51
|
Emberts Z, St Mary CM, Howard CC, Forthman M, Bateman PW, Somjee U, Hwang WS, Li D, Kimball RT, Miller CW. The evolution of autotomy in leaf-footed bugs. Evolution 2020; 74:897-910. [PMID: 32267543 PMCID: PMC7317576 DOI: 10.1111/evo.13948] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/24/2020] [Indexed: 01/04/2023]
Abstract
Sacrificing body parts is one of many behaviors that animals use to escape predation. This trait, termed autotomy, is classically associated with lizards. However, several other taxa also autotomize, and this trait has independently evolved multiple times throughout Animalia. Despite having multiple origins and being an iconic antipredatory trait, much remains unknown about the evolution of autotomy. Here, we combine morphological, behavioral, and genomic data to investigate the evolution of autotomy within leaf-footed bugs and allies (Insecta: Hemiptera: Coreidae + Alydidae). We found that the ancestor of leaf-footed bugs autotomized and did so slowly; rapid autotomy (<2 min) then arose multiple times. The ancestor likely used slow autotomy to reduce the cost of injury or to escape nonpredatory entrapment but could not use autotomy to escape predation. This result suggests that autotomy to escape predation is a co-opted benefit (i.e., exaptation), revealing one way that sacrificing a limb to escape predation may arise. In addition to identifying the origins of rapid autotomy, we also show that across species variation in the rates of autotomy can be explained by body size, distance from the equator, and enlargement of the autotomizable appendage.
Collapse
Affiliation(s)
- Zachary Emberts
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Colette M St Mary
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Cody Coyotee Howard
- Department of Biology, University of Florida, Gainesville, Florida, 32611.,Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611
| | - Michael Forthman
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, 32611
| | - Philip W Bateman
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia
| | - Ummat Somjee
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Wei Song Hwang
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, 117377, Singapore
| | - Daiqin Li
- Department of Biological Science, National University of Singapore, Singapore, 117543, Singapore
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Christine W Miller
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, 32611
| |
Collapse
|
52
|
Michelangeli M, Melki-Wegner B, Laskowski K, Wong BB, Chapple DG. Impacts of caudal autotomy on personality. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
53
|
Hodgkin J. Nematode Autotomy Requires Molting and Entails Tissue Healing without Obvious Regeneration. J Dev Biol 2019; 7:jdb7040021. [PMID: 31771156 PMCID: PMC6955759 DOI: 10.3390/jdb7040021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/30/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022] Open
Abstract
Autotomy in C. elegans, which results in the severing of the body into two fragments, has been observed as a response to late larval worm-star formation after exposure to a bacterial surface pathogen. It was found that autotomy can occur in both hermaphroditic and gonochoristic nematode species, and during either the L3 or the L4 molt. Severing was hypothesized to be driven by a ‘balloon-twisting’ mechanism during molting but was found to be independent of lethargus-associated flipping. Extensive healing and apparent tissue fusion were seen at the site of scission. No obvious regeneration of lost body parts was seen in either L4 or adult truncated worms. A variety of mutants defective in processes of cell death, healing, regeneration, responses to damage, stress or pathogens were found to be competent to autotomize. Mutants specifically defective in autotomy have yet to be found. Autotomy may represent a modification of the essential normal process of molting.
Collapse
Affiliation(s)
- Jonathan Hodgkin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|