - Claudio Ferrante
- Department of Pharmacy, Medicinal Plant Unit (MPU), Botanic Garden "Giardino Dei Semplici", "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| |
Collapse
|
57
|
de Souza
Farias SA, da Costa KS, Martins JB. Analysis of Conformational, Structural, Magnetic, and Electronic Properties Related to Antioxidant Activity: Revisiting Flavan, Anthocyanidin, Flavanone, Flavonol, Isoflavone, Flavone, and Flavan-3-ol. ACS OMEGA 2021; 6:8908-8918. [PMID: 33842761 PMCID: PMC8028018 DOI: 10.1021/acsomega.0c06156] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 06/03/2023]
Abstract
Understanding the antioxidant activity of flavonoids is important to investigate their biological activities as well as to design novel molecules with low toxicity and high activity. Aromaticity is a chemical property found in cyclic structures that plays an important role in their stability and reactivity, and its investigation can help us to understand the antioxidant activity of some heterocyclic compounds. In the present study, we applied the density functional theory (DFT) to investigate the properties of seven flavonoid structures with well-reported antioxidant activity: flavan, anthocyanidin, flavanone, flavonol, isoflavone, flavone, and flavan-3-ol. Conformational, structural, magnetic, and electronic analyses were performed using nuclear magnetic resonance, ionization potentials, electron affinity, bond dissociation energy, proton affinity, frontier molecular orbitals (highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO)), and aromaticity through nucleus-independent chemical shifts to analyze these seven flavonoid structures. We revised the influence of hydroxyl groups on the properties of flavonoids and also investigated the influence of the aromaticity of these seven flavonoids on the antioxidant activity.
Collapse
Affiliation(s)
- Sergio Antônio de Souza
Farias
- Laboratory
of Molecular Modeling, Institute of Educational Sciences, Federal University of Western Pará, 68040-255 Santarém, Pará, Brazil
| | - Kauê Santana da Costa
- Institute
of Biodiversity, Federal University of Western
Pará, 68040-255 Santarém, Pará, Brazil
| | - João B.
L. Martins
- Laboratory
of Computational Chemistry, Institute of Chemistry, University of Brasilia, 4478 Brasília, Distrito
Federal, Brazil
| |
Collapse
|
58
|
Deghima A, Ansorena D, Calvo MI, Astiasarán I, Bedjou F. Nutritional constituents and effect of in vitro digestion on polyphenols and antioxidant activity of the large-leaved buttercup (Ranunculus macrophyllus Desf.). FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
59
|
Wang Z, Wu Z, Zuo G, Lim SS, Yan H. Defatted Seeds of Oenothera biennis as a Potential Functional Food Ingredient for Diabetes. Foods 2021; 10:foods10030538. [PMID: 33807644 PMCID: PMC8002154 DOI: 10.3390/foods10030538] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
The defatted seeds of Oenothera biennis (DSOB) are a by-product of evening primrose oil production that are currently not effectively used. In this study, α-glucosidase inhibition, aldose reductase inhibition, antioxidant capacity, polyphenol composition, and nutritional value (carbohydrates, proteins, minerals, fat, organic acid, and tocopherols) of DSOB were evaluated using the seeds of Oenothera biennis (SOB) as a reference. DSOB was an excellent inhibitor of α-glucosidase (IC50 = 3.31 μg/mL) and aldose reductase (IC50 = 2.56 μg/mL). DSOB also showed considerable antioxidant capacities (scavenging of 2,2-diphenyl-1-picrylhydrazyl, 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid, nitric oxide, peroxynitrite, and hydroxyl radicals). DSOB was a reservoir of polyphenols, and 25 compounds in DSOB were temporarily identified by liquid chromatography coupled with electrospray ionization–quadrupole time of flight–mass spectrometry analysis. Moreover, the carbohydrate, protein, and mineral content of DSOB were increased compared to that of SOB. DSOB contained large amounts of fiber and low levels of sugars, and was rich in calcium and iron. These results imply that DSOB may be a potential functional food ingredient for diabetes, providing excellent economic and environmental benefits.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China;
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Correspondence: (Z.W.); (H.Y.); Tel.: +86-312-5079010 (Z.W.); +86-312-5078507 (H.Y.)
| | - Zhaoyang Wu
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China;
| | - Guanglei Zuo
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (S.S.L.)
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Korea; (G.Z.); (S.S.L.)
| | - Hongyuan Yan
- Key Laboratory of Public Health Safety of Hebei Province, College of Public Health, Hebei University, Baoding 071002, China;
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- Correspondence: (Z.W.); (H.Y.); Tel.: +86-312-5079010 (Z.W.); +86-312-5078507 (H.Y.)
| |
Collapse
|
60
|
Mutha RE, Tatiya AU, Surana SJ. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:25. [PMID: 33495733 PMCID: PMC7816146 DOI: 10.1186/s43094-020-00161-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Natural plants and plant-derived formulations have been used by mankind from the ancient period of time. For the past few years, many investigations elaborated the therapeutic potential of various secondary chemicals present in the plants. Literature revealed that the various secondary metabolites, viz. phenolics and flavonoids, are responsible for a variety of therapeutic action in humans. MAIN BODY In the present review, an attempt has been made to compile the exploration of natural phenolic compounds with major emphasis on flavonoids and their therapeutic potential too. Interestingly, long-term intake of many dietary foods (rich in phenolics) proved to be protective against the development and management of diabetes, cancer, osteoporosis, cardiovascular diseases and neurodegenerative diseases, etc. CONCLUSION This review presents an overview of flavonoid compounds to use them as a potential therapeutic alternative in various diseases and disorders. In addition, the present understanding of phenolics and flavonoids will serve as the basis for the next scientific studies.
Collapse
Affiliation(s)
- Rakesh E. Mutha
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist., Dhule, Maharashtra 425405 India
| | - Anilkumar U. Tatiya
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist., Dhule, Maharashtra 425405 India
| | - Sanjay J. Surana
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist., Dhule, Maharashtra 425405 India
| |
Collapse
|
61
|
Antioxidant Activity of Flavonoids in LPS-Treated IPEC-J2 Porcine Intestinal Epithelial Cells and Their Antibacterial Effect against Bacteria of Swine Origin. Antioxidants (Basel) 2020; 9:antiox9121267. [PMID: 33322114 PMCID: PMC7764120 DOI: 10.3390/antiox9121267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/11/2020] [Indexed: 01/17/2023] Open
Abstract
Beneficial effects of flavonoids are widely known in human medicine, but less information is available about their veterinary usage. Based on their antioxidant and antibacterial activity, proanthocyanidins (PAs) and luteolin (LUT) might be used in the prevention and treatment of gastrointestinal infections in swine. In this study, in vitro beneficial effects of grape seed oligomeric proanthocyanidins (GSOPs) and LUT were investigated against bacterial endotoxin (LPS)-induced oxidative stress in IPEC-J2 porcine epithelial intestinal cells. Furthermore, antibacterial effects of GSOP and LUT were assessed against field isolates of Escherichia coli and Salmonella enterica ser. Typhimurium. Both GSOP and LUT were found to possess potent in vitro antioxidant activity in LPS-treated IPEC-J2 cells; furthermore, they showed a bacteriostatic effect against the tested bacterial strains of porcine origin. Both flavonoids seem to be effective in the protection of porcine intestinal epithelial cells against Gram-negative bacteria in vitro, but further in vivo studies are necessary to confirm these activities and to establish their optimal dosage regimen for future usage in veterinary practice.
Collapse
|
62
|
Treatment with Luteolin Improves Lipopolysaccharide-Induced Periodontal Diseases in Rats. Biomedicines 2020; 8:biomedicines8100442. [PMID: 33096800 PMCID: PMC7590181 DOI: 10.3390/biomedicines8100442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is a dental disease that produces the progressive destruction of the bone surrounding the tooth. Especially, lipopolysaccharide (LPS) is involved in the deterioration of the alveolar bone, inducing the release of pro-inflammatory mediators, which cause periodontal tissue inflammation. Luteolin (Lut), a molecule of natural origin present in a large variety of fruits and vegetables, possess beneficial properties for human health. On this basis, we investigated the anti-inflammatory properties of Lut in a model of periodontitis induced by LPS in rats. Animal model predicted a single intragingival injection of LPS (10 μg/μL) derived from Salmonella typhimurium. Lut administration, was performed daily at different doses (10, 30, and 100 mg/kg, orally), starting from 1 h after the injection of LPS. After 14 days, the animals were sacrificed, and their gums were processed for biochemical analysis and histological examinations. Results showed that Lut (30 and 100 mg/kg) was equally able to reduce alveolar bone loss, tissue damage, and neutrophilic infiltration. Moreover, Lut treatment reduced the concentration of collagen fibers, mast cells degranulation, and NF-κB activation, as well as the presence of pro-inflammatory enzymes and cytokines. Therefore, Lut implementation could represent valid support in the pharmacological strategy for periodontitis, thus improving the well-being of the oral cavity.
Collapse
|
63
|
Sayed AM, Hassanein EH, Salem SH, Hussein OE, Mahmoud AM. Flavonoids-mediated SIRT1 signaling activation in hepatic disorders. Life Sci 2020; 259:118173. [DOI: 10.1016/j.lfs.2020.118173] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
|
64
|
Comparison of In Vitro and In Vivo Antioxidant Activities of Six Flavonoids with Similar Structures. Antioxidants (Basel) 2020; 9:antiox9080732. [PMID: 32796543 PMCID: PMC7465758 DOI: 10.3390/antiox9080732] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
The in vitro and in vivo antioxidant activities of six flavonoids with similar structures, including epicatechin (EC), epigallocatechin (EGC), procyanidin B2 (P), quercetin (Q), taxifolin (T), and rutin (R) were compared. The structures of the six flavonoids and their scavenging activities for 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+) radicals were closely related. The flavonoids decreased serum contents of malondialdehyde (MDA) and nitric oxide (NO), and increased serum total antioxidative capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) levels to different degrees in d-galactose-treated mice. The changes in mRNA expression of liver GSH-Px1, CAT, SOD1, and SOD2 by d-galactose were dissimilarly restored by the six flavonoids. Moreover, the six flavonoids differentially prevented the inflammatory response caused by oxidative stress by inhibiting interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α levels, and restoring IL-10 levels. These six flavonoids from two subclasses revealed the following antioxidant capability: P > EC, EGC > EC, Q > T, Q > R. Our results indicate that (1) the pyrogallol, dimerization, and C2=C3 double bonds of flavonoids enhanced antioxidant activity and (2) the C3 glycosylation of flavonoids attenuated antioxidant capacity.
Collapse
|