51
|
Arrue L, Ratjen L. Internal Targeting and External Control: Phototriggered Targeting in Nanomedicine. ChemMedChem 2017; 12:1908-1916. [DOI: 10.1002/cmdc.201700621] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Lily Arrue
- Facultad de Ciencias Biológicas, Center for Bioinformatics and Integrative Biology (CBIB); Universidad Andres Bello; Av. Republica 239 Santiago Chile
| | - Lars Ratjen
- Facultad de Ciencias Biológicas, Center for Bioinformatics and Integrative Biology (CBIB); Universidad Andres Bello; Av. Republica 239 Santiago Chile
- Fundación Fraunhofer Chile Research; Mariano Sánchez Fontecilla 310, Piso 14, Las Condes Santiago Chile
| |
Collapse
|
52
|
Tan SF, Kirby BP, Stanslas J, Basri HB. Characterisation, in-vitro and in-vivo evaluation of valproic acid-loaded nanoemulsion for improved brain bioavailability. J Pharm Pharmacol 2017; 69:1447-1457. [PMID: 28809443 DOI: 10.1111/jphp.12800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/17/2017] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study was aimed to investigate the potential of formulated valproic acid-encapsulated nanoemulsion (VANE) to improve the brain bioavailability of valproic acid (VPA). METHODS Valproic acid-encapsulated nanoemulsions were formulated and physically characterised (osmolarity, viscosity, drug content, drug encapsulation efficiency). Further investigations were also conducted to estimate the drug release, cytotoxic profile, in-vitro blood-brain barrier (BBB) permeability, pharmacokinetic parameter and the concentration of VPA and VANE in blood and brain. KEY FINDINGS Physical characterisation confirmed that VANE was suitable for parenteral administration. Formulating VPA into nanoemulsion significantly reduced the cytotoxicity of VPA. In-vitro drug permeation suggested that VANEs crossed the BBB as freely as VPA. Pharmacokinetic parameters of VANE-treated rats in plasma and brain showed F3 VANE had a remarkable improvement in AUC, prolongation of half-life and reduction in clearance compared to VPA. Given the same extent of in-vitro BBB permeation of VPA and VANE, the higher bioavailability of VANE in brain was believed to have due to higher concentration of VANE in blood. The brain bioavailability of VPA was improved by prolonging the half-life of VPA by encapsulating it within the nanoemulsion-T80. CONCLUSIONS Nanoemulsion containing VPA has alleviated the cytotoxic effect of VPA and improved the plasma and brain bioavailability for parenteral delivery of VPA.
Collapse
Affiliation(s)
- Suk Fei Tan
- Neuroscience Cluster, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Brian P Kirby
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Johnson Stanslas
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Hamidon Bin Basri
- Neuroscience Cluster, Department of Medicine, Faculty of Medicine and Health Sciences, University Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
53
|
Kwarteng A, Ahuno ST, Kwakye-Nuako G. The therapeutic landscape of HIV-1 via genome editing. AIDS Res Ther 2017; 14:32. [PMID: 28705213 PMCID: PMC5513397 DOI: 10.1186/s12981-017-0157-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/30/2017] [Indexed: 12/31/2022] Open
Abstract
Current treatment for HIV-1 largely relies on chemotherapy through the administration of antiretroviral drugs. While the search for anti-HIV-1 vaccine remain elusive, the use of highly active antiretroviral therapies (HAART) have been far-reaching and has changed HIV-1 into a manageable chronic infection. There is compelling evidence, including several side-effects of ARTs, suggesting that eradication of HIV-1 cannot depend solely on antiretrovirals. Gene therapy, an expanding treatment strategy, using RNA interference (RNAi) and programmable nucleases such as meganuclease, zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), and clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins (CRISPR-Cas9) are transforming the therapeutic landscape of HIV-1. TALENS and ZFNS are structurally similar modular systems, which consist of a FokI endonuclease fused to custom-designed effector proteins but have been largely limited, particularly ZFNs, due to their complexity and cost of protein engineering. However, the newly developed CRISPR-Cas9 system, consists of a single guide RNA (sgRNA), which directs a Cas9 endonuclease to complementary target sites, and serves as a superior alternative to the previous protein-based systems. The techniques have been successfully applied to the development of better HIV-1 models, generation of protective mutations in endogenous/host cells, disruption of HIV-1 genomes and even reactivating latent viruses for better detection and clearance by host immune response. Here, we focus on gene editing-based HIV-1 treatment and research in addition to providing perspectives for refining these techniques.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), PMB, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Samuel Terkper Ahuno
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), PMB, Kumasi, Ghana
| | - Godwin Kwakye-Nuako
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
54
|
Parameters Affecting the Enhanced Permeability and Retention Effect: The Need for Patient Selection. J Pharm Sci 2017; 106:3179-3187. [PMID: 28669714 DOI: 10.1016/j.xphs.2017.06.019] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/03/2017] [Accepted: 06/09/2017] [Indexed: 02/07/2023]
Abstract
The enhanced permeability and retention (EPR) effect constitutes the rationale by which nanotechnologies selectively target drugs to tumors. Despite promising preclinical and clinical results, these technologies have, in our view, underachieved compared to their potential, possibly due to a suboptimal exploitation of the EPR effect. Here, we have systematically analyzed clinical data to identify key parameters affecting the extent of the EPR effect. An analysis of 17 clinical studies showed that the magnitude of the EPR effect was varied and was influenced by tumor type and size. Pancreatic, colon, breast, and stomach cancers showed the highest levels of accumulation of nanomedicines. Tumor size also had an effect on the accumulation of nanomedicines, with large-size tumors having higher accumulation than both medium- and very large-sized tumors. However, medium tumors had the highest percentage of cases (100% of patients) with evidence of the EPR effect. Moreover, tumor perfusion, angiogenesis, inflammation in tumor tissues, and other factors also emerged as additional parameters that might affect the accumulation of nanomedicines into tumors. At the end of the commentary, we propose 2 strategies for identification of suitable patient subpopulations, with respect to the EPR effect, in order to maximize therapeutic outcome.
Collapse
|
55
|
Simulating Intestinal Transporter and Enzyme Activity in a Physiologically Based Pharmacokinetic Model for Tenofovir Disoproxil Fumarate. Antimicrob Agents Chemother 2017; 61:AAC.00105-17. [PMID: 28416547 DOI: 10.1128/aac.00105-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/09/2017] [Indexed: 01/16/2023] Open
Abstract
Tenofovir disoproxil fumarate (TDF), a prodrug of tenofovir, has oral bioavailability (25%) limited by intestinal transport (P-glycoprotein), and intestinal degradation (carboxylesterase). However, the influence of luminal pancreatic enzymes is not fully understood. Physiologically based pharmacokinetic (PBPK) modeling has utility for estimating drug exposure from in vitro data. This study aimed to develop a PBPK model that included luminal enzyme activity to inform dose reduction strategies. TDF and tenofovir stability in porcine pancrelipase concentrations was assessed (0, 0.48, 4.8, 48, and 480 U/ml of lipase; 1 mM TDF; 37°C; 0 to 30 min). Samples were analyzed using mass spectrometry. TDF stability and permeation data allowed calculation of absorption rates within a human PBPK model to predict plasma exposure following 6 days of once-daily dosing with 300 mg of TDF. Regional absorption of drug was simulated across gut segments. TDF was degraded by pancrelipase (half-lives of 0.07 and 0.62 h using 480 and 48 U/ml, respectively). Previously reported maximum concentration (Cmax; 335 ng/ml), time to Cmax (Tmax; 2.4 h), area under the concentration-time curve from 0 to 24 h (AUC0-24; 3,045 ng · h/ml), and concentration at 24 h (C24; 48.3 ng/ml) were all within a 0.5-fold difference from the simulated Cmax (238 ng/ml), Tmax (3 h), AUC0-24 (3,036 ng · h/ml), and C24 (42.7 ng/ml). Simulated TDF absorption was higher in duodenum and jejunum than in ileum (p<0.05). These data support that TDF absorption is limited by the action of intestinal lipases. Our results suggest that bioavailability may be improved by protection of drug from intestinal transporters and enzymes, for example, by coadministration of enzyme-inhibiting agents or nanoformulation strategies.
Collapse
|
56
|
Sung B, Kim M, Kim MS, Lee JK, Soh KS. Quantitative real-time imaging of nanofluid convection–diffusion in the planar skin layer
in vivo. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa5949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
57
|
Siccardi M, Löffler B, Balogh L, Owen A. Integrated pharmacokinetic modelling for accelerated nanomedicine translation. EUROPEAN JOURNAL OF NANOMEDICINE 2017. [DOI: 10.1515/ejnm-2016-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
58
|
Griffin BT, Guo J, Presas E, Donovan MD, Alonso MJ, O'Driscoll CM. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Adv Drug Deliv Rev 2016; 106:367-380. [PMID: 27320644 DOI: 10.1016/j.addr.2016.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
The influence of nanoparticle (NP) formulations on the pharmacokinetic, pharmacodynamic and biodistribution profiles of peptide- and protein-like drugs following oral administration is critically reviewed. The possible mechanisms of absorption enhancement and the effects of the physicochemical properties of the NP are examined. The potential advantages and challenges of physiologically-based pharmacokinetic (PBPK) modelling to help predict efficacy in man are discussed. The importance of developing and expanding the regulatory framework to help translate the technology into the clinic and accelerate the availability of oral nanoparticulate formulations is emphasized. In conclusion, opportunities for future work to improve the state of the art of oral nanomedicines are identified.
Collapse
|
59
|
Li M, Zou P, Tyner K, Lee S. Physiologically Based Pharmacokinetic (PBPK) Modeling of Pharmaceutical Nanoparticles. AAPS JOURNAL 2016; 19:26-42. [PMID: 27834047 DOI: 10.1208/s12248-016-0010-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022]
Abstract
With the great interests in the discovery and development of drug products containing nanoparticles, there is a great demand of quantitative tools for assessing quality, safety, and efficacy of these products. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches provide excellent tools for describing and predicting in vivo absorption, distribution, metabolism, and excretion (ADME) of nanoparticles administered through various routes. PBPK modeling of nanoparticles is an emerging field, and more than 20 PBPK models of nanoparticles used in pharmaceutical products have been published in the past decade. This review provides an overview of the ADME characteristics of nanoparticles and how these ADME processes are described in PBPK models. Recent advances in PBPK modeling of pharmaceutical nanoparticles are summarized. The major challenges in model development and validation and possible solutions are also discussed.
Collapse
Affiliation(s)
- Min Li
- Office of Pharmaceutical Quality, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Peng Zou
- Office of Clinical Pharmacology, US Food and Drug Administration, Silver Spring, Maryland, USA.
| | - Katherine Tyner
- Office of Pharmaceutical Quality, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sau Lee
- Office of Pharmaceutical Quality, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
60
|
Qi J, Zhuang J, Lu Y, Dong X, Zhao W, Wu W. In vivo fate of lipid-based nanoparticles. Drug Discov Today 2016; 22:166-172. [PMID: 27713035 DOI: 10.1016/j.drudis.2016.09.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/28/2016] [Accepted: 09/27/2016] [Indexed: 01/10/2023]
Abstract
The in vivo fate of lipid-based nanoparticles (LBNs) is essentially determined by the properties of their lipid compositions. LBNs are rapidly degraded via lipolysis wherever lipases are abundant, especially in the gastrointestinal tract. LBNs that survive lipolysis can be translocated through the circulation to reach terminal organs or tissues. Lipid composition, particle size, and surface decoration, as well as the formation of protein corona, are the main factors influencing the in vivo fate of LBNs. As we discuss here, elucidation of the in vivo fate of LBNs helps weigh the balance between lipolysis and biorecognition, and is emerging as a new field of research.
Collapse
Affiliation(s)
- Jianping Qi
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China
| | - Jie Zhuang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Yi Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China
| | - Weili Zhao
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China; Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, China
| | - Wei Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China.
| |
Collapse
|
61
|
Siccardi M, Martin P, Smith D, Curley P, McDonald T, Giardiello M, Liptrott N, Rannard S, Owen A. Towards a rational design of solid drug nanoparticles with optimised pharmacological properties. ACTA ACUST UNITED AC 2016; 1:110-123. [PMID: 27774308 PMCID: PMC5054800 DOI: 10.1002/jin2.21] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/02/2016] [Accepted: 08/30/2016] [Indexed: 12/23/2022]
Abstract
Solid drug nanoparticles (SDNs) are a nanotechnology with favourable characteristics to enhance drug delivery and improve the treatment of several diseases, showing benefit for improved oral bioavailability and injectable long‐acting medicines. The physicochemical properties and composition of nanoformulations can influence the absorption, distribution, and elimination of nanoparticles; consequently, the development of nanoparticles for drug delivery should consider the potential role of nanoparticle characteristics in the definition of pharmacokinetics. The aim of this study was to investigate the pharmacological behaviour of efavirenz SDNs and the identification of optimal nanoparticle properties and composition. Seventy‐seven efavirenz SDNs were included in the analysis. Cellular accumulation was evaluated in HepG2 (hepatic) and Caco‐2 (intestinal), CEM (lymphocyte), THP1 (monocyte), and A‐THP1 (macrophage) cell lines. Apparent intestinal permeability (Papp) was measured using a monolayer of Caco‐2 cells. The Papp values were used to evaluate the potential benefit on pharmacokinetics using a physiologically based pharmacokinetic model. The generated SDNs had an enhanced intestinal permeability and accumulation in different cell lines compared to the traditional formulation of efavirenz. Nanoparticle size and excipient choice influenced efavirenz apparent permeability and cellular accumulation, and this appeared to be cell line dependent. These findings represent a valuable platform for the design of SDNs, giving an empirical background for the selection of optimal nanoparticle characteristics and composition. Understanding how nanoparticle components and physicochemical properties influence pharmacological patterns will enable the rational design of SDNs with desirable pharmacokinetics.
Collapse
Affiliation(s)
- Marco Siccardi
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine University of Liverpool Liverpool L693GF UK
| | - Phillip Martin
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine University of Liverpool Liverpool L693GF UK
| | - Darren Smith
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine University of Liverpool Liverpool L693GF UK
| | - Paul Curley
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine University of Liverpool Liverpool L693GF UK
| | - Tom McDonald
- Department of Chemistry, Crown Street University of Liverpool Liverpool L69 3BX UK
| | - Marco Giardiello
- Department of Chemistry, Crown Street University of Liverpool Liverpool L69 3BX UK
| | - Neill Liptrott
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine University of Liverpool Liverpool L693GF UK
| | - Steve Rannard
- Department of Chemistry, Crown Street University of Liverpool Liverpool L69 3BX UK
| | - Andrew Owen
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine University of Liverpool Liverpool L693GF UK
| |
Collapse
|
62
|
Lin Z, Gehring R, Mochel JP, Lavé T, Riviere JE. Mathematical modeling and simulation in animal health – Part
II
: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment. J Vet Pharmacol Ther 2016; 39:421-38. [DOI: 10.1111/jvp.12311] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/21/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Z. Lin
- Institute of Computational Comparative Medicine (ICCM) Department of Anatomy and Physiology College of Veterinary Medicine Kansas State University Manhattan KS USA
| | - R. Gehring
- Institute of Computational Comparative Medicine (ICCM) Department of Anatomy and Physiology College of Veterinary Medicine Kansas State University Manhattan KS USA
| | - J. P. Mochel
- Roche Pharmaceutical Research and Early Development Roche Innovation Center Basel Switzerland
| | - T. Lavé
- Roche Pharmaceutical Research and Early Development Roche Innovation Center Basel Switzerland
| | - J. E. Riviere
- Institute of Computational Comparative Medicine (ICCM) Department of Anatomy and Physiology College of Veterinary Medicine Kansas State University Manhattan KS USA
| |
Collapse
|
63
|
Liang X, Wang H, Grice JE, Li L, Liu X, Xu ZP, Roberts MS. Physiologically Based Pharmacokinetic Model for Long-Circulating Inorganic Nanoparticles. NANO LETTERS 2016; 16:939-45. [PMID: 26771694 DOI: 10.1021/acs.nanolett.5b03854] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A physiologically based pharmacokinetic model was developed for accurately characterizing and predicting the in vivo fate of long-circulating inorganic nanoparticles (NPs). This model is built based on direct visualization of NP disposition details at the organ and cellular level. It was validated with multiple data sets, indicating robust inter-route and interspecies predictive capability. We suggest that the biodistribution of long-circulating inorganic NPs is determined by the uptake and release of NPs by phagocytic cells in target organs.
Collapse
Affiliation(s)
- Xiaowen Liang
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute , Woolloongabba, QLD 4102, Australia
| | - Haolu Wang
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute , Woolloongabba, QLD 4102, Australia
| | - Jeffrey E Grice
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute , Woolloongabba, QLD 4102, Australia
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia, QLD 4067, Australia
| | - Xin Liu
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Translational Research Institute , Woolloongabba, QLD 4102, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia, QLD 4067, Australia
| | - Michael S Roberts
- School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, SA 5001, Australia
| |
Collapse
|
64
|
Vizirianakis IS, Mystridis GA, Avgoustakis K, Fatouros DG, Spanakis M. Enabling personalized cancer medicine decisions: The challenging pharmacological approach of PBPK models for nanomedicine and pharmacogenomics (Review). Oncol Rep 2016; 35:1891-904. [PMID: 26781205 DOI: 10.3892/or.2016.4575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 11/05/2022] Open
Abstract
The existing tumor heterogeneity and the complexity of cancer cell biology critically demand powerful translational tools with which to support interdisciplinary efforts aiming to advance personalized cancer medicine decisions in drug development and clinical practice. The development of physiologically based pharmacokinetic (PBPK) models to predict the effects of drugs in the body facilitates the clinical translation of genomic knowledge and the implementation of in vivo pharmacology experience with pharmacogenomics. Such a direction unequivocally empowers our capacity to also make personalized drug dosage scheme decisions for drugs, including molecularly targeted agents and innovative nanoformulations, i.e. in establishing pharmacotyping in prescription. In this way, the applicability of PBPK models to guide individualized cancer therapeutic decisions of broad clinical utility in nanomedicine in real-time and in a cost-affordable manner will be discussed. The latter will be presented by emphasizing the need for combined efforts within the scientific borderlines of genomics with nanotechnology to ensure major benefits and productivity for nanomedicine and personalized medicine interventions.
Collapse
Affiliation(s)
- Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR‑54124, Greece
| | - George A Mystridis
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki GR‑54124, Greece
| | - Konstantinos Avgoustakis
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Patras, Patras GR-26504, Greece
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki GR-54124, Greece
| | - Marios Spanakis
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Heraklion GR-71110, Crete, Greece
| |
Collapse
|
65
|
Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:271-99. [PMID: 26314803 DOI: 10.1002/wnan.1364] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 12/22/2022]
Abstract
Polymeric nanoparticles (NPs) are one of the most studied organic strategies for nanomedicine. Intense interest lies in the potential of polymeric NPs to revolutionize modern medicine. To determine the ideal nanosystem for more effective and distinctly targeted delivery of therapeutic applications, particle size, morphology, material choice, and processing techniques are all research areas of interest. Utilizations of polymeric NPs include drug delivery techniques such as conjugation and entrapment of drugs, prodrugs, stimuli-responsive systems, imaging modalities, and theranostics. Cancer, neurodegenerative disorders, and cardiovascular diseases are fields impacted by NP technologies that push scientific boundaries to the leading edge of transformative advances for nanomedicine.
Collapse
Affiliation(s)
- Brittany L Banik
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Pouria Fattahi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Justin L Brown
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
66
|
Affiliation(s)
- Andrew Owen
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, L693GF, UK; MRC Centre for Drug Safety Science, University of Liverpool, Liverpool, L69 3GE, UK; Tandem Nano Ltd., Foundation Building, 765 Brownlow Hill, Liverpool, L69 7ZX, UK
| |
Collapse
|
67
|
Venkatpurwar VP, Rhodes S, Oien KA, Elliott MA, Tekwe CD, Jørgensen HG, Kumar MNVR. Drug- not carrier-dependent haematological and biochemical changes in a repeated dose study of cyclosporine encapsulated polyester nano- and micro-particles: size does not matter. Toxicology 2015; 330:9-18. [PMID: 25637670 DOI: 10.1016/j.tox.2015.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 01/30/2023]
Abstract
Biodegradable nanoparticles are being considered more often as drug carriers to address pharmacokinetic/pharmacodynamic issues, yet nano-product safety has not been systematically proven. In this study, haematological, biochemical and histological parameters were examined on 28 day daily dosing of rats with nano- or micro-particle encapsulated cyclosporine (CsA) to confirm if any changes observed were drug or carrier dependent. CsA encapsulated poly(lactide-co-glycolide) [PLGA] nano- (nCsA) and micro-particles (mCsA) were prepared by emulsion techniques. CsA (15, 30, 45 mg/kg) were administered by oral gavage to Sprague Dawley (SD) rats over 28 days. Haematological and biochemical metrics were followed with tissue histology performed on sacrifice. Whether presented as nCsA or mCsA, 45 mg/kg dose caused significant loss of body weight and lowered food consumption compared to untreated control. Across the doses, both nCsA and mCsA produce significant decreases in lymphocyte numbers compared to controls, commensurate with the proprietary product, Neoral(®) 15. Dosing with nCsA showed higher serum drug levels than mCsA presumably owing to the smaller particle size facilitating absorption. The treatment had no noticeable effects on inflammatory/oxidative stress markers or antioxidant enzyme levels, except an increase in ceruloplasmin (CP) levels for high dose nCsA/mCsA group. Further, only subtle, sub-lethal changes were observed in histology of nCsA/mCsA treated rat organs. Blank (drug-free) particles did not induce changes in the parameters studied. Therefore, it is extremely important that the encapsulated drug in the nano-products is considered when safety of the overall product is assessed rather than relying on just the particle size. This study has addressed some concerns surrounding particulate drug delivery, demonstrating safe delivery of CsA whilst achieving augmented serum concentrations.
Collapse
Affiliation(s)
- V P Venkatpurwar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - S Rhodes
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK, G12 0ZD
| | - K A Oien
- Molecular Pathology, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK, G61 1BD
| | - M A Elliott
- Cancer Research UK Formulation Unit, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - C D Tekwe
- Department of Epidemiology and Biostatistics, School of Public Health, 1266 Texas A&M University, College Station, Texas 77843-1266, USA
| | - H G Jørgensen
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK, G12 0ZD
| | - M N V Ravi Kumar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Centre, Texas A&M University, College Station, TX 77843-1114, USA.
| |
Collapse
|
68
|
Lin Z, Monteiro‐Riviere NA, Riviere JE. Pharmacokinetics of metallic nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:189-217. [DOI: 10.1002/wnan.1304] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/23/2014] [Accepted: 09/02/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
| | - Nancy A. Monteiro‐Riviere
- Nanotechnology Innovation Center of Kansas State (NICKS), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
| | - Jim E. Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
| |
Collapse
|