51
|
Preite V, Sailer C, Syllwasschy L, Bray S, Ahmadi H, Krämer U, Yant L. Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180243. [PMID: 31154972 DOI: 10.5061/dryad.jg30j4v] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
It is a plausible hypothesis that parallel adaptation events to the same environmental challenge should result in genetic changes of similar or identical effects, depending on the underlying fitness landscapes. However, systematic testing of this is scarce. Here we examine this hypothesis in two closely related plant species, Arabidopsis halleri and Arabidopsis arenosa, which co-occur at two calamine metalliferous (M) sites harbouring toxic levels of the heavy metals zinc and cadmium. We conduct individual genome resequencing alongside soil elemental analysis for 64 plants from eight populations on M and non-metalliferous (NM) soils, and identify genomic footprints of selection and local adaptation. Selective sweep and environmental association analyses indicate a modest degree of gene as well as functional network convergence, whereby the proximal molecular factors mediating this convergence mostly differ between site pairs and species. Notably, we observe repeated selection on identical single nucleotide polymorphisms in several A. halleri genes at two independently colonized M sites. Our data suggest that species-specific metal handling and other biological features could explain a low degree of convergence between species. The parallel establishment of plant populations on calamine M soils involves convergent evolution, which will probably be more pervasive across sites purposely chosen for maximal similarity in soil composition. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Veronica Preite
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Christian Sailer
- 2 Cell and Developmental Biology, John Innes Centre , Norwich NR4 7UH , UK
| | - Lara Syllwasschy
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Sian Bray
- 2 Cell and Developmental Biology, John Innes Centre , Norwich NR4 7UH , UK
| | - Hassan Ahmadi
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Ute Krämer
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Levi Yant
- 2 Cell and Developmental Biology, John Innes Centre , Norwich NR4 7UH , UK
- 3 School of Life Sciences, University of Nottingham , Nottingham NG7 2RD , UK
| |
Collapse
|
52
|
Preite V, Sailer C, Syllwasschy L, Bray S, Ahmadi H, Krämer U, Yant L. Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 31154972 DOI: 10.1101/459362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
It is a plausible hypothesis that parallel adaptation events to the same environmental challenge should result in genetic changes of similar or identical effects, depending on the underlying fitness landscapes. However, systematic testing of this is scarce. Here we examine this hypothesis in two closely related plant species, Arabidopsis halleri and Arabidopsis arenosa, which co-occur at two calamine metalliferous (M) sites harbouring toxic levels of the heavy metals zinc and cadmium. We conduct individual genome resequencing alongside soil elemental analysis for 64 plants from eight populations on M and non-metalliferous (NM) soils, and identify genomic footprints of selection and local adaptation. Selective sweep and environmental association analyses indicate a modest degree of gene as well as functional network convergence, whereby the proximal molecular factors mediating this convergence mostly differ between site pairs and species. Notably, we observe repeated selection on identical single nucleotide polymorphisms in several A. halleri genes at two independently colonized M sites. Our data suggest that species-specific metal handling and other biological features could explain a low degree of convergence between species. The parallel establishment of plant populations on calamine M soils involves convergent evolution, which will probably be more pervasive across sites purposely chosen for maximal similarity in soil composition. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Veronica Preite
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Christian Sailer
- 2 Cell and Developmental Biology, John Innes Centre , Norwich NR4 7UH , UK
| | - Lara Syllwasschy
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Sian Bray
- 2 Cell and Developmental Biology, John Innes Centre , Norwich NR4 7UH , UK
| | - Hassan Ahmadi
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Ute Krämer
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Levi Yant
- 2 Cell and Developmental Biology, John Innes Centre , Norwich NR4 7UH , UK
- 3 School of Life Sciences, University of Nottingham , Nottingham NG7 2RD , UK
| |
Collapse
|
53
|
Legrand S, Caron T, Maumus F, Schvartzman S, Quadrana L, Durand E, Gallina S, Pauwels M, Mazoyer C, Huyghe L, Colot V, Hanikenne M, Castric V. Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mob DNA 2019; 10:30. [PMID: 31346350 PMCID: PMC6636163 DOI: 10.1186/s13100-019-0171-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
Background Transposable elements (TEs) are genomic parasites with major impacts on host genome architecture and host adaptation. A proper evaluation of their evolutionary significance has been hampered by the paucity of short scale phylogenetic comparisons between closely related species. Here, we characterized the dynamics of TE accumulation at the micro-evolutionary scale by comparing two closely related plant species, Arabidopsis lyrata and A. halleri. Results Joint genome annotation in these two outcrossing species confirmed that both contain two distinct populations of TEs with either 'recent' or 'old' insertion histories. Identification of rare segregating insertions suggests that diverse TE families contribute to the ongoing dynamics of TE accumulation in the two species. Orthologous TE fragments (i.e. those that have been maintained in both species), tend to be located closer to genes than those that are retained in one species only. Compared to non-orthologous TE insertions, those that are orthologous tend to produce fewer short interfering RNAs, are less heavily methylated when found within or adjacent to genes and these tend to have lower expression levels. These findings suggest that long-term retention of TE insertions reflects their frequent acquisition of adaptive roles and/or the deleterious effects of removing nearly neutral TE insertions when they are close to genes. Conclusion Our results indicate a rapid evolutionary dynamics of the TE landscape in these two outcrossing species, with an important input of a diverse set of new insertions with variable propensity to resist deletion.
Collapse
Affiliation(s)
- Sylvain Legrand
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Thibault Caron
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Florian Maumus
- 2URGI, INRA, Université Paris-Saclay, 78026 Versailles, France
| | - Sol Schvartzman
- 3InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Leandro Quadrana
- 4IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Eléonore Durand
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Sophie Gallina
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Maxime Pauwels
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Clément Mazoyer
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Lucie Huyghe
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Vincent Colot
- 4IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Marc Hanikenne
- 3InBioS - PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000 Liège, Belgium
| | - Vincent Castric
- 1Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| |
Collapse
|
54
|
Ito T, Nishio H, Tarutani Y, Emura N, Honjo MN, Toyoda A, Fujiyama A, Kakutani T, Kudoh H. Seasonal Stability and Dynamics of DNA Methylation in Plants in a Natural Environment. Genes (Basel) 2019; 10:genes10070544. [PMID: 31319612 PMCID: PMC6679105 DOI: 10.3390/genes10070544] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
DNA methylation has been considered a stable epigenetic mark but may respond to fluctuating environments. However, it is unclear how they behave in natural environments. Here, we analyzed seasonal patterns of genome-wide DNA methylation in a single clone from a natural population of the perennial Arabidopsis halleri. The genome-wide pattern of DNA methylation was primarily stable, and most of the repetitive regions were methylated across the year. Although the proportion was small, we detected seasonally methylated cytosines (SeMCs) in the genome. SeMCs in the CHH context were detected predominantly at repetitive sequences in intergenic regions. In contrast, gene-body CG methylation (gbM) itself was generally stable across seasons, but the levels of gbM were positively associated with seasonal stability of RNA expression of the genes. These results suggest the existence of two distinct aspects of DNA methylation in natural environments: sources of epigenetic variation and epigenetic marks for stable gene expression.
Collapse
Affiliation(s)
- Tasuku Ito
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | - Haruki Nishio
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | - Yoshiaki Tarutani
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Naoko Emura
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
- Department of Environmental Sciences and Technology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan
| | - Mie N Honjo
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Asao Fujiyama
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Tetsuji Kakutani
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Kudoh
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan.
| |
Collapse
|
55
|
Abstract
Evolutionary conflict can drive rapid adaptive evolution, sometimes called an arms race, because each party needs to respond continually to the adaptations of the other. Evidence for such arms races can sometimes be seen in morphology, in behavior, or in the genes underlying sexual interactions of host-pathogen interactions, but is rarely predicted a priori. Kin selection theory predicts that conflicts of interest should usually be reduced but not eliminated among genetic relatives, but there is little evidence as to whether conflict within families can drive rapid adaptation. Here we test multiple predictions about how conflict over the amount of resources an offspring receives from its parent would drive rapid molecular evolution in seed tissues of the flowering plant Arabidopsis As predicted, there is more adaptive evolution in genes expressed in Arabidopsis seeds than in other specialized organs, more in endosperms and maternal tissues than in embryos, and more in the specific subtissues involved in nutrient transfer. In the absence of credible alternative hypotheses, these results suggest that kin selection and conflict are important in plants, that the conflict includes not just the mother and offspring but also the triploid endosperm, and that, despite the conflict-reducing role of kinship, family members can engage in slow but steady tortoise-like arms races.
Collapse
|
56
|
Genetic architecture of a plant adaptive trait: QTL mapping of intraspecific variation for tolerance to metal pollution in Arabidopsis halleri. Heredity (Edinb) 2019; 122:877-892. [PMID: 30670845 DOI: 10.1038/s41437-019-0184-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/01/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
Anthropogenic activities are among the main drivers of global change and result in drastic habitat modifications, which represent strong evolutionary challenges for biological species that can either migrate, adapt, or disappear. In this context, understanding the genetics of adaptive traits is a prerequisite to enable long-term maintenance of populations under strong environmental constraints. To examine these processes, a QTL approach was developed here using the pseudometallophyte Arabidopsis halleri, which displays among-population adaptive divergence for tolerance to metallic pollution in soils. An F2 progeny was obtained by crossing individuals from metallicolous and non-metallicolous populations from Italian Alps, where intense metallurgic activities have created strong landscape heterogeneity. Then, we combined genome de novo assembly and genome resequencing of parental genotypes to obtain single-nucleotide polymorphism markers and achieve high-throughput genotyping of the progeny. QTL analysis was performed using growth parameters and photosynthetic yield to assess zinc tolerance levels. One major QTL was identified for photosynthetic yield. It explained about 27% of the phenotypic variance. Functional annotation of the QTL and gene expression analyses highlighted putative candidate genes. Our study represents a successful approach combining evolutionary genetics and advanced molecular tools, helping to better understand how a species can face new selective pressures of anthropogenic origin.
Collapse
|
57
|
Hong L, Zhang L, Liu M, Wang S, He L, Yang W, Li J, Yu Q, Li QQ, Zhou K. Heavy metal rich stone-processing wastewater inhibits the growth and development of plants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 21:479-486. [PMID: 30560684 DOI: 10.1080/15226514.2018.1537241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Large amounts of wastewater are generated from stone processing, which are toxic and cause serious environmental and health risks. To quantify the content of stone processing wastewater and estimate its effects on plant growth, we collected water samples from sewage outfall of four stone processing factories and nearby water bodies. The concentration of potential toxic metals were much higher in the wastewater than background controls. Wastewater inhibited plant primary root elongation, lateral root formation, and growth of aerial part. Seedlings treated with the effluents were unhealthy with deep purple leaves and usually died before flowering. Chlorophyll a/b contents and chloroplast number were reduced in those abnormal mesophyll cells. Transcriptional levels were decreased for chloroplast formation genes, but increased for those participated in chloroplast degradation and catabolism. Six out of nine tested senescence-associated genes were up-regulated. Furthermore, our results show that endogenous toxic metal levels indeed increased after wastewater treatment. Altogether, these results indicated that the potential toxic metals rich wastewater had significant inhibition on plant growth and led to senescence-associated program cell death, which could be helpful for the government and enterprises to understand the environmental risks and formulate reasonable wastewater emission standards for the stone processing industry.
Collapse
Affiliation(s)
- Liwei Hong
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Liangjie Zhang
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Meiling Liu
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Shengjie Wang
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Linjun He
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Wanyu Yang
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Jingli Li
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Qiaojie Yu
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| | - Qingshun Q Li
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
- b Graduate College , Western University of Health Science , Pomona , CA , USA
| | - Kefu Zhou
- a Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems , College of the Environment and Ecology, Xiamen University , Xiamen , Fujian , China
| |
Collapse
|
58
|
Sailer C, Babst-Kostecka A, Fischer MC, Zoller S, Widmer A, Vollenweider P, Gugerli F, Rellstab C. Transmembrane transport and stress response genes play an important role in adaptation of Arabidopsis halleri to metalliferous soils. Sci Rep 2018; 8:16085. [PMID: 30382172 PMCID: PMC6208402 DOI: 10.1038/s41598-018-33938-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022] Open
Abstract
When plants adapt to local environments, strong signatures of selection are expected in the genome, particularly in high-stress environments such as trace metal element enriched (metalliferous) soils. Using Arabidopsis halleri, a model species for metal homeostasis and adaptation to extreme environments, we identifid genes, gene variants, and pathways that are associated with soil properties and may thus contribute to adaptation to high concentrations of trace metal elements. We analysed whole-genome Pool-seq data from two metallicolous (from metalliferous soils) and two non-metallicolous populations (in total 119 individuals) and associated allele frequencies of the identified single-nucleotide polymorphisms (SNPs) with soil variables measured on site. Additionally, we accounted for polygenic adaptation by searching for gene pathways showing enrichment of signatures of selection. Out of >2.5 million SNPs, we identified 57 SNPs in 19 genes that were significantly associated with soil variables and are members of three enriched pathways. At least three of these candidate genes and pathways are involved in transmembrane transport and/or associated with responses to various stresses such as oxidative stress. We conclude that both allocation and detoxification processes play a crucial role in A. halleri for coping with these unfavourable conditions.
Collapse
Affiliation(s)
- Christian Sailer
- WSL Swiss Federal Research Institute, Birmensdorf, 8903, Switzerland.
- ETH Zürich, Institute of Integrative Biology, Zürich, 8092, Switzerland.
| | | | - Martin C Fischer
- ETH Zürich, Institute of Integrative Biology, Zürich, 8092, Switzerland
| | - Stefan Zoller
- ETH Zürich, Genetic Diversity Centre, Zürich, 8092, Switzerland
| | - Alex Widmer
- ETH Zürich, Institute of Integrative Biology, Zürich, 8092, Switzerland
| | | | - Felix Gugerli
- WSL Swiss Federal Research Institute, Birmensdorf, 8903, Switzerland
| | | |
Collapse
|
59
|
Payne BL, Alvarez-Ponce D. Higher Rates of Protein Evolution in the Self-Fertilizing Plant Arabidopsis thaliana than in the Out-Crossers Arabidopsis lyrata and Arabidopsis halleri. Genome Biol Evol 2018; 10:895-900. [PMID: 29608724 PMCID: PMC5865523 DOI: 10.1093/gbe/evy053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 11/13/2022] Open
Abstract
The common transition from out-crossing to self-fertilization in plants decreases effective population size. This is expected to result in a reduced efficacy of natural selection and in increased rates of protein evolution in selfing plants compared with their outcrossing congeners. Prior analyses, based on a very limited number of genes, detected no differences between the rates of protein evolution in the selfing Arabidopsis thaliana compared with the out-crosser Arabidopsis lyrata. Here, we reevaluate this trend using the complete genomes of A. thaliana, A. lyrata, Arabidopsis halleri, and the outgroups Capsella rubella and Thellungiella parvula. Our analyses indicate slightly but measurably higher nonsynonymous divergences (dN), synonymous divergences (dS) and dN/dS ratios in A. thaliana compared with the other Arabidopsis species, indicating that purifying selection is indeed less efficacious in A. thaliana.
Collapse
|
60
|
Ahmadi H, Corso M, Weber M, Verbruggen N, Clemens S. CAX1 suppresses Cd-induced generation of reactive oxygen species in Arabidopsis halleri. PLANT, CELL & ENVIRONMENT 2018; 41:2435-2448. [PMID: 29879753 DOI: 10.1111/pce.13362] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/12/2018] [Accepted: 05/25/2018] [Indexed: 05/11/2023]
Abstract
The molecular analysis of metal hyperaccumulation in species such as Arabidopsis halleri offers the chance to gain insights into metal homeostasis and into the evolution of adaptation to extreme habitats. A prerequisite of metal hyperaccumulation is metal hypertolerance. Genetic analysis of a backcross population derived from Arabidopsis lyrata × A. halleri crosses revealed three quantitative trait loci for Cd hypertolerance. A candidate gene for Cdtol2 is AhCAX1, encoding a vacuolar Ca2+ /H+ antiporter. We developed a method for the transformation of vegetatively propagated A. halleri plants and generated AhCAX1-silenced lines. Upon Cd2+ exposure, several-fold higher accumulation of reactive oxygen species (ROS) was detectable in roots of AhCAX1-silenced plants. In accordance with the dependence of Cdtol2 on external Ca2+ concentration, this phenotype was exclusively observed in low Ca2+ conditions. The effects of external Ca2+ on Cd accumulation cannot explain the phenotype as they were not influenced by the genotype. Our data strongly support the hypothesis that higher expression of CAX1 in A. halleri relative to other Arabidopsis species represents a Cd hypertolerance factor. We propose a function of AhCAX1 in preventing a positive feedback loop of Cd-elicited ROS production triggering further Ca2+ -dependent ROS accumulation.
Collapse
Affiliation(s)
- Hassan Ahmadi
- University of Bayreuth, Department of Plant Physiology, and Bayreuth Center of Ecology and Environmental Research, Bayreuth, Germany
| | - Massimiliano Corso
- Université Libre de Bruxelles, Laboratory of Plant Physiology and Molecular Genetics, Brussels, Belgium
| | - Michael Weber
- University of Bayreuth, Department of Plant Physiology, and Bayreuth Center of Ecology and Environmental Research, Bayreuth, Germany
| | - Nathalie Verbruggen
- Université Libre de Bruxelles, Laboratory of Plant Physiology and Molecular Genetics, Brussels, Belgium
| | - Stephan Clemens
- University of Bayreuth, Department of Plant Physiology, and Bayreuth Center of Ecology and Environmental Research, Bayreuth, Germany
| |
Collapse
|
61
|
Paape T, Briskine RV, Halstead-Nussloch G, Lischer HEL, Shimizu-Inatsugi R, Hatakeyama M, Tanaka K, Nishiyama T, Sabirov R, Sese J, Shimizu KK. Patterns of polymorphism and selection in the subgenomes of the allopolyploid Arabidopsis kamchatica. Nat Commun 2018; 9:3909. [PMID: 30254374 PMCID: PMC6156220 DOI: 10.1038/s41467-018-06108-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022] Open
Abstract
Genome duplication is widespread in wild and crop plants. However, little is known about genome-wide selection in polyploids due to the complexity of duplicated genomes. In polyploids, the patterns of purifying selection and adaptive substitutions may be affected by masking owing to duplicated genes or homeologs as well as effective population size. Here, we resequence 25 accessions of the allotetraploid Arabidopsis kamchatica, which is derived from the diploid species A. halleri and A. lyrata. We observe a reduction in purifying selection compared with the parental species. Interestingly, proportions of adaptive non-synonymous substitutions are significantly positive in contrast to most plant species. A recurrent pattern observed in both frequency and divergence–diversity neutrality tests is that the genome-wide distributions of both subgenomes are similar, but the correlation between homeologous pairs is low. This may increase the opportunity of different evolutionary trajectories such as in the HMA4 gene involved in heavy metal hyperaccumulation. Despite the prevalence of genome duplication in plants, little is known about the evolutionary patterns of entire subgenomes. Here the authors resequence allopolyploid Arabidopsis kamchatica genome to estimate diversity, linkage disequilibrium and strengths of both positive and purifying selection.
Collapse
Affiliation(s)
- Timothy Paape
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland. .,Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland.
| | - Roman V Briskine
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Environmental Systems Science, ETH Zurich, CH-8092, Zurich, Switzerland.,Functional Genomics Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Gwyneth Halstead-Nussloch
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Heidi E L Lischer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, 1015, Switzerland
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.,Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, 1015, Switzerland.,Functional Genomics Center Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Kenta Tanaka
- Sugadaira Montane Research Center, University of Tsukuba, Nagano, Ueda, 386-2204, Japan
| | - Tomoaki Nishiyama
- Advanced Science Research Center, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-0934, Japan
| | - Renat Sabirov
- Institute of Marine Geology and Geophysics, Far East Branch, Russian Academy of Sciences, Nauki street, 1-B, Yuzhno-Sakhalinsk, 693022, Russian Federation
| | - Jun Sese
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.,AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, Tokyo, 152-8550, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland. .,Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008, Zurich, Switzerland. .,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Yokohama, 244-0813, Japan.
| |
Collapse
|
62
|
Babst-Kostecka A, Schat H, Saumitou-Laprade P, Grodzińska K, Bourceaux A, Pauwels M, Frérot H. Evolutionary dynamics of quantitative variation in an adaptive trait at the regional scale: The case of zinc hyperaccumulation in Arabidopsis halleri. Mol Ecol 2018; 27:3257-3273. [PMID: 30010225 DOI: 10.1111/mec.14800] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 01/06/2023]
Abstract
Metal hyperaccumulation in plants is an ecological trait whose biological significance remains debated, in particular because the selective pressures that govern its evolutionary dynamics are complex. One of the possible causes of quantitative variation in hyperaccumulation may be local adaptation to metalliferous soils. Here, we explored the population genetic structure of Arabidopsis halleri at fourteen metalliferous and nonmetalliferous sampling sites in southern Poland. The results were integrated with a quantitative assessment of variation in zinc hyperaccumulation to trace local adaptation. We identified a clear hierarchical structure with two distinct genetic groups at the upper level of clustering. Interestingly, these groups corresponded to different geographic subregions, rather than to ecological types (i.e., metallicolous vs. nonmetallicolous). Also, approximate Bayesian computation analyses suggested that the current distribution of A. halleri in southern Poland could be relictual as a result of habitat fragmentation caused by climatic shifts during the Holocene, rather than due to recent colonization of industrially polluted sites. In addition, we find evidence that some nonmetallicolous lowland populations may have actually derived from metallicolous populations. Meanwhile, the distribution of quantitative variation in zinc hyperaccumulation did separate metallicolous and nonmetallicolous accessions, indicating more recent adaptive evolution and diversifying selection between metalliferous and nonmetalliferous habitats. This suggests that zinc hyperaccumulation evolves both ways-towards higher levels at nonmetalliferous sites and lower levels at metalliferous sites. Our results open a new perspective on possible evolutionary relationships between A. halleri edaphic types that may inspire future genetic studies of quantitative variation in metal hyperaccumulation.
Collapse
Affiliation(s)
- Alicja Babst-Kostecka
- W. Szafer Institute of Botany, Department of Ecology, Polish Academy of Sciences, Krakow, Poland
- CNRS, UMR 8198 - Evo-Eco-Paleo, Université de Lille - Sciences et Technologies, Villeneuve d'Ascq, France
| | - Henk Schat
- Institute of Ecological Science, Free University of Amsterdam, Amsterdam, The Netherlands
| | - Pierre Saumitou-Laprade
- CNRS, UMR 8198 - Evo-Eco-Paleo, Université de Lille - Sciences et Technologies, Villeneuve d'Ascq, France
| | - Krystyna Grodzińska
- W. Szafer Institute of Botany, Department of Ecology, Polish Academy of Sciences, Krakow, Poland
| | - Angélique Bourceaux
- CNRS, UMR 8198 - Evo-Eco-Paleo, Université de Lille - Sciences et Technologies, Villeneuve d'Ascq, France
| | - Maxime Pauwels
- CNRS, UMR 8198 - Evo-Eco-Paleo, Université de Lille - Sciences et Technologies, Villeneuve d'Ascq, France
| | - Hélène Frérot
- CNRS, UMR 8198 - Evo-Eco-Paleo, Université de Lille - Sciences et Technologies, Villeneuve d'Ascq, France
| |
Collapse
|
63
|
Basharat Z, Novo LAB, Yasmin A. Genome Editing Weds CRISPR: What Is in It for Phytoremediation? PLANTS 2018; 7:plants7030051. [PMID: 30720787 PMCID: PMC6161122 DOI: 10.3390/plants7030051] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 01/16/2023]
Abstract
The arrival of sequence-specific endonucleases that allow genome editing has shaken the pillars of basic and applied plant biology. Clustered regularly interspaced palindromic repeats (CRISPR) is a revolutionary genome-engineering tool that enables the enhancement of targeted traits in plants. Numerous plants, including energy crops, known for their potential to tolerate, immobilize, and stabilize inorganic and organic pollutants, have already been edited using different CRISPR systems. Moreover, a large array of genes responsible for increased metal tolerance, metal uptake and hyperaccumulation have already been identified. Thus, the CRISPR-mediated genome reprogramming of plants, including its use in gene expression regulation through transcriptional repression or activation (CRISPRi and CRISPRa), could be of paramount importance for phytoremediation. The simplicity, inexpensiveness, and capabilities of this gene editing technique could soon be used to enhance plants and bacteria involved in phytotechnologies, such as phystabilization, phytoextraction, phytomining, phytovolatilization, and bio-energy generation. In this brief viewpoint piece, we posit some of the potential benefits of CRISPR for phytoremediation.
Collapse
Affiliation(s)
- Zarrin Basharat
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan.
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Luís A B Novo
- GeoBioTec Research Centre, Department of Geosciences, University of Aveiro, 3810-193 Aveiro, Portugal.
- Centre of Biotechnology and Fine Chemistry-Associated Laboratory, Faculty of Biotechnology, Catholic University of Portugal, 4169-005 Porto, Portugal.
| | - Azra Yasmin
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan.
| |
Collapse
|
64
|
Yew CL, Kakui H, Shimizu KK. Agrobacterium-mediated floral dip transformation of the model polyploid species Arabidopsis kamchatica. JOURNAL OF PLANT RESEARCH 2018; 131:349-358. [PMID: 29032409 DOI: 10.1007/s10265-017-0982-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Polyploidization has played an important role in the speciation and diversification of plant species. However, genetic analyses of polyploids are challenging because the vast majority of the model species are diploids. The allotetraploid Arabidopsis kamchatica, which originated through the hybridization of the diploid Arabidopsis halleri and Arabidopsis lyrata, is an emerging model system for studying various aspects of polyploidy. However, a transgenic method that allows the insertion of a gene of interest into A. kamchatica is still lacking. In this study, we investigated the early development of pistils in A. kamchatica and confirmed the formation of open pistils in young flower buds (stages 8-9), which is important for allowing Agrobacterium to access female reproductive tissues. We established a simple Agrobacterium-mediated floral dip transformation method to transform a gene of interest into A. kamchatica by dipping A. kamchatica inflorescences bearing many young flower buds into a 5% sucrose solution containing 0.05% Silwet L-77 and Agrobacterium harboring the gene of interest. We showed that a screenable marker comprising fluorescence-accumulating seed technology with green fluorescent protein was useful for screening the transgenic seeds of two accessions of A. kamchatica subsp. kamchatica and an accession of A. kamchatica subsp. kawasakiana.
Collapse
Affiliation(s)
- Chow-Lih Yew
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Hiroyuki Kakui
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka-ward, Yokohama, 244-0813, Japan.
| |
Collapse
|
65
|
Hanada K, Tezuka A, Nozawa M, Suzuki Y, Sugano S, Nagano AJ, Ito M, Morinaga SI. Functional divergence of duplicate genes several million years after gene duplication in Arabidopsis. DNA Res 2018; 25:4898128. [PMID: 29481587 PMCID: PMC6014284 DOI: 10.1093/dnares/dsy005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/02/2018] [Indexed: 12/02/2022] Open
Abstract
Lineage-specific duplicated genes likely contribute to the phenotypic divergence in closely related species. However, neither the frequency of duplication events nor the degree of selection pressures immediately after gene duplication is clear in the speciation process. Here, using Illumina DNA-sequencing reads from Arabidopsis halleri, which has multiple closely related species with high-quality genome assemblies (A. thaliana and A. lyrata), we succeeded in generating orthologous gene groups in Brassicaceae. The duplication frequency of retained genes in the Arabidopsis lineage was ∼10 times higher than the duplication frequency inferred by comparative genomics of Arabidopsis, poplar, rice and moss (Physcomitrella patens). The difference of duplication frequencies can be explained by a rapid decay of anciently duplicated genes. To examine the degree of selection pressure on genes duplicated in either the A. halleri-lyrata or the A. halleri lineage, we examined positive and purifying selection in the A. halleri-lyrata and A. halleri lineages throughout the ratios of nonsynonymous to synonymous substitution rates (KA/KS). Duplicate genes tended to have a higher proportion of positive selection compared with non-duplicated genes. Interestingly, we found that functional divergence of duplicated genes was accelerated several million years after gene duplication compared with immediately after gene duplication.
Collapse
Affiliation(s)
- Kousuke Hanada
- Department of Bioscience and Bioinformatics, Frontier Research Academy for Young Researchers, Kyusyu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
- RIKEN Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa 230-0045, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Ayumi Tezuka
- Department of Bioscience and Bioinformatics, Frontier Research Academy for Young Researchers, Kyusyu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Masafumi Nozawa
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Sumio Sugano
- Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Atsushi J Nagano
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Center of Ecological Research, Kyoto University, Hirano, Otsu, Shiga 520-2113, Japan
| | - Motomi Ito
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Shin-Ichi Morinaga
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
66
|
Lischer HEL, Shimizu KK. Reference-guided de novo assembly approach improves genome reconstruction for related species. BMC Bioinformatics 2017; 18:474. [PMID: 29126390 PMCID: PMC5681816 DOI: 10.1186/s12859-017-1911-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 11/01/2017] [Indexed: 12/31/2022] Open
Abstract
Background The development of next-generation sequencing has made it possible to sequence whole genomes at a relatively low cost. However, de novo genome assemblies remain challenging due to short read length, missing data, repetitive regions, polymorphisms and sequencing errors. As more and more genomes are sequenced, reference-guided assembly approaches can be used to assist the assembly process. However, previous methods mostly focused on the assembly of other genotypes within the same species. We adapted and extended a reference-guided de novo assembly approach, which enables the usage of a related reference sequence to guide the genome assembly. In order to compare and evaluate de novo and our reference-guided de novo assembly approaches, we used a simulated data set of a repetitive and heterozygotic plant genome. Results The extended reference-guided de novo assembly approach almost always outperforms the corresponding de novo assembly program even when a reference of a different species is used. Similar improvements can be observed in high and low coverage situations. In addition, we show that a single evaluation metric, like the widely used N50 length, is not enough to properly rate assemblies as it not always points to the best assembly evaluated with other criteria. Therefore, we used the summed z-scores of 36 different statistics to evaluate the assemblies. Conclusions The combination of reference mapping and de novo assembly provides a powerful tool to improve genome reconstruction by integrating information of a related genome. Our extension of the reference-guided de novo assembly approach enables the application of this strategy not only within but also between related species. Finally, the evaluation of genome assemblies is often not straight forward, as the truth is not known. Thus one should always use a combination of evaluation metrics, which not only try to assess the continuity but also the accuracy of an assembly. Electronic supplementary material The online version of this article (10.1186/s12859-017-1911-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Heidi E L Lischer
- Department of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Zurich, Switzerland. .,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies (IEU), University of Zurich, Zurich, Switzerland.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
| |
Collapse
|
67
|
Asaf S, Khan AL, Khan MA, Waqas M, Kang SM, Yun BW, Lee IJ. Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: Structures and comparative analysis. Sci Rep 2017; 7:7556. [PMID: 28790364 PMCID: PMC5548756 DOI: 10.1038/s41598-017-07891-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/05/2017] [Indexed: 11/26/2022] Open
Abstract
We investigated the complete chloroplast (cp) genomes of non-model Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea using Illumina paired-end sequencing to understand their genetic organization and structure. Detailed bioinformatics analysis revealed genome sizes of both subspecies ranging between 154.4~154.5 kbp, with a large single-copy region (84,197~84,158 bp), a small single-copy region (17,738~17,813 bp) and pair of inverted repeats (IRa/IRb; 26,264~26,259 bp). Both cp genomes encode 130 genes, including 85 protein-coding genes, eight ribosomal RNA genes and 37 transfer RNA genes. Whole cp genome comparison of A. halleri ssp. gemmifera and A. lyrata ssp. petraea, along with ten other Arabidopsis species, showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. The location and distribution of repeat sequences were determined, and sequence divergences of shared genes were calculated among related species. Comparative phylogenetic analysis of the entire genomic data set and 70 shared genes between both cp genomes confirmed the previous phylogeny and generated phylogenetic trees with the same topologies. The sister species of A. halleri ssp. gemmifera is A. umezawana, whereas the closest relative of A. lyrata spp. petraea is A. arenicola.
Collapse
Affiliation(s)
- Sajjad Asaf
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Abdul Latif Khan
- Chair of Oman's Medicinal Plants & Marine Natural Products, University of Nizwa, Nizwa, 616, Oman
| | - Muhammad Aaqil Khan
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Muhammad Waqas
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Mo Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Byung-Wook Yun
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|