51
|
Bell RJA, Rube HT, Xavier-Magalhães A, Costa BM, Mancini A, Song JS, Costello JF. Understanding TERT Promoter Mutations: A Common Path to Immortality. Mol Cancer Res 2016; 14:315-23. [PMID: 26941407 PMCID: PMC4852159 DOI: 10.1158/1541-7786.mcr-16-0003] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/24/2016] [Indexed: 12/23/2022]
Abstract
Telomerase (TERT) activation is a fundamental step in tumorigenesis. By maintaining telomere length, telomerase relieves a main barrier on cellular lifespan, enabling limitless proliferation driven by oncogenes. The recently discovered, highly recurrent mutations in the promoter of TERT are found in over 50 cancer types, and are the most common mutation in many cancers. Transcriptional activation of TERT, via promoter mutation or other mechanisms, is the rate-limiting step in production of active telomerase. Although TERT is expressed in stem cells, it is naturally silenced upon differentiation. Thus, the presence of TERT promoter mutations may shed light on whether a particular tumor arose from a stem cell or more differentiated cell type. It is becoming clear that TERT mutations occur early during cellular transformation, and activate the TERT promoter by recruiting transcription factors that do not normally regulate TERT gene expression. This review highlights the fundamental and widespread role of TERT promoter mutations in tumorigenesis, including recent progress on their mechanism of transcriptional activation. These somatic promoter mutations, along with germline variation in the TERT locus also appear to have significant value as biomarkers of patient outcome. Understanding the precise molecular mechanism of TERT activation by promoter mutation and germline variation may inspire novel cancer cell-specific targeted therapies for a large number of cancer patients.
Collapse
Affiliation(s)
- Robert J A Bell
- Department of Neurological Surgery, University of California, San Francisco, California
| | - H Tomas Rube
- Department of Biological Sciences, Columbia University, New York, New York
| | - Ana Xavier-Magalhães
- Department of Neurological Surgery, University of California, San Francisco, California. Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal
| | - Bruno M Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal. ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Braga, Portugal
| | - Andrew Mancini
- Department of Neurological Surgery, University of California, San Francisco, California
| | - Jun S Song
- Departments of Bioengineering and Physics, University of Illinois, Urbana-Champaign, Illinois
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, California.
| |
Collapse
|
52
|
Adeberg S, Bernhardt D, Harrabi SB, Diehl C, Koelsche C, Rieken S, Unterberg A, von Deimling A, Debus J. Radiotherapy plus concomitant temozolomide in primary gliosarcoma. J Neurooncol 2016; 128:341-8. [PMID: 27025857 DOI: 10.1007/s11060-016-2117-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/22/2016] [Indexed: 01/28/2023]
Abstract
Clinical guidelines for gliosarcoma (GSM) are poorly defined and GSM patients are usually treated in accordance with existing guidelines for glioblastoma (GBM), with maximal surgical resection followed by chemoradiation with temozolomide (TMZ). However, it is not clear yet if GSM patients profit from TMZ therapy and if O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation is crucial. We retrospectively evaluated 37 patients with histologically proven, primary GSM who had received radiation therapy since the temozolomide era (post-2005). Twenty-five patients (67.6 %) received combined chemoradiation with temozolomide, and 12 cases (32.4 %) received radiation therapy alone. Molecular markers were determined retrospectively. Survival and correlations were calculated using log-rank, univariate, and multivariate Cox proportional hazards-ratio analyses. All cases were isocitrate dehydrogenase 1 (IDH1) wildtype, MGMT promoter methylation could be observed in 33.3 % of the assessable cases (10/30) and TERT promoter mutation was seen in a high frequency of 86.7 % (26/30). The influence of TMZ therapy on overall survival (OS) was significantly improved compared with cases in which radiation therapy alone was performed (13.9 vs. 9.9 months; p = 0.045), independently of MGMT promoter methylation. The positive effect of TMZ on OS was confirmed in this study's multivariate analyses (p = 0.04), after adjusting our results for potential confounders. In conclusion, this study demonstrates that concomitant TMZ together with radiation therapy increases GSM-patient survival independent of MGMT promoter methylation. Thus, GSM can be treated in accordance to GBM guidelines. MGMT promoter methylation was infrequent and TERT promoter mutation common without influencing the survival rates. The mechanisms of TMZ effects in GSM are still not fully understood and merit further clinical and molecular-genetic and -biological evaluation.
Collapse
Affiliation(s)
- Sebastian Adeberg
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany. .,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Denise Bernhardt
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Christian Diehl
- Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Technische Universität München, Ismaninger Straße 22, 81675, Munich, Germany.,Institut für Innovative Radiotherapie (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, Ingostädter Landtraße 1, Neuherberg, Germany
| | - Christian Koelsche
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital of Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| |
Collapse
|