51
|
van Eijl RAPM, van Buggenum JAGL, Tanis SEJ, Hendriks J, Mulder KW. Single-Cell ID-seq Reveals Dynamic BMP Pathway Activation Upstream of the MAF/MAFB-Program in Epidermal Differentiation. iScience 2018; 9:412-422. [PMID: 30466065 PMCID: PMC6249387 DOI: 10.1016/j.isci.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/28/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022] Open
Abstract
Epidermal homeostasis requires balanced and coordinated adult stem cell renewal and differentiation. These processes are controlled by both extracellular signaling and by cell intrinsic transcription regulatory networks, yet how these control mechanisms are integrated to achieve this is unclear. Here, we developed single-cell Immuno-Detection by sequencing (scID-seq) and simultaneously measured 69 proteins (including 34 phosphorylated epitopes) at single-cell resolution to study the activation state of signaling pathways during human epidermal differentiation. Computational pseudo-timing inference revealed dynamic activation of the JAK-STAT, WNT, and BMP pathways along the epidermal differentiation trajectory. We found that during differentiation, cells start producing BMP2-ligands and activate the canonical intracellular effectors SMAD1/5/9. Mechanistically, the BMP pathway is responsible for activating the MAF/MAFB/ZNF750 transcription factor network to drive late-stage epidermal differentiation. Our work indicates that incorporating signaling pathway activation into this transcription regulatory network enables coordination of transcription programs during epidermal differentiation. scID-seq allows quantification of 70 (phospho-)proteins at single-cell level Pseudo-time inference reveals signaling dynamics during epidermal differentiation BMP signaling drives a late differentiation transcription program BMP signaling activates the MAF/MAFB/ZNF750 transcription factor network
Collapse
Affiliation(s)
- Roderick A P M van Eijl
- Radboud University, Faculty of Science, Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Nijmegen 6525 GA, The Netherlands
| | - Jessie A G L van Buggenum
- Radboud University, Faculty of Science, Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Nijmegen 6525 GA, The Netherlands
| | - Sabine E J Tanis
- Radboud University, Faculty of Science, Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Nijmegen 6525 GA, The Netherlands
| | - Joost Hendriks
- Radboud University, Faculty of Science, Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Nijmegen 6525 GA, The Netherlands
| | - Klaas W Mulder
- Radboud University, Faculty of Science, Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
52
|
Zhao Y, Song K, Zhang Y, Xu H, Zhang X, Wang L, Fan C, Jiang G, Wang E. TMEM17 promotes malignant progression of breast cancer via AKT/GSK3β signaling. Cancer Manag Res 2018; 10:2419-2428. [PMID: 30122991 PMCID: PMC6080873 DOI: 10.2147/cmar.s168723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose Current knowledge of TMEM17, a recently identified protein of the transmembrane (TMEM) family, is limited, especially with respect to its expression and biological functions in malignant tumors. This study analyzed TMEM17 expression in invasive breast cancer tissue and breast cell lines and its relevance to clinicopathological factors, and investigated the mechanisms underlying the biological effects of TMEM17 on breast cancer cells. Patients and methods TMEM17 protein expression was determined in 20 freshly harvested specimens (tumor and paired normal tissues) by Western blotting. Immunohistochemical analysis was performed to determine the expression and subcellular localization of TMEM17 in samples from 167 patients (mean age, 49 years) diagnosed with invasive ductal carcinoma (38 with triple-negative breast cancer; 129 with non-triple-negative breast cancer) who underwent complete resection in the First Affiliated Hospital of China Medical University between 2011 and 2013. Furthermore, TMEM17 was knocked down by small interfering RNAs in breast cancer cell lines. Results TMEM17 was found to be significantly upregulated in breast cancer tissues compared to the corresponding normal breast tissues by Western blotting (p=0.015). Immunohistochemical analysis revealed that TMEM was significantly upregulated in invasive breast cancer cells compared to adjacent normal breast duct glandular epithelial cells (10.78% vs 76.05%, p<0.001), and its expression was closely related to the patient’s T-stage (p=0.022), advanced TNM stages (p=0.007), and lymph node metastasis (p=0.012). After TMEM17 knockdown or overexpression in breast cancer cell lines, TMEM17 upregulated p-AKT, p-GSK3β, active β-catenin, and Snail, and downstream target proteins c-myc and cyclin D1, and downregulated E-cadherin, resulting in increased cancer cell proliferation, invasion, and migration. These effects were reversed by the AKT inhibitor LY294002. Conclusion Our results indicate that TMEM17 is upregulated in breast cancer tissues and can promote malignant progression of breast cancer cells by activating the AKT/GSK3β signaling pathway.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| | - Kuiyuan Song
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| | - Yong Zhang
- Departments of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Hongtao Xu
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| | - Xiupeng Zhang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| | - Liang Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| | - Chuifeng Fan
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| | - Guiyang Jiang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| | - Enhua Wang
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China,
| |
Collapse
|
53
|
Schulte G, Bryja V. WNT signalling: mechanisms and therapeutic opportunities. Br J Pharmacol 2018; 174:4543-4546. [PMID: 29235106 DOI: 10.1111/bph.14065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This themed section of the British Journal of Pharmacology stems from the EMBO Conference: Wnt Meeting 2016 held from the 14th to 16th September 2016 in Brno, Czech Republic. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Gunnar Schulte
- Section for Receptor Biology and Signaling, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
54
|
Abstract
Wnt/β-catenin signaling is crucial for adult homeostasis and stem cell maintenance, and its dysregulation is strongly associated to cancer. Upon Wnt binding, Wnt receptors assemble into large complexes called signalosomes that provide a platform for interactions with downstream effector proteins. The assembly and regulation of these signalosomes remains largely elusive. Here, we use internally tagged Wnt ligands as a tool to isolate and analyze the composition and regulation of endogenous Wnt receptor complexes. We identify a positive regulator of Wnt signaling that facilitates signalosome formation by promoting intramembrane receptor interactions. Our results reveal that the assembly of multiprotein Wnt signalosomes proceeds along well-ordered steps and involves regulated intramembrane interactions. Wnt/β-catenin signaling controls development and adult tissue homeostasis by regulating cell proliferation and cell fate decisions. Wnt binding to its receptors Frizzled (FZD) and low-density lipoprotein-related 6 (LRP6) at the cell surface initiates a signaling cascade that leads to the transcription of Wnt target genes. Upon Wnt binding, the receptors assemble into large complexes called signalosomes that provide a platform for interactions with downstream effector proteins. The molecular basis of signalosome formation and regulation remains elusive, largely due to the lack of tools to analyze its endogenous components. Here, we use internally tagged Wnt3a proteins to isolate and characterize activated, endogenous Wnt receptor complexes by mass spectrometry-based proteomics. We identify the single-span membrane protein TMEM59 as an interactor of FZD and LRP6 and a positive regulator of Wnt signaling. Mechanistically, TMEM59 promotes the formation of multimeric Wnt–FZD assemblies via intramembrane interactions. Subsequently, these Wnt–FZD–TMEM59 clusters merge with LRP6 to form mature Wnt signalosomes. We conclude that the assembly of multiprotein Wnt signalosomes proceeds along well-ordered steps that involve regulated intramembrane interactions.
Collapse
|
55
|
Wingless/Wnt Signaling in Intestinal Development, Homeostasis, Regeneration and Tumorigenesis: A Drosophila Perspective. J Dev Biol 2018; 6:jdb6020008. [PMID: 29615557 PMCID: PMC6026893 DOI: 10.3390/jdb6020008] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 02/06/2023] Open
Abstract
In mammals, the Wnt/β-catenin signal transduction pathway regulates intestinal stem cell maintenance and proliferation, whereas Wnt pathway hyperactivation, resulting primarily from the inactivation of the tumor suppressor Adenomatous polyposis coli (APC), triggers the development of the vast majority of colorectal cancers. The Drosophila adult gut has recently emerged as a powerful model to elucidate the mechanisms by which Wingless/Wnt signaling regulates intestinal development, homeostasis, regeneration, and tumorigenesis. Herein, we review recent insights on the roles of Wnt signaling in Drosophila intestinal physiology and pathology.
Collapse
|
56
|
Billot K, Coquil C, Villiers B, Josselin-Foll B, Desban N, Delehouzé C, Oumata N, Le Meur Y, Boletta A, Weimbs T, Grosch M, Witzgall R, Saunier S, Fischer E, Pontoglio M, Fautrel A, Mrug M, Wallace D, Tran PV, Trudel M, Bukanov N, Ibraghimov-Beskrovnaya O, Meijer L. Casein kinase 1ε and 1α as novel players in polycystic kidney disease and mechanistic targets for (R)-roscovitine and (S)-CR8. Am J Physiol Renal Physiol 2018. [PMID: 29537311 DOI: 10.1152/ajprenal.00489.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Following the discovery of (R)-roscovitine's beneficial effects in three polycystic kidney disease (PKD) mouse models, cyclin-dependent kinases (CDKs) inhibitors have been investigated as potential treatments. We have used various affinity chromatography approaches to identify the molecular targets of roscovitine and its more potent analog (S)-CR8 in human and murine polycystic kidneys. These methods revealed casein kinases 1 (CK1) as additional targets of the two drugs. CK1ε expression at the mRNA and protein levels is enhanced in polycystic kidneys of 11 different PKD mouse models as well as in human polycystic kidneys. A shift in the pattern of CK1α isoforms is observed in all PKD mouse models. Furthermore, the catalytic activities of both CK1ε and CK1α are increased in mouse polycystic kidneys. Inhibition of CK1ε and CK1α may thus contribute to the long-lasting attenuating effects of roscovitine and (S)-CR8 on cyst development. CDKs and CK1s may constitute a dual therapeutic target to develop kinase inhibitory PKD drug candidates.
Collapse
Affiliation(s)
- Katy Billot
- ManRos Therapeutics, Centre de Perharidy , Roscoff , France
| | | | | | - Béatrice Josselin-Foll
- CNRS "Protein Phosphorylation and Human Disease Group, Station Biologique, Roscoff Cedex, Bretagne , France
| | - Nathalie Desban
- CNRS "Protein Phosphorylation and Human Disease Group, Station Biologique, Roscoff Cedex, Bretagne , France
| | - Claire Delehouzé
- CNRS "Protein Phosphorylation and Human Disease Group, Station Biologique, Roscoff Cedex, Bretagne , France
| | - Nassima Oumata
- ManRos Therapeutics, Centre de Perharidy , Roscoff , France
| | - Yannick Le Meur
- Service de Néphrologie, Centre Hospitalier Universitaire La Cavale Blanche, Rue Tanguy Prigent, Brest Cedex, France
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, DIBIT San Raffaele Scientific Institute , Milan , Italy
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara , Santa Barbara, California
| | - Melanie Grosch
- University of Regensburg, Institute for Molecular and Cellular Anatomy, Universitätsstr 31, Regensburg , Germany
| | - Ralph Witzgall
- University of Regensburg, Institute for Molecular and Cellular Anatomy, Universitätsstr 31, Regensburg , Germany
| | | | - Evelyne Fischer
- "Expression Génique, Développement et Maladies", Equipe 26/INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Institut Cochin, Département Génétique & Développement, Paris , France
| | - Marco Pontoglio
- "Expression Génique, Développement et Maladies", Equipe 26/INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Institut Cochin, Département Génétique & Développement, Paris , France
| | - Alain Fautrel
- Université de Rennes 1, H2P2 Histopathology Core Facility, Rennes Cedex, France
| | - Michal Mrug
- Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Veterans Affairs Medical Center , Birmingham, Alabama
| | - Darren Wallace
- University of Kansas Medical Center, The Jared Grantham Kidney Institute , Kansas City, Kansas
| | - Pamela V Tran
- University of Kansas Medical Center, The Jared Grantham Kidney Institute , Kansas City, Kansas.,University of Kansas Medical Center, Department of Anatomy and Cell Biology , Kansas City, Kansas
| | - Marie Trudel
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Montreal, Quebec , Canada
| | - Nikolay Bukanov
- Sanofi Genzyme, Rare Renal and Bone Diseases, Framingham, Massachusetts
| | | | - Laurent Meijer
- ManRos Therapeutics, Centre de Perharidy , Roscoff , France
| |
Collapse
|
57
|
Bernkopf DB, Jalal K, Brückner M, Knaup KX, Gentzel M, Schambony A, Behrens J. Pgam5 released from damaged mitochondria induces mitochondrial biogenesis via Wnt signaling. J Cell Biol 2018; 217:1383-1394. [PMID: 29438981 PMCID: PMC5881504 DOI: 10.1083/jcb.201708191] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 01/12/2018] [Indexed: 01/22/2023] Open
Abstract
Mitochondrial stress induces PARL-mediated cleavage and cytosolic release of the mitochondrial phosphatase Pgam5. In the cytosol, Pgam5 interacts with the Wnt pathway component axin and dephosphorylates axin-bound β-catenin, thereby cell-intrinsically activating Wnt/β-catenin signaling to induce mitochondrial biogenesis. Mitochondrial abundance is dynamically regulated and was previously shown to be increased by Wnt/β-catenin signaling. Pgam5 is a mitochondrial phosphatase which is cleaved by the rhomboid protease presenilin-associated rhomboid-like protein (PARL) and released from membranes after mitochondrial stress. In this study, we show that Pgam5 interacts with the Wnt pathway component axin in the cytosol, blocks axin-mediated β-catenin degradation, and increases β-catenin levels and β-catenin–dependent transcription. Pgam5 stabilized β-catenin by inducing its dephosphorylation in an axin-dependent manner. Mitochondrial stress triggered by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) treatment led to cytosolic release of endogenous Pgam5 and subsequent dephosphorylation of β-catenin, which was strongly diminished in Pgam5 and PARL knockout cells. Similarly, hypoxic stress generated cytosolic Pgam5 and led to stabilization of β-catenin, which was abolished by Pgam5 knockout. Cells stably expressing cytosolic Pgam5 exhibit elevated β-catenin levels and increased mitochondrial numbers. Our study reveals a novel mechanism by which damaged mitochondria might induce replenishment of the mitochondrial pool by cell-intrinsic activation of Wnt signaling via the Pgam5–β-catenin axis.
Collapse
Affiliation(s)
- Dominic B Bernkopf
- Experimental Medicine II, Nikolaus Fiebiger Center, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Kowcee Jalal
- Experimental Medicine II, Nikolaus Fiebiger Center, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Martina Brückner
- Experimental Medicine II, Nikolaus Fiebiger Center, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Karl X Knaup
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Marc Gentzel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Alexandra Schambony
- Biology Department, Developmental Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jürgen Behrens
- Experimental Medicine II, Nikolaus Fiebiger Center, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
58
|
Lyou Y, Habowski AN, Chen GT, Waterman ML. Inhibition of nuclear Wnt signalling: challenges of an elusive target for cancer therapy. Br J Pharmacol 2017; 174:4589-4599. [PMID: 28752891 PMCID: PMC5727325 DOI: 10.1111/bph.13963] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
The highly conserved Wnt signalling pathway plays an important role in embryonic development and disease pathogenesis, most notably cancer. The 'canonical' or β-catenin-dependent Wnt signal initiates at the cell plasma membrane with the binding of Wnt proteins to Frizzled:LRP5/LRP6 receptor complexes and is mediated by the translocation of the transcription co-activator protein, β-catenin, into the nucleus. β-Catenin then forms a complex with T-cell factor (TCF)/lymphoid enhancer binding factor (LEF) transcription factors to regulate multiple gene programmes. These programmes play roles in cell proliferation, migration, vasculogenesis, survival and metabolism. Mutations in Wnt signalling pathway components lead to constitutively active Wnt signalling that drives aberrant expression of these programmes and development of cancer. It has been a longstanding and challenging goal to develop therapies that can interfere with the TCF/LEF-β-catenin transcriptional complex. This review will focus on the (i) structural considerations for targeting the TCF/LEF-β-catenin and co-regulatory complexes in the nucleus, (ii) current molecules that directly target TCF/LEF-β-catenin activity and (iii) ideas for targeting newly discovered components of the TCF/LEF-β-catenin complex and/or downstream gene programmes regulated by these complexes. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Yung Lyou
- Department of Medicine, Division of Hematology OncologyUniversity of California Irvine Medical CenterOrangeCAUSA
| | - Amber N Habowski
- Department of Microbiology and Molecular GeneticsUniversity of California IrvineIrvineCAUSA
| | - George T Chen
- Department of Microbiology and Molecular GeneticsUniversity of California IrvineIrvineCAUSA
| | - Marian L Waterman
- Department of Microbiology and Molecular GeneticsUniversity of California IrvineIrvineCAUSA
| |
Collapse
|
59
|
van Kappel EC, Maurice MM. Molecular regulation and pharmacological targeting of the β-catenin destruction complex. Br J Pharmacol 2017. [PMID: 28634996 PMCID: PMC5727331 DOI: 10.1111/bph.13922] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The β‐catenin destruction complex is a dynamic cytosolic multiprotein assembly that provides a key node in Wnt signalling regulation. The core components of the destruction complex comprise the scaffold proteins axin and adenomatous polyposis coli and the Ser/Thr kinases casein kinase 1 and glycogen synthase kinase 3. In unstimulated cells, the destruction complex efficiently drives degradation of the transcriptional coactivator β‐catenin, thereby preventing the activation of the Wnt/β‐catenin pathway. Mutational inactivation of the destruction complex is a major pathway in the pathogenesis of cancer. Here, we review recent insights in the regulation of the β‐catenin destruction complex, including newly identified interaction interfaces, regulatory elements and post‐translationally controlled mechanisms. In addition, we discuss how mutations in core destruction complex components deregulate Wnt signalling via distinct mechanisms and how these findings open up potential therapeutic approaches to restore destruction complex activity in cancer cells. Linked Articles This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc
Collapse
Affiliation(s)
- Eline C van Kappel
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Madelon M Maurice
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|